1
|
Li Y, Ding S, Wang Y. Targeting the cholinergic anti-inflammatory pathway: an innovative strategy for treating diseases. Mol Biol Rep 2025; 52:199. [PMID: 39903351 DOI: 10.1007/s11033-025-10288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is comprised of the vagus nerve, acetylcholine, nicotinic acetylcholine receptors, the spleen, and the splenic nerve. It represents a sophisticated neuroimmune axis that critically regulates the crosstalk between the nervous system and the immune response via the vagus nerve. Here, we provided a nuanced exploration of the CAP's role in curbing inflammatory processes and its broad therapeutic potential across a spectrum of diseases. We meticulously dissect the intricate mechanisms by which the CAP modulates key signaling cascades, including the NF-κB, JAK2/STAT3, MAPK/ERK, PI3K/AKT, COX2/PGE2, and NRF2/HO-1 pathways, which are quintessential in the pathogenesis of various conditions. Additionally, we also summarized the CAP's profound implications in the management of inflammatory diseases, neurodegenerative disorders, metabolic syndromes, and oncological malignancies, elucidating its capacity to mitigate disease severity and progression through sophisticated immune modulation. The modulation of the CAP is suggested as a novel strategy that could potentially transform treatment approaches for a variety of conditions. However, the precise cellular and molecular underpinnings of the CAP's effects, as well as its translatability to clinical settings, remain subjects of ongoing investigation. The review calls for further research to demystify the mechanisms of the CAP and to harness its therapeutic potential fully, with the aim of developing innovative and efficacious treatment modalities that exploit the pathway's unique attributes.
Collapse
Affiliation(s)
- Yifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shufan Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
2
|
Bricher Choque PN, Porter MH, Teixeira MS, Dellê H, Elias RM, Durante B, Dutra MRH, Metz CN, Pavlov VA, Consolim Colombo FM. Cholinergic Stimulation Exerts Cardioprotective Effects and Alleviates Renal Inflammatory Responses after Acute Myocardial Infarction in Spontaneous Hypertensive Rats (SHRs). Pharmaceuticals (Basel) 2024; 17:547. [PMID: 38794117 PMCID: PMC11124479 DOI: 10.3390/ph17050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND In this investigation, we explored the effects of pharmacological cholinergic stimulation on cardiac function and renal inflammation following acute myocardial infarction (AMI) in spontaneously hypertensive rats (SHRs). METHODS Adult male SHRs were randomized into three experimental groups: sham-operated; AMI + Veh (infarcted, treated with vehicle); and AMI + PY (infarcted, treated with the cholinesterase inhibitor, pyridostigmine bromide (PY)-40 mg/kg, once daily for seven days). Rats were euthanized 7 or 30 days post-surgery. The clinical parameters were assessed on the day before euthanasia. Subsequent to euthanasia, blood samples were collected and renal tissues were harvested for histological and gene expression analyses aimed to evaluate inflammation and injury. RESULTS Seven days post-surgery, the AMI + PY group demonstrated improvements in left ventricular diastolic function and autonomic regulation, and a reduction in renal macrophage infiltration compared to the AMI + Veh group. Furthermore, there was a notable downregulation in pro-inflammatory gene expression and an upregulation in anti-inflammatory gene expression. Analysis 30 days post-surgery showed that PY treatment had a sustained positive effect on renal gene expression, correlated with a decrease in biomarkers, indicative of subclinical kidney injury. CONCLUSIONS Short-term cholinergic stimulation with PY provides both cardiac and renal protection by mitigating the inflammatory response after AMI.
Collapse
Affiliation(s)
- Pamela Nithzi Bricher Choque
- Department of Medicine, Universidade Nove de Julho (Uninove), São Paulo 01504-001, SP, Brazil; (P.N.B.C.); (M.H.P.); (H.D.); (R.M.E.); (M.R.H.D.)
| | - Maria Helena Porter
- Department of Medicine, Universidade Nove de Julho (Uninove), São Paulo 01504-001, SP, Brazil; (P.N.B.C.); (M.H.P.); (H.D.); (R.M.E.); (M.R.H.D.)
| | - Manuella S. Teixeira
- Hypertension Unit, Heart Institute, Medical School, University of São Paulo, São Paulo 05403-900, SP, Brazil; (M.S.T.); (B.D.)
| | - Humberto Dellê
- Department of Medicine, Universidade Nove de Julho (Uninove), São Paulo 01504-001, SP, Brazil; (P.N.B.C.); (M.H.P.); (H.D.); (R.M.E.); (M.R.H.D.)
| | - Rosilene Motta Elias
- Department of Medicine, Universidade Nove de Julho (Uninove), São Paulo 01504-001, SP, Brazil; (P.N.B.C.); (M.H.P.); (H.D.); (R.M.E.); (M.R.H.D.)
| | - Bruno Durante
- Hypertension Unit, Heart Institute, Medical School, University of São Paulo, São Paulo 05403-900, SP, Brazil; (M.S.T.); (B.D.)
| | - Marina Rascio Henriques Dutra
- Department of Medicine, Universidade Nove de Julho (Uninove), São Paulo 01504-001, SP, Brazil; (P.N.B.C.); (M.H.P.); (H.D.); (R.M.E.); (M.R.H.D.)
| | - Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (C.N.M.); (V.A.P.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11550, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (C.N.M.); (V.A.P.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11550, USA
| | - Fernanda M. Consolim Colombo
- Department of Medicine, Universidade Nove de Julho (Uninove), São Paulo 01504-001, SP, Brazil; (P.N.B.C.); (M.H.P.); (H.D.); (R.M.E.); (M.R.H.D.)
- Hypertension Unit, Heart Institute, Medical School, University of São Paulo, São Paulo 05403-900, SP, Brazil; (M.S.T.); (B.D.)
| |
Collapse
|
3
|
Bralewska M, Pietrucha T, Sakowicz A. The Role of Catestatin in Preeclampsia. Int J Mol Sci 2024; 25:2461. [PMID: 38473713 DOI: 10.3390/ijms25052461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Preeclampsia (PE) is a unique pregnancy disorder affecting women across the world. It is characterized by the new onset of hypertension with coexisting end-organ damage. Although the disease has been known for centuries, its exact pathophysiology and, most importantly, its prevention remain elusive. The basis of its associated molecular changes has been attributed to the placenta and the hormones regulating its function. One such hormone is chromogranin A (CgA). In the placenta, CgA is cleaved to form a variety of biologically active peptides, including catestatin (CST), known inter alia for its vasodilatory effects. Recent studies indicate that the CST protein level is diminished both in patients with hypertension and those with PE. Therefore, the aim of the present paper is to review the most recent and most relevant in vitro, in vivo, and clinical studies to provide an overview of the proposed impact of CST on the molecular processes of PE and to consider the possibilities for future experiments in this area.
Collapse
Affiliation(s)
- Michalina Bralewska
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
4
|
Kaplan A, Lakkis B, El-Samadi L, Karaayvaz EB, Booz GW, Zouein FA. Cooling Down Inflammation in the Cardiovascular System via the Nicotinic Acetylcholine Receptor. J Cardiovasc Pharmacol 2023; 82:241-265. [PMID: 37539950 DOI: 10.1097/fjc.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
ABSTRACT Inflammation is a major player in many cardiovascular diseases including hypertension, atherosclerosis, myocardial infarction, and heart failure. In many individuals, these conditions coexist and mutually exacerbate each other's progression. The pathophysiology of these diseases entails the active involvement of both innate and adaptive immune cells. Immune cells that possess the α7 subunit of the nicotinic acetylcholine receptor on their surface have the potential to be targeted through both pharmacological and electrical stimulation of the cholinergic system. The cholinergic system regulates the inflammatory response to various stressors in different organ systems by systematically suppressing spleen-derived monocytes and chemokines and locally improving immune cell function. Research on the cardiovascular system has demonstrated the potential for atheroma plaque stabilization and regression as favorable outcomes. Smaller infarct size and reduced fibrosis have been associated with improved cardiac function and a decrease in adverse cardiac remodeling. Furthermore, enhanced electrical stability of the myocardium can lead to a reduction in the incidence of ventricular tachyarrhythmia. In addition, improving mitochondrial dysfunction and decreasing oxidative stress can result in less myocardial tissue damage caused by reperfusion injury. Restoring baroreflex activity and reduction in renal damage can promote blood pressure regulation and help counteract hypertension. Thus, the present review highlights the potential of nicotinic acetylcholine receptor activation as a natural approach to alleviate the adverse consequences of inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- Department of Cardiology, Kemer Public Hospital, Kemer, Antalya, Turkey
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Bachir Lakkis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Lana El-Samadi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Ekrem Bilal Karaayvaz
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, France
| |
Collapse
|
5
|
Ji QX, Zeng FY, Zhou J, Wu WB, Wang XJ, Zhang Z, Zhang GY, Tong J, Sun DY, Zhang JB, Cao WX, Shen FM, Lu JJ, Li DJ, Wang P. Ferroptotic stress facilitates smooth muscle cell dedifferentiation in arterial remodelling by disrupting mitochondrial homeostasis. Cell Death Differ 2023; 30:457-474. [PMID: 36477078 PMCID: PMC9950429 DOI: 10.1038/s41418-022-01099-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Smooth muscle cell (SMC) phenotypic switch from a quiescent 'contractile' phenotype to a dedifferentiated and proliferative state underlies the development of cardiovascular diseases (CVDs); however, our understanding of the mechanism is still incomplete. In the present study, we explored the potential role of ferroptosis, a novel nonapoptotic form of cell death, in SMC phenotypic switch and related neointimal formation. We found that ferroptotic stress was triggered in cultured dedifferentiated SMCs and arterial neointimal tissue of wire-injured mice. Moreover, pro-ferroptosis stress was activated in arterial neointimal tissue of clinical patients who underwent carotid endarterectomy. Blockade of ferroptotic stress via administration of a pharmacological inhibitor or by global genetic overexpression of glutathione peroxidase-4 (GPX4), a well-established anti-ferroptosis molecule, delayed SMC phenotype switch and arterial remodelling. Conditional SMC-specific gene delivery of GPX4 using adreno-associated virus in the carotid artery inhibited ferroptosis and prevented neointimal formation. Conversely, ferroptosis stress directly triggered dedifferentiation of SMCs. Transcriptomics analysis demonstrated that inhibition of ferroptotic stress mainly targets the mitochondrial respiratory chain and oxidative phosphorylation. Mechanistically, ferroptosis inhibition corrected the disrupted mitochondrial homeostasis in dedifferentiated SMCs, including enhanced mitochondrial ROS production, dysregulated mitochondrial dynamics, and mitochondrial hyperpolarization, and ultimately inhibited SMC phenotypic switch and growth. Copper-diacetyl-bisN4-methylthiosemicarbazone (CuATSM), an agent used for clinical molecular imaging and that potently inhibits ferroptosis, prevented SMC phenotypic switch, neointimal formation and arterial inflammation in mice. These results indicate that pro-ferroptosis stress is likely to promote SMC phenotypic switch during neointimal formation and imply that inhibition of ferroptotic stress may be a promising translational approach to treat CVDs with SMC phenotype switch.
