1
|
Hutchings DC, Pearman CM, Madders GWP, Woods LS, Eisner DA, Dibb KM, Trafford AW. PDE5 Inhibition Suppresses Ventricular Arrhythmias by Reducing SR Ca 2+ Content. Circ Res 2021; 129:650-665. [PMID: 34247494 PMCID: PMC8409902 DOI: 10.1161/circresaha.121.318473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- David C Hutchings
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom
| | - Charles M Pearman
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom
| | - George W P Madders
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom
| | - Lori S Woods
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom
| | - David A Eisner
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom
| | - Katharine M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom
| |
Collapse
|
2
|
Escudero DS, Pérez NG, Díaz RG. Myocardial Impact of NHE1 Regulation by Sildenafil. Front Cardiovasc Med 2021; 8:617519. [PMID: 33693035 PMCID: PMC7937606 DOI: 10.3389/fcvm.2021.617519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The cardiac Na+/H+ exchanger (NHE1) is a membrane glycoprotein fundamental for proper cell functioning due its multiple housekeeping tasks, including regulation of intracellular pH, Na+ concentration, and cell volume. In the heart, hyperactivation of NHE1 has been linked to the development of different pathologies. Several studies in animal models that reproduce the deleterious effects of ischemia/reperfusion injury or cardiac hypertrophy have conclusively demonstrated that NHE1 inhibition provides cardioprotection. Unfortunately, NHE1 inhibitors failed to reproduce these effects in the clinical arena. The reasons for those discrepancies are not apparent yet. However, a reasonable clue to consider would be that drugs that completely abolish the exchanger activity, including that its essential housekeeping function may not be the best therapeutic approach. Therefore, interventions tending to specifically reduce its hyperactive state without affecting its basal activity emerge as a novel potential gold standard. In this regard, a promising goal seems to be the modulation of the phosphorylation state of the cytosolic tail of the exchanger. Recent own experiments demonstrated that Sildenafil, a phosphodiesterase 5A inhibitor drug that has been widely used for the treatment of erectile dysfunction is able to decrease NHE1 phosphorylation, and hence reduce its hyperactivity. In connection, growing evidence demonstrates cardioprotective properties of Sildenafil against different cardiac pathologies, with the distinctive characteristic of directly affecting cardiac tissue without altering blood pressure. This mini-review was aimed to focus on the regulation of NHE1 activity by Sildenafil. For this purpose, experimental data reporting Sildenafil effects in different animal models of heart disease will be discussed.
Collapse
Affiliation(s)
- Daiana S Escudero
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Néstor G Pérez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Romina G Díaz
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Abstract
The 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type I (cGKI aka PKGI) is a major cardiac effector acting downstream of nitric oxide (NO)-sensitive soluble guanylyl cyclase and natriuretic peptides (NPs), which signal through transmembrane guanylyl cyclases. Consistent with the wide distribution of the cGMP-generating guanylyl cyclases, cGKI, which usually elicits its cellular effects by direct phosphorylation of its targets, is present in multiple cardiac cell types including cardiomyocytes (CMs). Although numerous targets of cGMP/cGKI in heart were identified in the past, neither their exact patho-/physiological functions nor cell-type specific roles are clear. Herein, we inform about the current knowledge on the signal transduction downstream of CM cGKI. We believe that better insights into the specific actions of cGMP and cGKI in these cells will help to guide future studies in the search for predictive biomarkers for the response to pharmacological cGMP pathway modulation. In addition, targets downstream of cGMP/cGKI may be exploited for refined and optimized diagnostic and therapeutic strategies in different types of heart disease and their causes. Importantly, key functions of these proteins and particularly sites of regulatory phosphorylation by cGKI should, at least in principle, remain intact, although upstream signaling through the second messenger cGMP is impaired or dysregulated in a stressed or diseased heart state.