Collapse
Affiliation(s)
- Qing-Xin Ji
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei-Yan Zeng
- Department of Pharmacology, Shanghai Forth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Cardiac Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Bin Wu
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Xu-Jie Wang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guo-Yan Zhang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Tong
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Di-Yang Sun
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Jia-Bao Zhang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Wen-Xiang Cao
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China.
| | - Pei Wang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China.
| |
Collapse
|
6
|
Katayama PL, Leirão IP, Kanashiro A, Luiz JPM, Cunha FQ, Navegantes LCC, Menani JV, Zoccal DB, Colombari DSA, Colombari E. The carotid body detects circulating tumor necrosis factor-alpha to activate a sympathetic anti-inflammatory reflex. Brain Behav Immun 2022; 102:370-386. [PMID: 35339628 DOI: 10.1016/j.bbi.2022.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Recent evidence has suggested that the carotid bodies might act as immunological sensors, detecting pro-inflammatory mediators and signalling to the central nervous system, which, in turn, orchestrates autonomic responses. Here, we confirmed that the TNF-α receptor type I is expressed in the carotid bodies of rats. The systemic administration of TNF-α increased carotid body afferent discharge and activated glutamatergic neurons in the nucleus tractus solitarius (NTS) that project to the rostral ventrolateral medulla (RVLM), where many pre-sympathetic neurons reside. The activation of these neurons was accompanied by an increase in splanchnic sympathetic nerve activity. Carotid body ablation blunted the TNF-α-induced activation of RVLM-projecting NTS neurons and the increase in splanchnic sympathetic nerve activity. Finally, plasma and spleen levels of cytokines after TNF-α administration were higher in rats subjected to either carotid body ablation or splanchnic sympathetic denervation. Collectively, our findings indicate that the carotid body detects circulating TNF-α to activate a counteracting sympathetic anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Pedro L Katayama
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil.
| | - Isabela P Leirão
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João P M Luiz
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jose V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil.
| |
Collapse
|
7
|
Zhou L, Zheng LF, Zhang XL, Wang ZY, Yao YS, Xiu XL, Liu CZ, Zhang Y, Feng XY, Zhu JX. Activation of α7nAChR Protects Against Gastric Inflammation and Dysmotility in Parkinson's Disease Rats. Front Pharmacol 2021; 12:793374. [PMID: 34880768 PMCID: PMC8646045 DOI: 10.3389/fphar.2021.793374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
The cholinergic anti-inflammatory pathway (CAIP) has been proposed to regulate gastrointestinal inflammation via acetylcholine released from the vagus nerve activating α7 nicotinic receptor (α7nAChR) on macrophages. Parkinson’s disease (PD) patients and PD rats with substantia nigra (SN) lesions exhibit gastroparesis and a decayed vagal pathway. To investigate whether activating α7nAChR could ameliorate inflammation and gastric dysmotility in PD rats, ELISA, western blot analysis, and real-time PCR were used to detect gastric inflammation. In vitro and in vivo gastric motility was investigated. Proinflammatory mediator levels and macrophage numbers were increased in the gastric muscularis of PD rats. α7nAChR was located on the gastric muscular macrophages of PD rats. The α7nAChR agonists PNU-282987 and GTS-21 decreased nuclear factor κB (NF-κB) activation and monocyte chemotactic protein-1 mRNA expression in the ex vivo gastric muscularis of PD rats, and these effects were abolished by an α7nAChR antagonist. After treatment with PNU-282987 in vivo, the PD rats showed decreased NF-κB activation, inflammatory mediator production, and contractile protein expression and improved gastric motility. The present study reveals that α7nAChR is involved in the development of gastroparesis in PD rats and provides novel insight for the treatment of gastric dysmotility in PD patients.
Collapse
Affiliation(s)
- Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Li-Fei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhi-Yong Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuan-Sheng Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Lin Xiu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chen-Zhe Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jin-Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Wedn AM, El-Bassossy HM, Eid AH, El-Mas MM. Modulation of preeclampsia by the cholinergic anti-inflammatory pathway: Therapeutic perspectives. Biochem Pharmacol 2021; 192:114703. [PMID: 34324867 DOI: 10.1016/j.bcp.2021.114703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is vital for the orchestration of the immune and inflammatory responses under normal and challenged conditions. Over the past two decades, peripheral and central circuits of CAP have been shown to be critically involved in dampening the inflammatory reaction in a wide array of inflammatory disorders. Additionally, emerging evidence supports a key role for CAP in the regulation of the female reproductive system during gestation as well as in the advent of serious pregnancy-related inflammatory insults such as preeclampsia (PE). Within this framework, the modulatory action of CAP encompasses the perinatal maternal and fetal adverse consequences that surface due to antenatal PE programming. Albeit, a considerable gap still exists in our knowledge of the precise cellular and molecular underpinnings of PE/CAP interaction, which hampered global efforts in safeguarding effective preventive or therapeutic measures against PE complications. Here, we summarize reports in the literature regarding the roles of peripheral and reflex cholinergic neuroinflammatory pathways of nicotinic acetylcholine receptors (nAChRs) in reprogramming PE complications in mothers and their progenies. The possible contributions of α7-nAChRs, cholinesterases, immune cells, adhesion molecules, angiogenesis, and endothelial dysfunction to the interaction have also been reviewed.
Collapse
Affiliation(s)
- Abdalla M Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
9
|
Hammarlund ME, Darsalia V, Mjörnstedt F, Pattanaik B, Mallard C, Rocha-Ferreira E, Patrone C, Johansson M. The selective alpha7 nicotinic acetylcholine receptor agonist AR-R17779 does not affect ischemia-reperfusion brain injury in mice. Biosci Rep 2021; 41:BSR20210736. [PMID: 34008839 PMCID: PMC8200656 DOI: 10.1042/bsr20210736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammation plays a central role in stroke-induced brain injury. The alpha7 nicotinic acetylcholine receptor (α7nAChR) can modulate immune responses in both the periphery and the brain. The aims of the present study were to investigate α7nAChR expression in different brain regions and evaluate the potential effect of the selective α7nAChR agonist AR-R17779 on ischemia-reperfusion brain injury in mice. Droplet digital PCR (ddPCR) was used to evaluate the absolute expression of the gene encoding α7nAChR (Chrna7) in hippocampus, striatum, thalamus and cortex in adult, naïve mice. Mice subjected to transient middle cerebral artery occlusion (tMCAO) or sham surgery were treated with α7nAChR agonist AR-R17779 (12 mg/kg) or saline once daily for 5 days. Infarct size and microglial activation 7 days after tMCAO were analyzed using immunohistochemistry. Chrna7 expression was found in all analyzed brain regions in naïve mice with the highest expression in cortex and hippocampus. At sacrifice, white blood cell count was significantly decreased in AR-R17779 treated mice compared with saline controls in the sham groups, although, no effect was seen in the tMCAO groups. Brain injury and microglial activation were evident 7 days after tMCAO. However, no difference was found between mice treated with saline or AR-R17779. In conclusion, α7nAChR expression varies in different brain regions and, despite a decrease in white blood cells in sham mice receiving AR-R17779, this compound does not affect stroke-induced brain injury.
Collapse
Affiliation(s)
- Maria E. Hammarlund
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Filip Mjörnstedt
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bagmi Pattanaik
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eridan Rocha-Ferreira
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria E. Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Sharma S, Nozohouri S, Vaidya B, Abbruscato T. Repurposing metformin to treat age-related neurodegenerative disorders and ischemic stroke. Life Sci 2021; 274:119343. [PMID: 33716063 PMCID: PMC8996678 DOI: 10.1016/j.lfs.2021.119343] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Aging is a risk factor for major central nervous system (CNS) disorders. More specifically, aging can be inked to neurodegenerative diseases (NDs) because of its deteriorating impact on neurovascular unit (NVU). Metformin, a first line FDA-approved anti-diabetic drug, has gained increasing interest among researchers for its role in improving aging-related neurodegenerative disorders. Additionally, numerous studies have illustrated metformin's role in ischemic stroke, a cerebrovascular disorder in which the NVU becomes dysfunctional which can lead to permanent life-threatening disabilities. Considering metformin's beneficial preclinical actions on various disorders, and the drug's role in alleviating severity of these conditions through involvement in commonly characterized cellular pathways, we discuss the potential of metformin as a suitable drug candidate for repurposing in CNS disorders.
Collapse
Affiliation(s)
- Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| |
Collapse
|
11
|
Xu ZQ, Zhang JJ, Kong N, Zhang GY, Ke P, Han T, Su DF, Liu C. Autophagy is Involved in Neuroprotective Effect of Alpha7 Nicotinic Acetylcholine Receptor on Ischemic Stroke. Front Pharmacol 2021; 12:676589. [PMID: 33995108 PMCID: PMC8117007 DOI: 10.3389/fphar.2021.676589] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/14/2021] [Indexed: 01/14/2023] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) belongs to the superfamily of cys loop cationic ligand-gated channels, which consists of homogeneous α7 subunits. Although our lab found that activation of α7nAChR could alleviate ischemic stroke, the mechanism is still unknown. Herein, we explored whether autophagy is involved in the neuroprotective effect mediated by α7nAChR in ischemic stroke. Transient middle cerebral artery occlusion (tMCAO) and oxygen and glucose deprivation (OGD/R) exposure were applied to in vivo and in vitro models of ischemic stroke, respectively. Neurological deficit score and infarct volume were used to evaluate outcomes of tMCAO in the in vivo study. Autophagy-related proteins were detected by Western blot, and autophagy flux was detected by using tandem fluorescent mRFP-GFP-LC3 lentivirus. At 24 h after tMCAO, α7nAChR knockout mice showed worse neurological function and larger infarct volume than wild-type mice. PNU282987, an α7nAChR agonist, protected against OGD/R-induced neuronal injury, enhanced autophagy, and promoted autophagy flux. However, the beneficial effects of PNU282987 were eliminated by 3-methyladenine (3-MA), an autophagy inhibitor. Moreover, we found that PNU282987 treatment could activate the AMPK-mTOR-p70S6K signaling pathway in the in vitro study, while the effect was attenuated by compound C, an AMPK inhibitor. Our results demonstrated that the beneficial effect on neuronal survival via activation of α7nAChR was associated with enhanced autophagy, and the AMPK-mTOR-p70S6K signaling pathway was involved in α7nAChR activation-mediated neuroprotection.
Collapse
Affiliation(s)
- Zhe-Qi Xu
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jing-Jing Zhang
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ni Kong
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Guang-Yu Zhang
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ping Ke
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ting Han
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chong Liu
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Han X, Li W, Li P, Zheng Z, Lin B, Zhou B, Guo K, He P, Yang J. Stimulation of α7 Nicotinic Acetylcholine Receptor by Nicotine Suppresses Decidual M1 Macrophage Polarization Against Inflammation in Lipopolysaccharide-Induced Preeclampsia-Like Mouse Model. Front Immunol 2021; 12:642071. [PMID: 33995360 PMCID: PMC8113862 DOI: 10.3389/fimmu.2021.642071] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Changes in decidual macrophage polarization affect local inflammatory microenvironment and lead to adverse pregnancy outcomes. However, the regulatory mechanism of macrophage polarization in preeclampsia (PE) remains unclear. In this study, we found that α7nAChR expression was significantly down-regulated in decidual macrophages in PE patients compared to normal pregnant women, accompanied by a reduced proportion of M2 phenotype and an increased proportion of M1 phenotype; these results suggested that the reduced α7nAChR activity might contribute to changes in the polarization of decidual macrophages. Then, we further investigated the regulatory role of α7nAChR activation by nicotine on decidual macrophage polarization and placental remodeling in the PE-like mouse model. The PE mice were obtained by i.p. injection of 10 µg/kg lipopolysaccharide (LPS) gestational day (GD) 13, and 40 µg/kg LPS daily until GD16. Subcutaneous injection of 1.0 mg/kg nicotine was administrated from GD14 to GD18. Nicotine treatment increased the decreased M2 phenotype and inhibited the increased M1 phenotype in decidua of pregnant mice induced by LPS. The levels of pro-inflammatory cytokines in decidua were higher but the levels of anti-inflammatory cytokines were lower in PE mice compared to the controls, nicotine reversed these changes. The level of choline acetyltransferase (CHAT) was reduced in the LPS-treated group, it was increased following nicotine treatment. Damage of spiral artery remodeling and down-regulation of markers related to trophoblast invasion in placentas were found in PE mice; nicotine improved these pathological structures of placentas. α-bungarotoxin (α-BGT) which is specific antagonist for α7nAChR could abolish the effects of nicotine on decidual macrophage polarization, trophoblast arrangement and vascular structure in placental tissue in PE mice. These results suggest that α7nAChR plays an important regulatory role in maternal-fetal inflammation and placental remodeling in preeclampsia and may provide a theoretical basis for the discovery of new strategies for preeclampsia.
Collapse
Affiliation(s)
- Xinjia Han
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Li
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ping Li
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zheng Zheng
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Baohua Lin
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bei Zhou
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaimin Guo
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ping He
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinying Yang
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Morales JY, Young-Stubbs CM, Shimoura CG, Kem WR, Uteshev VV, Mathis KW. Systemic Administration of α7-Nicotinic Acetylcholine Receptor Ligands Does Not Improve Renal Injury or Behavior in Mice With Advanced Systemic Lupus Erythematosus. Front Med (Lausanne) 2021; 8:642960. [PMID: 33928103 PMCID: PMC8076522 DOI: 10.3389/fmed.2021.642960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 01/04/2023] Open
Abstract
There is a critical need for safe treatment options to control inflammation in patients with systemic lupus erythematosus (SLE) since the inflammation contributes to morbidity and mortality in advanced disease. Endogenous neuroimmune mechanisms like the cholinergic anti-inflammatory pathway can be targeted to modulate inflammation, but the ability to manipulate such pathways and reduce inflammation and end organ damage has not been fully explored in SLE. Positive allosteric modulators (PAM) are pharmacological agents that inhibit desensitization of the nicotinic acetylcholine receptor (α7-nAChR), the main anti-inflammatory feature within the cholinergic anti-inflammatory pathway, and may augment α7-dependent cholinergic tone to generate therapeutic benefits in SLE. In the current study, we hypothesize that activating the cholinergic anti-inflammatory pathway at the level of the α7-nAChR with systemic administration of a partial agonist, GTS-21, and a PAM, PNU-120596, would reduce inflammation, eliminating the associated end organ damage in a mouse model of SLE with advanced disease. Further, we hypothesize that systemic α7 ligands will have central effects and improve behavioral deficits in SLE mice. Female control (NZW) and SLE mice (NZBWF1) were administered GTS-21 or PNU-120596 subcutaneously via minipumps for 2 weeks. We found that the increased plasma dsDNA autoantibodies, splenic and renal inflammation, renal injury and hypertension usually observed in SLE mice with advanced disease at 35 weeks of age were not altered by GTS-21 or PNU-120596. The anxiety-like behavior presented in SLE mice was also not improved by GTS-21 or PNU-120596. Although no significant beneficial effects of α7 ligands were observed in SLE mice at this advanced stage, we predict that targeting this receptor earlier in the pathogenesis of the disease may prove to be efficacious and should be addressed in future studies.
Collapse
Affiliation(s)
- Jessica Y Morales
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Cassandra M Young-Stubbs
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Caroline G Shimoura
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
14
|
Wu SJ, Shi ZW, Wang X, Ren FF, Xie ZY, Lei L, Chen P. Activation of the Cholinergic Anti-inflammatory Pathway Attenuated Angiotension II-Dependent Hypertension and Renal Injury. Front Pharmacol 2021; 12:593682. [PMID: 33815099 PMCID: PMC8010129 DOI: 10.3389/fphar.2021.593682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Angiotensin II (AngII) induces renal fibrosis, characterized by fibroblast proliferation, inflammatory cell infiltration and excessive extracellular matrix deposition, all of which was relevant closely to hypertension. The vagus nerve-related cholinergic anti-inflammatory pathway (CAP) modulates local and systemic inflammatory responses. The aim of present study was to determine the effect of CAP on renal inflammation and fibrosis. Methods and Results: AngII-induced hypertension was induced in vivo by 14-days low-dose AngII infusion from osmotic minipumps. We used GTS-21 dihydrochloride, a selective nicotinic acetylcholine receptor agonist. Daily intraperitoneal GTS-21 injection and/or vagotomy started after hypertension was confirmed and continued for 4 weeks. The elevated blood pressure caused by AngII was significantly attenuated by GTS-21. Improved baroreflex sensitivity was observed after GTS-21 administration. Masson stain and immunoblotting revealed that deposition of excessive fibrosis and overexpression of inflammatory cytokines induced by AngII was reduced by GTS-21. To determine the role of autonomic control in CAP, unilateral vagotomy was performed. Vagotomy weakened the effect of CAP on AngII-induced hypertension. In vitro, GTS-21 suppressed NF-κB activation, attenuated AngII-induced epithelial-mesenchymal transition and reduced inflammation and fibrosis in NRK-52E cells; α-bungarotoxin (α-Bgt, an α7-nAChR selective antagonist) partly inhibited these effects. Conclusion: CAP protected against AngII-induced hypertension via improvement in autonomic control, suppression of NF-κB activation, and reduction of renal fibrosis and inflammatory response.
Collapse
Affiliation(s)
- Shu-Jie Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhe-Wei Shi
- Department of Cardiology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Xue Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang-Fang Ren
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zuo-Yi Xie
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Lei
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Xu X, Xie X, Zhang H, Wang P, Li G, Chen J, Chen G, Cao X, Xiong L, Peng F, Peng C. Water-soluble alkaloids extracted from Aconiti Radix lateralis praeparata protect against chronic heart failure in rats via a calcium signaling pathway. Biomed Pharmacother 2021; 135:111184. [PMID: 33418305 DOI: 10.1016/j.biopha.2020.111184] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 11/16/2022] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many studies have shown the beneficial effects of aconite water-soluble alkaloid extract (AWA) in experimental models of heart disease, which have been ascribed to the presence of aconine, hypaconine, talatisamine, fuziline, neoline, and songorine. This study evaluated the effects of a chemically characterized AWA by chemical content, evaluated its effects in suprarenal abdominal aortic coarctation surgery (AAC)-induced chronic heart failure (CHF) in rats, and revealed the underlying mechanisms of action by proteomics. METHODS Rats were distributed into different groups: sham, model, and AWA-treated groups (10, 20, and 40 mg/kg/day). Sham rats received surgery without AAC, whereas model rats an AWA-treated groups underwent AAC surgery. after 8 weeks, the treatment group was fed AWA for 4 weeks, and body weight was assessed weekly. At the end of the treatment, heart function was tested by echocardiography. AAC-induced chronic heart failure, including myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, was evaluated in heart tissue and plasma by RT-qPCR, ELISA, hematoxylin and eosin (H&E) staining, Masson's trichrome staining, TUNEL staining, and immunofluorescence staining of α-SMA, Col Ⅰ, and Col Ⅲ. Then, a proteomics approach was used to explore the underlying mechanisms of action of AWA in chronic heart failure. RESULTS AWA administration reduced body weight gain, myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, and rats showed improvement in cardiac function compared to model group. The extract significantly ameliorated the AAC-induced altered expression of heart failure markers such as ANP, NT-proBNP, and β-MHC, as well as fibrosis, hypertrophy markers MMP-2 and MMP-9, and other heart failure-related factors including plasma levels of TNF-α and IL-6. Furthermore, the extract reduced the protein expression of α-SMA, Col Ⅰ, and Col Ⅲ in the left ventricular (LV), thus inhibiting the LV remodeling associated with CHF. In addition, proteomics characterization of differentially expressed proteins showed that AWA administration inhibited left ventricular remodeling in CHF rats via a calcium signaling pathway, and reversed the expression of RyR2 and SERCA2a. CONCLUSIONS AWA extract exerts beneficial effects in an AAC-induced CHF model in rats, which was associated with an improvement in LV function, hypertrophy, fibrosis, and apoptotic status. These effects may be related to the regulation of calcium signaling by the altered expression of RyR2 and SERCA2a.
Collapse
MESH Headings
- Aconitum/chemistry
- Animals
- Apoptosis/drug effects
- Calcium Signaling/drug effects
- Cardiovascular Agents/isolation & purification
- Cardiovascular Agents/pharmacology
- Chronic Disease
- Disease Models, Animal
- Fibrosis
- Heart Failure/drug therapy
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Rats, Sprague-Dawley
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Solubility
- Solvents/chemistry
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Water/chemistry
- Rats
Collapse
Affiliation(s)
- Xin Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Xiaofang Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Huiqiong Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Pei Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gangmin Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Junren Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Guanru Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Xiaoyu Cao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu 611137, China.
| | - Cheng Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China.
| |
Collapse
|
16
|
Kennard K, Buckley ME, Sizer LM, Larson S, Carter WB, Frazier TG, Carp NZ. Metabolic Syndrome: does this influence breast cancer outcomes in the triple-negative population? Breast Cancer Res Treat 2021; 186:53-63. [PMID: 33389405 DOI: 10.1007/s10549-020-06034-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/25/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Metabolic syndrome (MS) is defined by having at least 3 of 4 components: obesity, dyslipidemia, hypertension (HTN), and diabetes. Prior studies analyzed the individual components of MS for all breast cancers which are predominantly hormone positive. Our study is the first to evaluate MS in triple-negative breast cancer (TNBC). METHODS A retrospective review of TNBC from 2007 to 2013 identified 177 patients with complete information for statistical analysis. Cox proportional hazards models were used to test the association between MS, disease-free survival (DFS), and overall survival (OS). RESULTS 48 (27%) patients had MS. After controlling for age, race, pathologic stage, surgery type, and additional comorbidities outside of MS, MS was significantly associated with poorer DFS (adjusted HR: 2.24, p = 0.030), but not associated with OS (adjusted HR: 1.92, p = 0.103). HTN was significantly associated with poorer DFS (adjusted HR: 3.63, p = 0.006) and OS (adjusted HR: 3.45, p = 0.035) in the univariable and multivariable analyses. Diabetes was not associated with worse OS or DFS. The 5-year age-adjusted OS rates for 60-year-old patients with and without diabetes were 85.8% and 87.3%, respectively. The age-adjusted 5-year OS rate for 60-year old patients was higher in patients with a body mass index (BMI) > 30 (90.2%) versus BMIs of 25-29.9 (88.2%) or < 25 (83.5%). CONCLUSION In the TNBC population, MS was significantly associated with poorer DFS, but not associated with OS. HTN was the only component of MS that was significantly associated with both DFS and OS. Obesity has a potential small protective benefit in the TNBC population.