Collapse
|
4
|
Medina AJ, Ibáñez AM, Diaz-Zegarra LA, Portiansky EL, Blanco PG, Pereyra EV, de Giusti VC, Aiello EA, Yeves AM, Ennis IL. Cardiac up-regulation of NBCe1 emerges as a beneficial consequence of voluntary wheel running in mice. Arch Biochem Biophys 2020; 694:108600. [PMID: 33007282 DOI: 10.1016/j.abb.2020.108600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022]
Abstract
Physical training stimulates the development of physiologic cardiac hypertrophy (CH), being a key event in this process the inhibition of the Na+/H+ exchanger. However, the role of the sodium bicarbonate cotransporter (NBC) has not been explored yet under this circumstance. C57/Bl6 mice were allowed to voluntary exercise (wheel running) for five weeks. Cardiac mass was evaluated by echocardiography and histomorphometry detecting that training promoted the development of physiological CH (heart weight/tibia length ratio, mg/mm: 6.54 ± 0.20 vs 8.81 ± 0.24; interstitial collagen content, %: 3.14 ± 0.63 vs. 1.57 ± 0.27; and cross-sectional area of cardiomyocytes, μm2: 200.6 ± 8.92 vs. 281.9 ± 24.05; sedentary (Sed) and exercised (Ex) mice, respectively). The activity of the electrogenic isoform of the cardiac NBC (NBCe1) was estimated by recording intracellular pH under high potassium concentration and by measuring action potential duration (APD). NBCe1 activity was significantly increased in isolated cardiomyocytes of trained mice. Additionally, the APD was shorter and the alkalization due to high extracellular potassium-induced depolarization was greater in this group, indicating that the NBCe1 was hyperactive. These results are online with the observed myocardial up-regulation of the NBCe1 (Western Blot, %: 100 ± 13.86 vs. 202 ± 29.98; Sed vs. Ex, n = 6 each group). In addition, we detected a reduction in H2O2 production in the myocardium of trained mice. These results support that voluntary training induces the development of physiologic CH with up-regulation of the cardiac NBCe1 in mice. Furthermore, the improvement in the antioxidant capacity contributes to the beneficial cardiovascular consequences of physical training.
Collapse
Affiliation(s)
- Andrés J Medina
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Alejandro M Ibáñez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Leandro A Diaz-Zegarra
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias UNLP-CONICET, Argentina
| | - Paula G Blanco
- Servicio de Cardiología, Facultad de Ciencias Veterinarias, UNLP-CONICET, Argentina
| | - Erica V Pereyra
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Verónica C de Giusti
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Alejandra M Yeves
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Irene L Ennis
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina.
| |
Collapse
|
5
|
Yeves AM, Ennis IL. Na +/H + exchanger and cardiac hypertrophy. HIPERTENSION Y RIESGO VASCULAR 2019; 37:22-32. [PMID: 31601481 DOI: 10.1016/j.hipert.2019.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Reactive cardiac hypertrophy (CH) is an increase in heart mass in response to hemodynamic overload. Exercise-induced CH emerges as an adaptive response with improved cardiac function, in contrast to pathological CH that represents a risk factor for cardiovascular health. The Na+/H+ exchanger (NHE-1) is a membrane transporter that not only regulates intracellular pH but also intracellular Na+ concentration. In the scenario of cardiovascular diseases, myocardial NHE-1 is activated by a variety of stimuli, such as neurohumoral factors and mechanical stress, leading to intracellular Na+ overload and activation of prohypertrophic cascades. NHE-1 hyperactivity is intimately linked to heart diseases, including ischemia-reperfusion injury, maladaptive CH and heart failure. In this review, we will present evidence to support that the NHE-1 hyperactivity constitutes a "switch on/off" for the pathological phenotype during CH development. We will also discuss some classical and novel strategies to avoid NHE-1 hyperactivity, and that are therefore worthwhile to improve cardiovascular health.