Collapse
Affiliation(s)
- Kaitlyn Kennard
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave, Wynnewood, PA, 19096, USA.
| | - Meghan E Buckley
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave, Wynnewood, PA, 19096, USA
| | - Lina M Sizer
- The Bryn Mawr Hospital, 101 S. Bryn Mawr Avenue, Bryn Mawr, PA, 19010, USA
| | - Sharon Larson
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave, Wynnewood, PA, 19096, USA
| | - William B Carter
- The Bryn Mawr Hospital, 101 S. Bryn Mawr Avenue, Bryn Mawr, PA, 19010, USA
| | - Thomas G Frazier
- The Bryn Mawr Hospital, 101 S. Bryn Mawr Avenue, Bryn Mawr, PA, 19010, USA
| | - Ned Z Carp
- Lankenau Medical Center, 100 E. Lancaster Ave, Wynnewood, PA, 19096, USA
| |
Collapse
|
17
|
Zhang RM, McNerney KP, Riek AE, Bernal‐Mizrachi C. Immunity and Hypertension. Acta Physiol (Oxf) 2021; 231:e13487. [PMID: 32359222 DOI: 10.1111/apha.13487] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
Hypertension is the primary cause of cardiovascular mortality. Despite multiple existing treatments, only half of those with the disease achieve adequate control. Therefore, understanding the mechanisms causing hypertension is essential for the development of novel therapies. Many studies demonstrate that immune cell infiltration of the vessel wall, kidney and central nervous system, as well as their counterparts of oxidative stress, the renal renin-angiotensin system (RAS) and sympathetic tone play a critical role in the development of hypertension. Genetically modified mice lacking components of innate and/or adaptive immunity confirm the importance of chronic inflammation in hypertension and its complications. Depletion of immune cells improves endothelial function, decreases oxidative stress, reduces vascular tone and prevents renal interstitial infiltrates, sodium retention and kidney damage. Moreover, the ablation of microglia or central nervous system perivascular macrophages reduces RAS-induced inflammation and prevents sympathetic nervous system activation and hypertension. Therefore, understanding immune cell functioning and their interactions with tissues that regulate hypertensive responses may be the future of novel antihypertensive therapies.
Collapse
Affiliation(s)
- Rong M. Zhang
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Kyle P. McNerney
- Department of Pediatrics Washington University School of Medicine St. Louis MO USA
| | - Amy E. Riek
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Carlos Bernal‐Mizrachi
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis MO USA
- Department of Medicine VA Medical Center St. Louis MO USA
| |
Collapse
|
18
|
Rocha-Resende C, da Silva AM, Prado MAM, Guatimosim S. Protective and anti-inflammatory effects of acetylcholine in the heart. Am J Physiol Cell Physiol 2020; 320:C155-C161. [PMID: 33264077 DOI: 10.1152/ajpcell.00315.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The innate and adaptive immune systems play an important role in the development of cardiac diseases. Therefore, it has become critical to identify molecules that can modulate inflammation in the injured heart. In this regard, activation of the cholinergic system in animal models of heart disease has been shown to exert protective actions that include immunomodulation of cardiac inflammation. In this mini-review, we briefly present our current understanding on the cardiac cellular sources of acetylcholine (ACh) (neuronal vs. nonneuronal), followed by a discussion on its contribution to the regulation of inflammatory cells. Although the mechanism behind ACh-mediated protection still remains to be fully elucidated, the beneficial immunomodulatory role of the cholinergic signaling emerges as a potential key regulator of cardiac inflammation.
Collapse
Affiliation(s)
- Cibele Rocha-Resende
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Aristóbolo Mendes da Silva
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marco A M Prado
- Robarts Research Institute, Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
19
|
Mannon EC, O'Connor PM. Alkali supplementation as a therapeutic in chronic kidney disease: what mediates protection? Am J Physiol Renal Physiol 2020; 319:F1090-F1104. [PMID: 33166183 DOI: 10.1152/ajprenal.00343.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sodium bicarbonate (NaHCO3) has been recognized as a possible therapy to target chronic kidney disease (CKD) progression. Several small clinical trials have demonstrated that supplementation with NaHCO3 or other alkalizing agents slows renal functional decline in patients with CKD. While the benefits of NaHCO3 treatment have been thought to result from restoring pH homeostasis, a number of studies have now indicated that NaHCO3 or other alkalis may provide benefit regardless of the presence of metabolic acidosis. These data have raised questions as to how NaHCO3 protects the kidneys. To date, the physiological mechanism(s) that mediates the reported protective effect of NaHCO3 in CKD remain unclear. In this review, we first examine the evidence from clinical trials in support of a beneficial effect of NaHCO3 and other alkali in slowing kidney disease progression and their relationship to acid-base status. Then, we discuss the physiological pathways that have been proposed to underlie these renoprotective effects and highlight strengths and weaknesses in the data supporting each pathway. Finally, we discuss how answering key questions regarding the physiological mechanism(s) mediating the beneficial actions of NaHCO3 therapy in CKD is likely to be important in the design of future clinical trials. We conclude that basic research in animal models is likely to be critical in identifying the physiological mechanisms underlying the benefits of NaHCO3 treatment in CKD. Gaining an understanding of these pathways may lead to the improved implementation of NaHCO3 as a therapy in CKD and perhaps other disease states.
Collapse
Affiliation(s)
- Elinor C Mannon
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Paul M O'Connor
- Department of Physiology, Augusta University, Augusta, Georgia
| |
Collapse
|
20
|
Excessive ROS production and enhanced autophagy contribute to myocardial injury induced by branched-chain amino acids: Roles for the AMPK-ULK1 signaling pathway and α7nAChR. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165980. [PMID: 32980459 DOI: 10.1016/j.bbadis.2020.165980] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/24/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS AND AIMS Leucine, isoleucine, and valine are diet derived and essential amino acids that are termed branched-chain amino acids (BCAA). BCAA are widely used as dietary supplements to boost muscle growth and enhance exercise performance. However, the effects of BCAA on myocardial function are largely unknown. This study was designed to investigate whether BCAA affect heart function and, if so, to further explore the underlying molecular basis for the observed effects. METHODS AND RESULTS C57BL/6J mice were randomly divided into two groups, the control group received solvent (water) and the BCAA group received 2% BCAA dissolved in water, for a successive period of 12 weeks. Compared with control, BCAA treatment significantly increased water consumption without changing body weight or diet consumption; heart tissue BCAA levels were increased, markers representative of myocardial injury in heart tissue including c-reactive protein and cardiac muscle troponin were increased ; and creatine kinase, creatine kinase-MB, and lactate dehydrogenase were increased in serum; severe myocardial fibrosis was observed by Masson staining, which was accompanied by increased reactive oxygen species (ROS) production and decreased superoxide dismutase activity in heart tissue; both p-AMPK and p-ULK1 were significantly increased as was autophagy, judged by the presence of LC3 by western blotting and immunofluorescence, increased numbers of autophagosomes were found by transmission electron microscopy in the BCAA group. In vitro, 20 mmol/L BCAA significantly decreased cell viability and increased the production of ROS, as well as the expression of p-AMPK/AMPK and p-ULK1/ULK1 in cultured H9C2 cells. Treatment with the ROS scavenger N-acetyl-L-cysteine (NAC) improved cell viability and reversed ROS changes. Decreased H9C2 cell viability induced with 20 mmol/L BCAA was reversed by either blocking AMPK or inhibition of ULK1. Furthermore, blocking AMPK significantly decreased p-ULK1/ULK1, while inhibition of ULK1 reversed the enhanced expression of LC3-II/LC3-I induced by BCAA. Excessive ROS production and decreased cell viability induced by BCAA were further confirmed in primary cultured murine cardiomyocytes. Pharmacological activation of α7nAChR with PNU-282987 attenuated BCAA-induced injury in primary murine cardiomyocytes. However, this compound failed to suppress BCAA activation of AMPK and autophagy (LC3-II/I ratio). CONCLUSION These results provide the first evidence that treatment of mice with BCAA induced myocardial injury by triggering excessive ROS production and by enhancing AMPK-ULK1 pathway-dependent autophagy. These findings suggested that inhibition of either ROS production or autophagy may alleviate myocardial injury induced by BCAA.
Collapse
|
21
|
Fenrich M, Mrdenovic S, Balog M, Tomic S, Zjalic M, Roncevic A, Mandic D, Debeljak Z, Heffer M. SARS-CoV-2 Dissemination Through Peripheral Nerves Explains Multiple Organ Injury. Front Cell Neurosci 2020; 14:229. [PMID: 32848621 PMCID: PMC7419602 DOI: 10.3389/fncel.2020.00229] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Coronavirus disease (CoVID-19), caused by recently identified severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2), is characterized by inconsistent clinical presentations. While many infected individuals remain asymptomatic or show mild respiratory symptoms, others develop severe pneumonia or even respiratory distress syndrome. SARS-CoV-2 is reported to be able to infect the lungs, the intestines, blood vessels, the bile ducts, the conjunctiva, macrophages, T lymphocytes, the heart, liver, kidneys, and brain. More than a third of cases displayed neurological involvement, and many severely ill patients developed multiple organ infection and injury. However, less than 1% of patients had a detectable level of SARS-CoV-2 in the blood, raising a question of how the virus spreads throughout the body. We propose that nerve terminals in the orofacial mucosa, eyes, and olfactory neuroepithelium act as entry points for the brain invasion, allowing SARS-CoV-2 to infect the brainstem. By exploiting the subcellular membrane compartments of infected cells, a feature common to all coronaviruses, SARS-CoV-2 is capable to disseminate from the brain to periphery via vesicular axonal transport and passive diffusion through axonal endoplasmic reticula, causing multiple organ injury independently of an underlying respiratory infection. The proposed model clarifies a wide range of clinically observed phenomena in CoVID-19 patients, such as neurological symptoms unassociated with lung pathology, protracted presence of the virus in samples obtained from recovered patients, exaggerated immune response, and multiple organ failure in severe cases with variable course and dynamics of the disease. We believe that this model can provide novel insights into CoVID-19 and its long-term sequelae, and establish a framework for further research.
Collapse
Affiliation(s)
- Matija Fenrich
- Laboratory of Neurobiology, Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Stefan Mrdenovic
- Department of Hematology, Clinic of Internal Medicine, University Hospital Osijek, Osijek, Croatia
- Department of Internal Medicine, Family Medicine and History of Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marta Balog
- Laboratory of Neurobiology, Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Svetlana Tomic
- Clinic of Neurology, University Hospital Osijek, Osijek, Croatia
- Department of Neurology and Neurosurgery, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Milorad Zjalic
- Laboratory of Neurobiology, Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Alen Roncevic
- Laboratory of Neurobiology, Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Dario Mandic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Clinical Institute of Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
| | - Zeljko Debeljak
- Clinical Institute of Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marija Heffer
- Laboratory of Neurobiology, Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
22
|
Abstract
Hypertension is an important risk factor for cardiovascular morbidity and mortality and for events such as myocardial infarction, stroke, heart failure and chronic kidney disease and is a major determinant of disability-adjusted life-years. Despite the importance of hypertension, the pathogenesis of essential hypertension, which involves the complex interaction of several mechanisms, is still poorly understood. Evidence suggests that interplay between bone marrow, microglia and immune mediators underlies the development of arterial hypertension, in particular through mechanisms involving cytokines and peptides, such as neuropeptide Y, substance P, angiotensin II and angiotensin-(1-7). Chronic psychological stress also seems to have a role in increasing the risk of hypertension, probably through the activation of neuroimmune pathways. In this Review, we summarize the available data on the possible role of neuroimmune crosstalk in the origin and maintenance of arterial hypertension and discuss the implications of this crosstalk for recovery and rehabilitation after cardiac and cerebral injuries.
Collapse
|
23
|
Electroacupuncture Pretreatment Attenuates Acute Lung Injury Through α7 Nicotinic Acetylcholine Receptor-Mediated Inhibition of HMGB1 Release in Rats After Cardiopulmonary Bypass. Shock 2019; 50:351-359. [PMID: 29117064 PMCID: PMC6072368 DOI: 10.1097/shk.0000000000001050] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text Acute lung injury is a common complication after cardiopulmonary bypass (CPB). α7 Nicotinic acetylcholine receptors (α7nAChR) and α7nAChR-dependent cholinergic signaling are implicated in suppressing the release of high-mobility group box 1 (HMGB1) and reducing the inflammatory response. A previous study has shown the electroacupuncture (EA) pretreatment induces tolerance against lung injury. However, the role of EA in CPB is poorly understood. This study used EA and a rat model of CPB to determine whether EA was associated with CPB-induced lung injury. Rats were treated with EA at “Zusanli (ST36)” and “Feishu (BL13)” acupoints for 5 days before being subjected to CPB. Two hours post-CPB, samples of blood, bronchoalveolar lavage fluid (BALF), and lung tissues were processed for investigations. Our results showed that the expression of α7nAChR in lung tissue was significantly decreased after CPB. EA pretreatment prevented the reduction in the expression of α7nAChR, EA pretreatment reduced lung edema, inhibited inflammatory cytokines release in serum and lung as well as protein concentrations in BALF and HMGB1 release after CPB, and the beneficial effects were attenuated by α-BGT. Our study demonstrates that EA pretreatment plays a protective role in CPB-induced ALI, and inhibits HMGB1 release through α7nAChR activation in rats.
Collapse
|
24
|
Vascular smooth muscle cell senescence and age-related diseases: State of the art. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1810-1821. [PMID: 31109451 DOI: 10.1016/j.bbadis.2018.08.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
|
25
|
Downregulation of α7 nicotinic acetylcholine receptors in peripheral blood monocytes is associated with enhanced inflammation in preeclampsia. BMC Pregnancy Childbirth 2019; 19:188. [PMID: 31138166 PMCID: PMC6540389 DOI: 10.1186/s12884-019-2340-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background Preeclampsia is associated with chronic inflammation. The cholinergic anti-inflammatory pathway regulates systemic inflammation through activating α7 nicotinic acetylcholine receptors (α7nAChR) expressed in monocytes/macrophages. This study aimed to investigate the role of α7nAChR in peripheral blood monocytes in preeclampsia. Methods Peripheral blood monocytes were isolated from 30 nonpregnant (NP), 32 normotensive pregnant (NT), and 35 preeclamptic (PE) women. Results We found that both protein and mRNA expression levels of α7nAChR in monocytes from the PE women were significantly lower than those of the NP and NT women (both p < 0.01). α7nAChR protein expression levels in monocytes were negatively correlated with levels of systolic blood pressure (r = − 0.40, p = 0.04), proteinuria (r = − 0.54, p < 0.01), tumor necrosis factor-alpha (TNF-α, r = − 0.42, p = 0.01), and interleukin (IL)-1β (r = − 0.56, p < 0.01), while positively correlated with IL-10 levels (r = 0.43, p = 0.01) in the PE women. Both baseline and lipopolysaccharides (LPS)-induced increase of TNF-α, IL-1β, and IL-6 levels from monocytes were higher in the PE group than the NP and NT groups (all p < 0.01), but IL-10 levels in the PE group was lower than that of the NP and NT groups (p < 0.01). In addition, the NF-κB activity in monocytes from the PE women was higher than the NP and NT women (p < 0.01). Importantly, activation of α7nAChR with its agonist PNU-282987 inhibited NF-κB, decreased TNF-α, IL-1β, and IL-6 release, and increased IL-10 release in monocytes from the PE women (all p < 0.01). Conclusion In conclusion, these findings suggest that downregulation of α7nAChR may be associated with the development of preeclampsia through increasing pro-inflammatory and decreasing anti-inflammatory cytokine release via the NF-κB pathway.
Collapse
|
26
|
Santana FPR, Pinheiro NM, Bittencourt-Mernak MI, Perini A, Yoshizaki K, Macchione M, Saldiva PHN, Martins MA, Tibério IFLC, Prado MAM, Prado VF, Prado CM. Vesicular acetylcholine transport deficiency potentiates some inflammatory responses induced by diesel exhaust particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:494-504. [PMID: 30368143 DOI: 10.1016/j.ecoenv.2018.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Endogenous acetylcholine (ACh), which depends of the levels of vesicular ACh transport (VAChT) to be released, is the central mediator of the cholinergic anti-inflammatory system. ACh controls the release of cytokine in different models of inflammation. Diesel exhaust particles (DEP) are one of the major environmental pollutants produced in large quantity by automotive engines in urban center. DEP bind the lung parenchyma and induce inflammation. We evaluated whether cholinergic dysfunction worsens DEP-induced lung inflammation. Male mice with decreased ACh release due to reduced expression of VAChT (VAChT-KD mice) were submitted to DEP exposure for 30 days (3 mg/mL of DEP, once a day, five days a week) or saline. Pulmonary function and inflammation as well as extracellular matrix fiber deposition were evaluated. Additionally, airway and nasal epithelial mucus production were quantified. We found that DEP instillation worsened lung function and increased lung inflammation. Higher levels of mononuclear cells were observed in the peripheral blood of both wild-type (WT) and VAChT-KD mice. Also, both wild-type (WT) and VAChT-KD mice showed an increase in macrophages in bronchoalveolar lavage fluid (BALF) as well as increased expression of IL-4, IL-6, IL-13, TNF-α, and NF-κB in lung cells. The collagen fiber content in alveolar septa was also increased in both genotypes. On the other hand, we observed that granulocytes were increased only in VAChT-KD peripheral blood. Likewise, increased BALF lymphocytes and neutrophils as well as increased elastic fibers in alveolar septa, airway neutral mucus, and nasal epithelia acid mucus were observed only in VAChT-KD mice. The cytokines IL-4 and TNF-α were also higher in VAChT-KD mice compared with WT mice. In conclusion, decreased ability to release ACh exacerbates some of the lung alterations induced by DEP in mice, suggesting that VAChT-KD animals are more vulnerable to the effects of DEP in the lung.
Collapse
Affiliation(s)
- Fernanda P R Santana
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil; Department of Biological Science, Universidade Federal de São Paulo, Diadema, Brazil
| | - Nathalia M Pinheiro
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil
| | | | - Adenir Perini
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil
| | - Kelly Yoshizaki
- Department of Pathology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Mariângela Macchione
- Department of Pathology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo H N Saldiva
- Department of Pathology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Milton A Martins
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil
| | | | - Marco Antônio M Prado
- Department of Physiology & Pharmacology, University of Western Ontario, London, Canada; Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Vânia F Prado
- Department of Physiology & Pharmacology, University of Western Ontario, London, Canada; Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Carla M Prado
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil; Department of Bioscience, Universidade Federal de São Paulo, Santos, Brazil.
| |
Collapse
|
27
|
Decreased α7nAChR mRNA levels in peripheral blood monocytes are associated with enhanced inflammatory cytokine production in patients with lupus nephritis. Biomed Pharmacother 2018; 111:359-366. [PMID: 30594048 DOI: 10.1016/j.biopha.2018.12.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
The cholinergic anti-inflammatory pathway modulates cytokine release by activating alpha-7 nicotinic acetylcholine receptors (α7nAChR) in monocytes/macrophages. We aimed to determine the role of α7nAChR in lupus nephritis (LN). We enrolled 36 inactive and 35 active LN patients, 34 primary glomerulonephritis patients, and 35 healthy controls. Peripheral blood monocytes were isolated, and mRNA expression of α7nAChR, interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α) in monocytes was measured. α7nAChR and IL-10 mRNA levels were significantly decreased, but IL-6 was increased, in LN patients compared with healthy controls or glomerulonephritis patients (all P < 0.01). Interestingly, α7nAChR mRNA levels were negatively correlated to SLEDAI (r = -0.68, P < 0.01), anti-dsDNA (r = -0.38, P < 0.05), and proteinuria (r = -0.49, P < 0.01) levels, and positively correlated to serum complement C3 levels (r = 0.38, P < 0.05) in patients with active LN. Furthermore, α7nAChR mRNA levels were negatively correlated to TNF-α (r = -0.50, P < 0.01), IL-1β (r = -0.42, P < 0.05), IL-6 (r = -0.69, P < 0.01) mRNA levels, and positively correlated to IL-10 (r = 0.45, P < 0.01). TNF-α, IL-1β, and IL-6 protein levels in the supernatant of cultured monocytes from active LN patients were significantly higher, while IL-10 was lower, than that of healthy controls. PNU-282987, an α7nAChR agonist, significantly decreased TNF-α, IL-1β, and IL-6 but increased IL-10 in the monocyte culture supernatant of active LN patients, which were abolished by an α7nAChR antagonist methyllycaconitine. The effects of PNU-282987 were confirmed in lipopolysaccharides-stimulated monocytes. Taken together, these findings suggest that decrease in α7nAChR mRNA levels may play a role in LN and that activation of α7nAChR may inhibit inflammation in LN.