Collapse
Affiliation(s)
- A M Yeves
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata - CONICET, Calle 60 y 120, 1900 La Plata, Argentina
| | - I L Ennis
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata - CONICET, Calle 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
6
|
Silencing of the Na+/H+ exchanger 1(NHE-1) prevents cardiac structural and functional remodeling induced by angiotensin II. Exp Mol Pathol 2019; 107:1-9. [DOI: 10.1016/j.yexmp.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 12/30/2022]
|
7
|
Yeves AM, Burgos JI, Medina AJ, Villa-Abrille MC, Ennis IL. Cardioprotective role of IGF-1 in the hypertrophied myocardium of the spontaneously hypertensive rats: A key effect on NHE-1 activity. Acta Physiol (Oxf) 2018; 224:e13092. [PMID: 31595734 DOI: 10.1111/apha.13092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
AIM Myocardial Na+/H+ exchanger-1 (NHE-1) hyperactivity and oxidative stress are interrelated phenomena playing pivotal roles in the development of pathological cardiac hypertrophy and heart failure. Exercise training is effective to convert pathological into physiological hypertrophy in the spontaneously hypertensive rats (SHR), and IGF-1-key humoral mediator of exercise training-inhibits myocardial NHE-1, at least in normotensive rats. Therefore, we hypothesize that IGF-1 by hampering NHE-1 hyperactivity and oxidative stress should exert a cardioprotective effect in the SHR. METHODS NHE-1 activity [proton efflux ( J H + ) mmol L-1 min-1], expression and phosphorylation; H2O2 production; superoxide dismutase (SOD) activity; contractility and calcium transients were measured in SHR hearts in the presence/absence of IGF-1. RESULTS IGF-1 significantly decreased NHE-1 activity ( J H + at pHi 6.95: 1.39 ± 0.32, n = 9 vs C 3.27 ± 0.3, n = 20, P < .05); effect prevented by AG1024, an antagonist of IGF-1 receptor (2.7 ± 0.4, n = 7); by the PI3K inhibitor wortmannin (3.14 ± 0.41, n = 7); and the AKT inhibitor MK2206 (3.37 ± 0.43, n = 14). Moreover, IGF-1 exerted an antioxidant effect revealed by a significant reduction in H2O2 production accompanied by an increase in SOD activity. In addition, IGF-1 improved cardiomyocyte contractility as evidenced by an increase in sarcomere shortening and a decrease in the relaxation constant, underlined by an increase in the amplitude and rate of decay of the calcium transients. CONCLUSION IGF-1 exerts a cardioprotective role on the hypertrophied hearts of the SHR, in which the inhibition of NHE-1 hyperactivity, as well as the positive inotropic and antioxidant effects, emerges as key players.
Collapse
Affiliation(s)
- A. M. Yeves
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| | - J. I. Burgos
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| | - A. J. Medina
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| | - M. C. Villa-Abrille
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| | - I. L. Ennis
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| |
Collapse
|
8
|
Vasostatin-1 Stops Structural Remodeling and Improves Calcium Handling via the eNOS-NO-PKG Pathway in Rat Hearts Subjected to Chronic β-Adrenergic Receptor Activation. Cardiovasc Drugs Ther 2017; 30:455-464. [PMID: 27595734 DOI: 10.1007/s10557-016-6687-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Chronically elevated catecholamine levels activate cardiac β-adrenergic receptors, which play a vital role in the pathogenesis of heart failure. Evidence suggests that vasostatin-1 (VS-1) exerts anti-adrenergic effects on isolated and perfused hearts in vitro. Whether VS-1 ameliorates hypertrophy/remodeling by inducing the chronic activation of β-adrenergic receptors is unknown. The present study aims to test the efficacy of using VS-1 to treat the advanced hypertrophy/remodeling that result from chronic β-adrenergic receptor activation and to determine the cellular and molecular mechanisms that underlie this response. METHODS AND RESULT Rats were subjected to infusion with either isoprenaline (ISO, 5 mg/kg/d), ISO plus VS-1 (30 mg/kg/d) or placebo for 2 weeks. VS-1 suppressed chamber dilation, myocyte hypertrophy and fibrosis and improved in vivo heart function in the rats subjected to ISO infusion. VS-1 increased phosphorylated nitric oxide synthase levels and induced the activation of protein kinase G. VS-1 also deactivated multiple hypertrophy signaling pathways that were triggered by the chronic activation of β-adrenergic receptors, such as the phosphoinositide-3 kinase (PI3K)/Akt and Ca2+/calmodulin-dependent kinase (CaMK-II) pathways. Myocytes isolated from ISO + VS-1 hearts displayed higher Ca2+ transients, shorter Ca2+ decays, higher sarcoplasmic reticulum Ca2+ levels and higher L-type Ca2+ current densities than the ISO rat hearts. VS-1 treatment restored the protein expression of sarcoplasmic reticulum Ca2+ uptake ATPase, phospholamban and Cav1.2, indicating improved calcium handling. CONCLUSIONS Chronic VS-1 treatment inhibited the progression of hypertrophy, fibrosis, and chamber remodeling, and improved cardiac function in a rat model of ISO infusion. In addition, Ca2+ handling and its molecular modulation were also improved by VS-1. The beneficial effects of VS-1 on cardiac remodeling may be mediated by the enhanced activation of the eNOS-cGMP-PKG pathway.