Collapse
|
28
|
Li DJ, Tong J, Zeng FY, Guo M, Li YH, Wang H, Wang P. Nicotinic ACh receptor α7 inhibits PDGF-induced migration of vascular smooth muscle cells by activating mitochondrial deacetylase sirtuin 3. Br J Pharmacol 2018; 176:4388-4401. [PMID: 30270436 DOI: 10.1111/bph.14506] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE PDGF-BB is an angiogenic factor involved in cardiovascular diseases. Here, we investigated the possible effects of activation of the nicotinic ACh receptor α7 subtype (α7nAChR) on PDGF-BB-induced proliferation and migration in vascular smooth muscle cells (VSMCs). EXPERIMENTAL APPROACH PNU-282987, a selective α7nAChR pharmacological agonist, was used to activate α7nAChR. The influences of α7nAChR activation on PDGF-BB-induced proliferation and migration, as well as the phosphorylation of focal adhesion kinase (FAK)/Src, a pro-migration signalling pathway, were determined in VSMCs. A variety of biochemical assays were applied to explore the underlying molecular mechanisms. KEY RESULTS PDGF-BB induced pronounced migration and proliferation of VSMCs. Activation of α7nAChRs by PNU-282987 blocked PDGF-BB-induced migration but not proliferation in wild-type (WT) VSMCs, whereas this effect was absent in α7nAChR-knockout VSMCs. Accordingly, PNU-282987 attenuated PDGF-BB-induced phosphorylation of FAKTyr397 and SrcTyr416 in WT VSMCs. Mechanistically, PNU-282987 suppressed PDGF-BB-induced oxidative stress, as demonstrated by the alterations in ROS, H2 O2 content, superoxide anion and total antioxidant activity. A sirtuin 3 (SIRT3) inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine or shRNA-mediated SIRT3 knockdown abolished the inhibitory effect of PNU-282987. PNU-282987 did not modulate SIRT3 protein expression but enhanced mitochondrial SIRT3 deacetylase activity. In line with this action, PNU-282987 enhanced the deacetylation of mitochondrial FoxO3. Lastly, PNU-282987 corrected the PDGF-BB-induced mitochondrial dysfunction by increasing mitochondrial citrate synthase activity, ATP content and nicotinamide adenine dinucleotide pool. CONCLUSIONS Pharmacological activation of α7nAChRs inhibits PDGF-BB-induced VSMC migration by activating the mitochondrial deacetylase SIRT3, implying an important role for α7nAChRs in mitochondria biology and PDGF-related diseases. LINKED ARTICLES This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China.,Ninghai First Hospital, Zhejiang, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China.,Ninghai First Hospital, Zhejiang, China
| | - Fei-Yan Zeng
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China.,Ninghai First Hospital, Zhejiang, China
| | - Mengqi Guo
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai, China
| | - Yong-Hua Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai, China
| | - Pei Wang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai, China.,Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
29
|
Li DJ, Liu J, Hua X, Fu H, Huang F, Fei YB, Lu WJ, Shen FM, Wang P. Nicotinic acetylcholine receptor α7 subunit improves energy homeostasis and inhibits inflammation in nonalcoholic fatty liver disease. Metabolism 2018; 79:52-63. [PMID: 29129819 DOI: 10.1016/j.metabol.2017.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide; yet, the pathogenesis of the disorder is not completely understood. The nicotinic acetylcholine receptor α7 subunit (α7nAChR) plays an indispensable role in the vagus nerve-regulated cholinergic anti-inflammatory pathway. METHODS In the present study, we investigated the key role of α7nAChR in NAFLD development. Male wild-type (WT) and α7nAChR knockout (α7nAChR-/-) mice were fed a normal chow or a high-fat diet (HFD) for 16weeks to induce NAFLD. RESULTS We found that both the mRNA and protein levels of α7nAChR in the liver tissue of NAFLD mice were significantly higher than those in mice fed normal chow. There were no differences in food intake, body weight, hepatic cholesterol and triglyceride contents, and insulin sensitivity between WT and α7nAChR-/- mice under normal condition. When the WT and α7nAChR-/- mice were challenged with HFD, the body weight of α7nAChR-/- mice became higher than that of WT mice. The oxygen consumption and energy expenditure in HFD-fed α7nAChR-/- mice were significantly lower than that in HFD-fed WT mice. The HFD-fed α7nAChR-/- mice also showed more aggravated hepatic lipid accumulation, steatosis and oxidative stress than HFD-fed WT mice. Macrophage infiltration; mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β; and liver fibrosis were significantly accelerated in HFD-fed α7nAChR-/- mice compared to that in HFD-fed WT mice. In addition, the bolus insulin injection-activated insulin signaling pathway, which was reflected by the phosphorylation of insulin receptor at Tyr1162/Tyr1163 site (p-IRTyr1162/Tyr1163), insulin receptor substrate-1 at Tyr612 site (p-IRS-1Tyr612) and Akt at Ser473 (p-AktSer473), was significantly compromised in liver tissues of HFD-fed α7nAChR-/- mice relative to HFD-fed WT mice. Finally, pharmacologically activation of α7nAChR in HFD-fed mice, with a selective agonist PNU-282987, remarkably ameliorated the hepatic steatosis, inflammatory cell infiltration and fibrosis. CONCLUSION In conclusion, our results demonstrate that activation of α7nAChR improves energy homeostasis and inhibits inflammation in nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Jian Liu
- Department of Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xia Hua
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hui Fu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Fang Huang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Yi-Bo Fei
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Wen-Jie Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China.
| | - Pei Wang
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
30
|
Harwani SC. Macrophages under pressure: the role of macrophage polarization in hypertension. Transl Res 2018; 191:45-63. [PMID: 29172035 PMCID: PMC5733698 DOI: 10.1016/j.trsl.2017.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
Hypertension is a multifactorial disease involving the nervous, renal, and cardiovascular systems. Macrophages are the most abundant and ubiquitous immune cells, placing them in a unique position to serve as key mediators between these components. The polarization of macrophages confers vast phenotypic and functional plasticity, allowing them to act as proinflammatory, homeostatic, and anti-inflammatory agents. Key differences between the M1 and M2 phenotypes, the 2 subsets at the extremes of this polarization spectrum, place macrophages at a juncture to mediate many mechanisms involved in the pathogenesis of hypertension. Neuronal and non-neuronal regulation of the immune system, that is, the "neuroimmuno" axis, plays an integral role in the polarization of macrophages. In hypertension, the neuroimmuno axis results in synchronization of macrophage mobilization from immune cell reservoirs and their chemotaxis, via increased expression of chemoattractants, to end organs critical in the development of hypertension. This complicated system is largely coordinated by the dichotomous actions of the autonomic neuronal and non-neuronal activation of cholinergic, adrenergic, and neurohormonal receptors on macrophages, leading to their ability to "switch" between phenotypes at sites of active inflammation. Data from experimental models and human studies are in concordance with each other and support a central role for macrophage polarization in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Sailesh C Harwani
- Department of Internal Medicine, Iowa City, IA; Center for Immunology and Immune Based Diseases, Iowa City, IA; Abboud Cardiovascular Research Center, Iowa City, Io.
| |
Collapse
|
31
|
|
32
|
Abboud FM, Singh MV. Autonomic regulation of the immune system in cardiovascular diseases. ADVANCES IN PHYSIOLOGY EDUCATION 2017; 41:578-593. [PMID: 29138216 PMCID: PMC6105770 DOI: 10.1152/advan.00061.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 05/27/2023]
Abstract
The autonomic nervous system is a powerful regulator of circulatory adjustments to acute hemodynamic stresses. Here we focus on new concepts that emphasize the chronic influence of the sympathetic and parasympathetic systems on cardiovascular pathology. The autonomic neurohumoral system can dramatically influence morbidity and mortality from cardiovascular disease through newly discovered influences on the innate and adaptive immune systems. Specifically, the end-organ damage in heart failure or hypertension may be worsened or alleviated by pro- or anti-inflammatory pathways of the immune system, respectively, that are activated through neurohumoral transmitters. These concepts provide a major new perspective on potentially life-saving therapeutic interventions in the deadliest of diseases.
Collapse
Affiliation(s)
- François M Abboud
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Madhu V Singh
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
33
|
Cholinergic anti-inflammatory pathway inhibits neointimal hyperplasia by suppressing inflammation and oxidative stress. Redox Biol 2017; 15:22-33. [PMID: 29197233 PMCID: PMC5723281 DOI: 10.1016/j.redox.2017.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Neointimal hyperplasia as a consequence of vascular injury is aggravated by inflammatory reaction and oxidative stress. The α7 nicotinic acetylcholine receptor (α7nAChR) is a orchestrator of cholinergic anti-inflammatory pathway (CAP), which refers to a physiological neuro-immune mechanism that restricts inflammation. Here, we investigated the potential role of CAP in neointimal hyperplasia using α7nAChR knockout (KO) mice. Male α7nAChR-KO mice and their wild-type control mice (WT) were subjected to wire injury in left common carotid artery. At 4 weeks post injury, the injured aortae were isolated for examination. The neointimal hyperplasia after wire injury was significantly aggravated in α7nAChR-KO mice compared with WT mice. The α7nAChR-KO mice had increased collagen contents and vascular smooth muscle cells (VSMCs) amount. Moreover, the inflammation was significantly enhanced in the neointima of α7nAChR-KO mice relative to WT mice, evidenced by the increased expression of tumor necrosis factor-α/interleukin-1β, and macrophage infiltration. Meanwhile, the chemokines chemokine (C-C motif) ligand 2 and chemokine (CXC motif) ligand 2 expression was also augmented in the neointima of α7nAChR-KO mice compared with WT mice. Additionally, the depletion of superoxide dismutase (SOD) and reduced glutathione (GSH), and the upregulation of 3-nitrotyrosine, malondialdehyde and myeloperoxidase were more pronounced in neointima of α7nAChR-KO mice compared with WT mice. Accordingly, the protein expression of NADPH oxidase 1 (Nox1), Nox2 and Nox4, was also higher in neointima of α7nAChR-KO mice compared with WT mice. Finally, pharmacologically activation of CAP with a selective α7nAChR agonist PNU-282987, significantly reduced neointima formation, arterial inflammation and oxidative stress after vascular injury in C57BL/6 mice. In conclusion, our results demonstrate that α7nAChR-mediated CAP is a neuro-physiological mechanism that inhibits neointima formation after vascular injury via suppressing arterial inflammation and oxidative stress. Further, these results imply that targeting α7nAChR may be a promising interventional strategy for in-stent stenosis.
Collapse
|
34
|
Yang YH, Fang HL, Zhao M, Wei XL, Zhang N, Wang S, Lu Y, Yu XJ, Sun L, He X, Li DL, Liu JJ, Zang WJ. Specific α7 nicotinic acetylcholine receptor agonist ameliorates isoproterenol-induced cardiac remodelling in mice through TGF-β1/Smad3 pathway. Clin Exp Pharmacol Physiol 2017; 44:1192-1200. [PMID: 28732106 DOI: 10.1111/1440-1681.12819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 06/15/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Yong-Hua Yang
- Department of Paediatrics; the First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Huan-Le Fang
- Department of Medicine; Medical College of Xi'an Pei Hua University; Xi'an China
| | - Ming Zhao
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Xiang-Lan Wei
- Department of Pharmacy; Xi'an Chest and Tuberculosis Hospital; Xi'an China
| | - Ning Zhang
- Department of Clinical Laboratory; the First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Shun Wang
- Department of Cardiology; the First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Yi Lu
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Xiao-Jiang Yu
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Lei Sun
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Xi He
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Dong-Ling Li
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Jin-Jun Liu
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Wei-Jin Zang
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| |
Collapse
|
35
|
Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the Immune System in Hypertension. Physiol Rev 2017; 97:1127-1164. [PMID: 28566539 PMCID: PMC6151499 DOI: 10.1152/physrev.00031.2016] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
High blood pressure is present in more than one billion adults worldwide and is the most important modifiable risk factor of death resulting from cardiovascular disease. While many factors contribute to the pathogenesis of hypertension, a role of the immune system has been firmly established by a large number of investigations from many laboratories around the world. Immunosuppressive drugs and inhibition of individual cytokines prevent or ameliorate experimental hypertension, and studies in genetically-modified mouse strains have demonstrated that lymphocytes are necessary participants in the development of hypertension and in hypertensive organ injury. Furthermore, immune reactivity may be the driving force of hypertension in autoimmune diseases. Infiltration of immune cells, oxidative stress, and stimulation of the intrarenal angiotensin system are induced by activation of the innate and adaptive immunity. High blood pressure results from the combined effects of inflammation-induced impairment in the pressure natriuresis relationship, dysfunctional vascular relaxation, and overactivity of the sympathetic nervous system. Imbalances between proinflammatory effector responses and anti-inflammatory responses of regulatory T cells to a large extent determine the severity of inflammation. Experimental and human studies have uncovered autoantigens (isoketal-modified proteins and heat shock protein 70) of potential clinical relevance. Further investigations on the immune reactivity in hypertension may result in the identification of new strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Hector Pons
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Richard J Johnson
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| |
Collapse
|
36
|
Vagus Nerve Attenuates Hepatocyte Apoptosis upon Ischemia-Reperfusion via α7 Nicotinic Acetylcholine Receptor on Kupffer Cells in Mice. Anesthesiology 2017; 125:1005-1016. [PMID: 27560466 DOI: 10.1097/aln.0000000000001309] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (HIR) injury is a complication of liver surgery. As much as 50% of hepatocytes undergo apoptosis within the first 24 h of reperfusion. The neurotransmitters of the vagus nerve can activate α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages. The function of Kupffer cells (KCs) determines HIR injury. We hypothesize that the vagus nerve could attenuate HIR-induced hepatocyte apoptosis by activating α7nAChR on KCs. METHODS Hepatic vagotomized C57BL/6J mice, KC-eliminated C57BL/6J mice, and α7nAChR mice were used for HIR. Primary KCs and hepatocytes were subjected to hypoxia/reoxygenation (HR). Liver injury, hepatocyte apoptosis, reactive oxygen species (ROS) production, and soluble CD163 were measured. RESULTS Hepatic vagotomy and α7nAChR caused higher levels of alanine transaminase and liver caspase-3 and -8 activity by HIR. Activating α7nAChR attenuated these changes in wild-type but not in the α7nAChR mice. Furthermore, activating α7nAChR diminished hepatic injury and reduced liver apoptosis by HIR in vagotomized mice. In vitro, activating α7nAChR reduced apoptosis of hepatocytes cocultured with KCs that suffered HR. Similar to the effects by catalase, activating α7nAChR on KCs reduced ROS and H2O2 by HR. The supernatant from KCs, with α7nAChR activated or catalase treated, prevented hepatocyte apoptosis by HR. Finally, KC elimination reduced HIR-induced H2O2 production in mice. Activating α7nAChR significantly attenuated soluble CD163 both in mice by HIR (serum: 240 ± 34 vs. 446 ± 72; mean ± SD; n = 8; P < 0.01) and in KCs by HR (supernatant: 4.23 ± 0.06 vs. 5.60 ± 0.18; n = 3; P < 0.01). CONCLUSIONS The vagus nerve could minimize HIR-induced liver apoptosis through activating α7nAChR on KCs possibly by preventing their excessive ROS production.