Collapse
|
9
|
Kirk JA, Holewinski RJ, Crowgey EL, Van Eyk JE. Protein kinase G signaling in cardiac pathophysiology: Impact of proteomics on clinical trials. Proteomics 2016; 16:894-905. [PMID: 26670943 DOI: 10.1002/pmic.201500401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 01/09/2023]
Abstract
The protective role of cyclic guanosine monophosphate (cGMP)-stimulated protein kinase G (PKG) in the heart makes it an attractive target for therapeutic drug development to treat a variety of cardiac diseases. Phosphodiesterases degrade cGMP, thus phosphodiesterase inhibitors that can increase PKG are of translational interest and the subject of ongoing human trials. PKG signaling is complex, however, and understanding its downstream phosphorylation targets and upstream regulation are necessary steps toward safe and efficacious drug development. Proteomic technologies have paved the way for assays that allow us to peer broadly into signaling minutia, including protein quantity changes and phosphorylation events. However, there are persistent challenges to the proteomic study of PKG, such as the impact of the expression of different PKG isoforms, changes in its localization within the cell, and alterations caused by oxidative stress. PKG signaling is also dependent upon sex and potentially the genetic and epigenetic background of the individual. Thus, the rigorous application of proteomics to the field will be necessary to address how these effectors can alter PKG signaling and interfere with pharmacological interventions. This review will summarize PKG signaling, how it is being targeted clinically, and the proteomic challenges and techniques that are being used to study it.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood, IL, USA
| | - Ronald J Holewinski
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erin L Crowgey
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Yeves AM, Caldiz CI, Aiello EA, Villa-Abrille MC, Ennis IL. Reactive oxygen species partially mediate high dose angiotensin II-induced positive inotropic effect in cat ventricular myocytes. Cardiovasc Pathol 2015; 24:236-40. [DOI: 10.1016/j.carpath.2015.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/11/2023] Open
|
11
|
Yeves AM, Villa-Abrille MC, Pérez NG, Medina AJ, Escudero EM, Ennis IL. Physiological cardiac hypertrophy: critical role of AKT in the prevention of NHE-1 hyperactivity. J Mol Cell Cardiol 2014; 76:186-95. [PMID: 25240639 DOI: 10.1016/j.yjmcc.2014.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/28/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND The involvement of NHE-1 hyperactivity, critical for pathological cardiac hypertrophy (CH), in physiological CH has not been elucidated yet. Stimulation of NHE-1 increases intracellular Na(+) and Ca(2+) favouring calcineurin activation. Since myocardial stretch, an activator of NHE-1, is common to both types of CH, we speculate that NHE-1 hyperactivity may also happen in physiological CH. However, calcineurin activation is characteristic only for pathological hypertrophy. We hypothesize that an inhibitory AKT-dependent mechanism prevents NHE-1 hyperactivity in the setup of physiological CH. METHODS Physiological CH was induced in rats by swimming (90 min/day, 12 weeks) or in cultured isolated cardiomyocytes with IGF-1 (10 nmol/L). RESULTS Training induced eccentric CH development (left ventricular weight/tibial length: 22.0±0.3 vs. 24.3±0.7 mg/mm; myocyte cross sectional area: 100±3.2 vs. 117±4.1 %; sedentary (Sed) and swim-trained (Swim) respectively; p<0.05] with decreased myocardial stiffness and collagen deposition [1.7±0.05 % (Sed) vs. 1.4±0.09 % (Swim); p<0.05]. Increased phosphorylation of AKT, ERK1/2, p90(RSK) and NHE-1 at the consensus site for ERK1/2-p90(RSK) were detected in the hypertrophied hearts (P-AKT: 134±10 vs. 100±5; P-ERK1/2: 164±17 vs. 100±18; P-p90(RSK): 160±18 vs. 100±9; P-NHE-1 134±10 vs. 100±10; % in Swim vs. Sed respectively; p<0.05). No significant changes were detected neither in calcineurin activation [calcineurin Aβ 100±10 (Sed) vs. 96±12 (Swim)], nor NFAT nuclear translocation [100±3.11 (Sed) vs. 95±9.81 % (Swim)] nor NHE-1 expression [100±8.5 (Sed) vs. 95±6.7 % (Swim)]. Interestingly, the inhibitory phosphorylation of the NHE-1 consensus site for AKT was increased in the hypertrophied myocardium (151.6±19.4 (Swim) vs. 100±9.5 % (Sed); p<0.05). In isolated cardiomyocytes 24 hours IGF-1 increased cell area (114±1.3 %; p<0.05) and protein/DNA content (115±3.9 %, p<0.05), effects not abolished by NHE-1 inhibition with cariporide (114±3 and 117±4.4 %, respectively). IGF-1 significantly decreased NHE-1 activity during pHi recovery from sustained intracellular acidosis (JH+ at pHi 6.8: 4.08±0.74 and 9.09±1.21 mmol/L/min, IGF-1 vs. control; p<0.05), and abolished myocardial slow force response, the mechanical counterpart of stretch-induced NHE-1 activation. CONCLUSIONS NHE-1 hyperactivity seems not to be involved in physiological CH development, contrary to what characterizes pathological CH. We propose that AKT, through an inhibitory phosphorylation of the NHE-1, prevents its stretch-induced activation. This posttranslational modification emerges as an adaptive mechanism that avoids NHE-1 hyperactivity preserving its housekeeping functioning.
Collapse
Affiliation(s)
- Alejandra M Yeves
- Centro de Investigaciones Cardiovasculares, , Facultad de Ciencias Médicas, UNLP-CONICET, Argentina
| | - María C Villa-Abrille
- Centro de Investigaciones Cardiovasculares, , Facultad de Ciencias Médicas, UNLP-CONICET, Argentina
| | - Néstor G Pérez
- Centro de Investigaciones Cardiovasculares, , Facultad de Ciencias Médicas, UNLP-CONICET, Argentina
| | - Andrés J Medina
- Centro de Investigaciones Cardiovasculares, , Facultad de Ciencias Médicas, UNLP-CONICET, Argentina
| | - Eduardo M Escudero
- Centro de Investigaciones Cardiovasculares, , Facultad de Ciencias Médicas, UNLP-CONICET, Argentina
| | - Irene L Ennis
- Centro de Investigaciones Cardiovasculares, , Facultad de Ciencias Médicas, UNLP-CONICET, Argentina.
| |
Collapse
|
12
|
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes-prkg1 and prkg2-code for cGKs, namely, cGKI and cGKII. In mammals, two isozymes, cGKIα and cGKIβ, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxtaglomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all, signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondral bone growth. This chapter focuses on the involvement of cGKs in cardiovascular and non-cardiovascular processes including cell growth and metabolism.