Collapse
|
37
|
Fairley AS, Mathis KW. Cholinergic agonists reduce blood pressure in a mouse model of systemic lupus erythematosus. Physiol Rep 2017; 5:e13213. [PMID: 28400502 PMCID: PMC5392509 DOI: 10.14814/phy2.13213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Increased inflammation arising from an abnormal immune response can damage healthy tissue and lead to disease progression. An important example of this is the accumulation of inflammatory mediators in the kidney, which can subsequently lead to hypertension and renal injury. The origin of this inflammation may involve neuro-immune interactions. For example, the novel vagus nerve-to-spleen mechanism known as the "cholinergic anti-inflammatory pathway" controls inflammation upon stimulation. However, if this pathway is dysfunctional, inflammation becomes less regulated and chronic inflammatory diseases such as hypertension may develop. Systemic lupus erythematosus (SLE) is an autoimmune disease with aberrant immune function, increased renal inflammation, and prevalent hypertension. We hypothesized that the cholinergic anti-inflammatory pathway is impaired in SLE and that stimulation of this pathway would protect from the progression of hypertension in SLE mice. Female SLE (NZBWF1) and control (NZW) mice were administered nicotine or vehicle for 7 days (2 mg/kg/day, subcutaneously) in order to stimulate the cholinergic anti-inflammatory pathway at the level of the splenic nicotinic acetylcholine receptor (α7-nAChR). Blood pressure was assessed posttreatment. Nicotine-treated SLE mice did not develop hypertension and this lower blood pressure (compared to saline-treated SLE mice) coincided with lower splenic and renal cortical expression of pro-inflammatory cytokines. These data provide evidence that the cholinergic anti-inflammatory pathway is impaired in SLE In addition, these data suggest that stimulation of the cholinergic anti-inflammatory pathway can protect the kidney by dampening inflammation and therefore prevent the progression of hypertension in the setting of SLE.
Collapse
Affiliation(s)
- Amber S Fairley
- Institute for Cardiovascular and Metabolic Diseases University of North Texas Health Science Center, Fort Worth, Texas
| | - Keisa W Mathis
- Institute for Cardiovascular and Metabolic Diseases University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
38
|
Li DJ, Li YH, Yuan HB, Qu LF, Wang P. The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism 2017; 68:31-42. [PMID: 28183451 DOI: 10.1016/j.metabol.2016.12.003] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Irisin is a novel exercise-induced myokine involved in the regulation of adipose browning and thermogenesis. In this study, we investigated the potential role of irisin in cerebral ischemia and determined whether irisin is involved in the neuroprotective effect of physical exercise in mice. MATERIALS AND METHODS The middle cerebral artery occlusion (MCAO) model was used to produce cerebral ischemia in mice. First, the plasma irisin levels and changes in expression of the irisin precursor protein FNDC5 in skeletal muscle were determined post ischemic stroke. Second, the association between plasma irisin levels and the neurological deficit score, brain infarct volume, or plasma concentrations of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β in mice with MCAO were evaluated. Third, the therapeutic effect of irisin on ischemic brain injury was evaluated in vivo and in vitro. Recombinant irisin was injected directly into the tail vein 30min after the MCAO operation, and then the effects of irisin treatment on brain infarct volume, neurological deficit, neuroinflammation, microglia activation, monocyte infiltration, oxidative stress and intracellular signaling pathway activation (Akt and ERK1/2) were measured. Irisin was also administered in cultured PC12 neuronal cells with oxygen and glucose deprivation (OGD). Finally, to assess the potential involvement of irisin in the neuroprotection of physical exercise, mice were exercised for 2weeks and an irisin neutralizing antibody was injected into these mice to block irisin 1h before the MCAO operation. RESULTS The plasma irisin concentration and intramuscular FNDC5 protein expression decreased after ischemic stroke. Plasma irisin levels were negatively associated with brain infarct volume, the neurological deficit score, plasma TNF-α and plasma IL-6 concentrations. In OGD neuronal cells, irisin protected against cell injury. In mice with MCAO, irisin treatment reduced the brain infarct volume, neurological deficits, brain edema and the decline in body weight. Irisin treatment inhibited activation of Iba-1+ microglia, infiltration of MPO-1+ monocytes and expression of both TNF-α and IL-6 mRNA. Irisin significantly suppressed the levels of nitrotyrosine, superoxide anion and 4-hydroxynonenal (4-HNE) in peri-infarct brain tissues. Irisin treatment increased Akt and ERK1/2 phosphorylation, while blockade of Akt and ERK1/2 by specific inhibitors reduced the neuroprotective effects of irisin. Finally, the exercised mice injected with irisin neutralizing antibody displayed more severe neuronal injury than the exercised mice injected with control IgG. CONCLUSION Irisin reduces ischemia-induced neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotective effect of physical exercise against cerebral ischemia, suggesting that irisin may be a factor linking metabolism and cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Yong-Hua Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hong-Bin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Le-Feng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pei Wang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
39
|
Choline ameliorates cardiovascular damage by improving vagal activity and inhibiting the inflammatory response in spontaneously hypertensive rats. Sci Rep 2017; 7:42553. [PMID: 28225018 PMCID: PMC5320519 DOI: 10.1038/srep42553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/10/2017] [Indexed: 11/17/2022] Open
Abstract
Autonomic dysfunction and abnormal immunity lead to systemic inflammatory responses, which result in cardiovascular damage in hypertension. The aim of this report was to investigate the effects of choline on cardiovascular damage in hypertension. Eight-week-old male spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats were intraperitoneally injected with choline or vehicle (8 mg/kg/day). After 8 weeks, choline restored the cardiac function of the SHRs, as evidenced by decreased heart rate, systolic blood pressure, left ventricle systolic pressure, and ±dp/dtmax and increased ejection fraction and fractional shortening. Choline also ameliorated the cardiac hypertrophy of the SHRs, as indicated by reduced left ventricle internal dimensions and decreased cardiomyocyte cross-sectional area. Moreover, choline improved mesenteric arterial function and preserved endothelial ultrastructure in the SHRs. Notably, the protective effect of choline may be due to its anti-inflammatory effect. Choline downregulated expression of interleukin (IL)-6 and tumour necrosis factor-α and upregulated IL-10 in the mesenteric arteries of SHRs, possibly because of the inhibition of Toll-like receptor 4. Furthermore, choline restored baroreflex sensitivity and serum acetylcholine level in SHRs, thus indicating that choline improved vagal activity. This study suggests that choline elicits cardiovascular protective effects and may be useful as a potential adjunct therapeutic approach for hypertension.
Collapse
|
40
|
Li-Sha G, Xing-Xing C, Lian-Pin W, De-Pu Z, Xiao-Wei L, Jia-Feng L, Yue-Chun L. Right Cervical Vagotomy Aggravates Viral Myocarditis in Mice Via the Cholinergic Anti-inflammatory Pathway. Front Pharmacol 2017; 8:25. [PMID: 28197102 PMCID: PMC5281590 DOI: 10.3389/fphar.2017.00025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/16/2017] [Indexed: 12/21/2022] Open
Abstract
The autonomic nervous system dysfunction with increased sympathetic activity and withdrawal of vagal activity may play an important role in the pathogenesis of viral myocarditis. The vagus nerve can modulate the immune response and control inflammation through a ‘cholinergic anti-inflammatory pathway’ dependent on the α7-nicotinic acetylcholine receptor (α7nAChR). Although the role of β-adrenergic stimulation on viral myocarditis has been investigated in our pervious studies, the direct effect of vagal tone in this setting has not been yet studied. Therefore, in the present study, we investigated the effects of cervical vagotomy in a murine model of viral myocarditis. In a coxsackievirus B3 murine myocarditis model (Balb/c), effects of right cervical vagotomy and nAChR agonist nicotine on echocardiography, myocardial histopathology, viral RNA, and proinflammatory cytokine levels were studied. We found that right cervical vagotomy inhibited the cholinergic anti-inflammatory pathway, aggravated myocardial lesions, up-regulated the expression of TNF-α, IL-1β, and IL-6, and worsened the impaired left ventricular function in murine viral myocarditis, and these changes were reversed by co-treatment with nicotine by activating the cholinergic anti-inflammatory pathway. These results indicate that vagal nerve plays an important role in mediating the anti-inflammatory effect in viral myocarditis, and that cholinergic stimulation with nicotine also plays its peripheral anti-inflammatory role relying on α7nAChR, without requirement for the integrity of vagal nerve in the model. The findings suggest that vagus nerve stimulation mediated inhibition of the inflammatory processes likely provide important benefits in myocarditis treatment.
Collapse
Affiliation(s)
- Ge Li-Sha
- Department of Pediatrics, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Chen Xing-Xing
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China; Department of Cardiology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Wu Lian-Pin
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Zhou De-Pu
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Li Xiao-Wei
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Lin Jia-Feng
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Li Yue-Chun
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| |
Collapse
|
41
|
TRPM8 downregulation by angiotensin II in vascular smooth muscle cells is involved in hypertension. Mol Med Rep 2017; 15:1900-1908. [PMID: 28138709 DOI: 10.3892/mmr.2017.6158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/08/2016] [Indexed: 11/05/2022] Open
Abstract
Angiotensin II (Ang II)-induced injury of vascular smooth muscle cells (VSMCs) serves an important role in hypertension and other cardiovascular disorders. Transient receptor potential melastatin 8 (TRPM8) is a thermally‑regulated Ca2+‑permeable channel that is activated by reduced body temperature. Although several recent studies have revealed the regulatory effect of TRPM8 in vascular tone and hypertension, the precise role of TRPM8 in dysfunction of vascular smooth muscle cells (VSMCs) induced by Ang II remains elusive. In the present study, the possible function of TRPM8 in Ang II‑induced VSMCs malfunction in vivo and in vitro was investigated. In the aortae from rats that had undergone a two‑kidney one‑clip operation, which is a widely‑used renovascular hypertension model, the mRNA and protein levels of TRPM8 were reduced. In addition, exogenous Ang II treatment decreased TRPM8 mRNA and protein expression levels in primary cultures of rat VSMCs. TRPM8 activation by menthol, a pharmacological agonist, in VSMCs, significantly attenuated the Ang II‑induced increase in reactive oxygen species and H2O2 production. In addition, TRPM8 activation reduced the Ang II‑induced upregulation of NADPH oxidase (NOX) 1 and NOX4 in VSMCs. Furthermore, TRPM8 activation relieved the Ang II‑induced activation of ras homolog gene family, member A‑rho associated protein kinase 2 and janus kinase 2 signaling pathways in VSMCs. In conclusion, the results presented in the current study indicated that TRPM8 downregulation by Ang II in VSMCs may be involved in hypertension.