Collapse
Affiliation(s)
- Franz Hofmann
- FOR 923, Institut für Pharmakologie und Toxikologie, der Technischen Universität München, Munich, Germany
| | | |
Collapse
|
13
|
|
14
|
De Giusti VC, Nolly MB, Yeves AM, Caldiz CI, Villa-Abrille MC, Chiappe de Cingolani GE, Ennis IL, Cingolani HE, Aiello EA. Aldosterone Stimulates the Cardiac Na
+
/H
+
Exchanger via Transactivation of the Epidermal Growth Factor Receptor. Hypertension 2011; 58:912-9. [DOI: 10.1161/hypertensionaha.111.176024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of antagonists of the mineralocorticoid receptor in the treatment of myocardial hypertrophy and heart failure has gained increasing importance in the last years. The cardiac Na
+
/H
+
exchanger (NHE-1) upregulation induced by aldosterone could account for the genesis of these pathologies. We tested whether aldosterone-induced NHE-1 stimulation involves the transactivation of the epidermal growth factor receptor (EGFR). Rat ventricular myocytes were used to measure intracellular pH with epifluorescence. Aldosterone enhanced the NHE-1 activity. This effect was canceled by spironolactone or eplerenone (mineralocorticoid receptor antagonists), but not by mifepristone (glucocorticoid receptor antagonist) or cycloheximide (protein synthesis inhibitor), indicating that the mechanism is mediated by the mineralocorticoid receptor triggering nongenomic pathways. Aldosterone-induced NHE-1 stimulation was abolished by the EGFR kinase inhibitor AG1478, suggesting that is mediated by transactivation of EGFR. The increase in the phosphorylation level of the kinase p90
RSK
and NHE-1 serine703 induced by aldosterone was also blocked by AG1478. Exogenous epidermal growth factor mimicked the effects of aldosterone on NHE-1 activity. Epidermal growth factor was also able to increase reactive oxygen species production, and the epidermal growth factor–induced activation of the NHE-1 was abrogated by the reactive oxygen species scavenger
N
-2-mercaptopropionyl glycine, indicating that reactive oxygen species are participating as signaling molecules in this mechanism. Aldosterone enhances the NHE-1 activity via transactivation of the EGFR, formation of reactive oxygen species, and phosphorylation of the exchanger. These results call attention to the consideration of the EGFR as a new potential therapeutic target of the cardiovascular pathologies involving the participation of aldosterone.
Collapse
Affiliation(s)
- Verónica C. De Giusti
- From the Centro de Investigaciones Cardiovasculares (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariela B. Nolly
- From the Centro de Investigaciones Cardiovasculares (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alejandra M. Yeves
- From the Centro de Investigaciones Cardiovasculares (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Claudia I. Caldiz
- From the Centro de Investigaciones Cardiovasculares (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María C. Villa-Abrille
- From the Centro de Investigaciones Cardiovasculares (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gladys E. Chiappe de Cingolani
- From the Centro de Investigaciones Cardiovasculares (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Irene L. Ennis
- From the Centro de Investigaciones Cardiovasculares (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Horacio E. Cingolani
- From the Centro de Investigaciones Cardiovasculares (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ernesto A. Aiello
- From the Centro de Investigaciones Cardiovasculares (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
15
|
Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. J Mol Cell Cardiol 2011; 52:330-40. [PMID: 21843527 DOI: 10.1016/j.yjmcc.2011.07.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/03/2011] [Accepted: 07/29/2011] [Indexed: 12/31/2022]
Abstract
Cyclic guanosine 3'5'monophosphate (cGMP) is the common downstream second messenger of natriuretic peptides and nitric oxide. In cardiac myocytes, the physiological effects of cGMP are exerted through the activation of protein kinase G (PKG) signaling, and the activation and/or inhibition of phosphodiesterases (PDEs), providing an integration point between cAMP and cGMP signals. Specificity of cGMP signals is achieved through compartmentalization of cGMP synthesis by guanylate cyclases, and cGMP hydrolysis by PDEs. Increasing evidence suggests that cGMP-dependent signaling pathways play an important role in inhibiting cardiac remodeling, through the inhibition Ca(2+) handling upstream of pathological Ca(2+)-dependent signaling pathways. Thus, enhancing cardiac myocyte cGMP signaling represents a promising therapeutic target for treatment of cardiovascular disease. This article is part of a Special Issue entitled "Local Signaling in Myocytes."
Collapse
|