Collapse
|
42
|
Guo JM, Zhang L, Niu XC, Shu H, Wang L, Su DF, Zhang Y, Liu AJ, Zhu DQ, Xu JJ. Involvement of arterial baroreflex and nicotinic acetylcholine receptor α7 subunit pathway in the protection of metformin against stroke in stroke-prone spontaneously hypertensive rats. Eur J Pharmacol 2017; 798:1-8. [PMID: 28132912 DOI: 10.1016/j.ejphar.2017.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Stroke is a leading cause of mortality and disability worldwide. There is growing evidence that metformin (Met) has potent neuroprotective effects; however, its mechanisms remain unclear. We examined the role of the arterial baroreflex and cholinergic-α7 nicotinic acetylcholine receptor (α7nAChR) anti-inflammory pathway in the beneficial effects of Met against stroke. Stroke-prone spontaneously hypertensive rats (SHRSP) were used to observe stroke development indicated by lifespan of SHRSP and the ischemic injury induced by permanent middle cerebral artery occlusion (MCAO). Sinoaortic denervation was used to inactivate the arterial baroreflex. MCAO were also performed in α7nAChR knockout (KO) mice. Briefly, Met increased the life span of SHRSP and reduced the infarct area induced by MCAO. Met also improved the function of arterial baroreflex. The beneficial effects of Met on stroke were markedly attenuated by blunting the arterial baroreflex. Met up-regulated the expression of vesicular acetylcholine transporter (VAChT) and α7nAChR, down-regulated the level of pro-inflammtory cytokines in serum and peri-infarct of ischemic brain. Arterial baroreflex dysfunction decreased the expression of VAchT and α7nAChR, showed upward tendency in the level of pro-inflammtory cytokines. Most importantly, arterial baroreflex dysfunction nearly abolished such effect of Met on cholinergic signaling. In addition, the α7nAChR KO mice also had significantly worse ischemic damage induced by MCAO, and neuroprotection of Met disappeared in α7nAChR KO mice. In conclusion, Met improved the arterial baroreflex function, and then enhancing cholinergic anti-inflammatory pathway in an α7nAChR-dependent manner, thereby effectively prevent ischemic induced brain injury and delayed stroke onset in SHRSP.
Collapse
Affiliation(s)
- Jin-Min Guo
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Li Zhang
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Xue-Cai Niu
- Department of Radiotheropy, The Forth Hospital of Jinan City, Jinan, Shandong, China
| | - He Shu
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Lei Wang
- Department of Orthopaedics, Jinan Military General Hospital, Jinan, Shandong, China
| | - Ding-Feng Su
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ying Zhang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ai-Jun Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - De-Qiu Zhu
- Division of Pharmacy, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai 200065, China.
| | - Jian-Jiang Xu
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China.
| |
Collapse
|
43
|
Tabb KL, Hellwege JN, Palmer ND, Dimitrov L, Sajuthi S, Taylor KD, Ng MCY, Hawkins GA, Chen YDI, Brown WM, McWilliams D, Williams A, Lorenzo C, Norris JM, Long J, Rotter JI, Curran JE, Blangero J, Wagenknecht LE, Langefeld CD, Bowden DW. Analysis of Whole Exome Sequencing with Cardiometabolic Traits Using Family-Based Linkage and Association in the IRAS Family Study. Ann Hum Genet 2017; 81:49-58. [PMID: 28067407 DOI: 10.1111/ahg.12184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/15/2016] [Indexed: 01/01/2023]
Abstract
Family-based methods are a potentially powerful tool to identify trait-defining genetic variants in extended families, particularly when used to complement conventional association analysis. We utilized two-point linkage analysis and single variant association analysis to evaluate whole exome sequencing (WES) data from 1205 Hispanic Americans (78 families) from the Insulin Resistance Atherosclerosis Family Study. WES identified 211,612 variants above the minor allele frequency threshold of ≥0.005. These variants were tested for linkage and/or association with 50 cardiometabolic traits after quality control checks. Two-point linkage analysis yielded 10,580,600 logarithm of the odds (LOD) scores with 1148 LOD scores ≥3, 183 LOD scores ≥4, and 29 LOD scores ≥5. The maximal novel LOD score was 5.50 for rs2289043:T>C, in UNC5C with subcutaneous adipose tissue volume. Association analysis identified 13 variants attaining genome-wide significance (P < 5 × 10-08 ), with the strongest association between rs651821:C>T in APOA5 and triglyceride levels (P = 3.67 × 10-10 ). Overall, there was a 5.2-fold increase in the number of informative variants detected by WES compared to exome chip analysis in this population, nearly 30% of which were novel variants relative to the Database of Single Nucleotide Polymorphisms (dbSNP) build 138. Thus, integration of results from two-point linkage and single-variant association analysis from WES data enabled identification of novel signals potentially contributing to cardiometabolic traits.
Collapse
Affiliation(s)
- Keri L Tabb
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jacklyn N Hellwege
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Latchezar Dimitrov
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Satria Sajuthi
- Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Maggie C Y Ng
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gregory A Hawkins
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yii-der Ida Chen
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - W Mark Brown
- Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - David McWilliams
- Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Adrienne Williams
- Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carlos Lorenzo
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Lynne E Wagenknecht
- Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
44
|
Liu Y, Yang J, Bao J, Li X, Ye A, Zhang G, Liu H. Activation of the cholinergic anti-inflammatory pathway by nicotine ameliorates lipopolysaccharide-induced preeclampsia-like symptoms in pregnant rats. Placenta 2017; 49:23-32. [DOI: 10.1016/j.placenta.2016.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/18/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
|
45
|
Combined administration of anisodamine and neostigmine rescued acute lethal crush syndrome through α7nAChR-dependent JAK2-STAT3 signaling. Sci Rep 2016; 6:37709. [PMID: 27874086 PMCID: PMC5118690 DOI: 10.1038/srep37709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Previously we showed that Ani (anisodamine)/Neo (neostigmine) combination produced anti-shock effect via activating α7 nicotinic acetylcholine receptor (α7nAChR). In this study, we aim to investigate the therapeutic effect and underlying mechanisms of Ani/Neo combination in acute lethal crush syndrome (CS). In rat and rabbit CS models, Ani/Neo combination increased the 24 h survival rates, improved hemodynamics and decreased the levels of creatine kinase, MB isoenzyme of creatine kinase, blood urea nitrogen, creatinine, K+ in serum. It also decreased the levels of H2O2, myeloperoxidase (MPO) and nitric oxide (NO) in serum and compressed muscle in rat CS model. In wild-type (WT) mice with CS, Ani/Neo combination increased 24 h survival rate and decreased the levels of H2O2, MPO, NO, TNFα, IL-6 and IL-10 in compressed muscle. These effects were attenuated by α7nAChR knockout (KO). Moreover, Ani/Neo combination prevented the decrease of phosphorylation of Janus kinase 2 (JAK2) and phosphorylation of signal transducer and activator of transcription 3 (STAT3) induced by CS. These effects of Ani/Neo in CS mice were cancelled by methyllycaconitine (α7nAChR antagonist) and α7nAChR KO. Collectively, our results demonstrate that Ani/Neo combination could produce therapeutic effects in CS. The underlying mechanism involves the activation of α7nAChR-dependent JAK2-STAT3 signaling pathway.
Collapse
|
46
|
Arsenic Exposure and Predicted 10-Year Atherosclerotic Cardiovascular Risk Using the Pooled Cohort Equations in U.S. Hypertensive Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111093. [PMID: 27828001 PMCID: PMC5129303 DOI: 10.3390/ijerph13111093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/17/2022]
Abstract
This study was to evaluate the association of urine arsenic with predicted 10-year atherosclerotic cardiovascular disease (ASCVD) risk in U.S. adults with hypertension. Cross-sectional analysis was conducted in 1570 hypertensive adults aged 40-79 years in the 2003-2012 National Health and Nutrition Examination Survey (NHANES) with determinations of urine arsenic. Predicted 10-year ASCVD risk was estimated by the Pooled Cohort Equations, developed by the American College of Cardiology/American Heart Association in 2013. For men, after adjustment for sociodemographic factors, urine dilution, ASCVD risk factors and organic arsenic intake from seafood, participants in the highest quartiles of urine arsenic had higher 10-year predicted ASCVD risk than in the lowest quartiles; the increases were 24% (95% confidence interval (CI): 2%, 53%) for total arsenic, 13% (95% CI: 2%, 25%) for dimethylarsinate and 22% (95% CI: 5%, 40%) for total arsenic minus arsenobetaine separately. For women, the corresponding increases were 5% (95% CI: -15%, 29%), 10% (95% CI: -8%, 30%) and 0% (95% CI: -15%, 19%), respectively. Arsenic exposure, even at low levels, may contribute to increased ASCVD risk in men with hypertension. Furthermore, our findings suggest that particular circumstances need urgently to be considered while elucidating cardiovascular effects of low inorganic arsenic levels.
Collapse
|
47
|
Zhang J, Zhang L, Sun X, Yang Y, Kong L, Lu C, Lv G, Wang T, Wang H, Fu F. Acetylcholinesterase Inhibitors for Alzheimer's Disease Treatment Ameliorate Acetaminophen-Induced Liver Injury in Mice via Central Cholinergic System Regulation. J Pharmacol Exp Ther 2016; 359:374-382. [PMID: 27535978 DOI: 10.1124/jpet.116.233841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/12/2016] [Indexed: 01/30/2023] Open
Abstract
Acetaminophen (APAP) is widely used as an analgesic and antipyretic agent, but it may induce acute liver injury at high doses. Alzheimer's disease patients, while treated with acetylcholinesterase inhibitor (AChEI), may take APAP when they suffer from cold or pain. It is generally recognized that inhibiting acetylcholinesterase activity may also result in liver injury. To clarify whether AChEI could deteriorate or attenuate APAP hepatotoxicity, the effects of AChEI on APAP hepatotoxicity were investigated. Male C57BL/6J mice were administrated with the muscarinic acetylcholine receptor (mAChR) blocker atropine (Atr), or classic α7 nicotine acetylcholine receptor (α7nAChR) antagonist methyllycaconitine (MLA) 1 hour before administration of AChEIs-donepezil (4 mg/kg), rivastigmine (2 mg/kg), huperzine A (0.2 mg/kg), or neostigmine (0.15 mg/kg)-followed by APAP (300 mg/kg). Eight hours later, the mice were euthanized for histopathologic examination and biochemical assay. The results demonstrated that the tested AChEIs, excluding neostigmine, could attenuate APAP-induced liver injury, accompanied by reduced reactive oxygen species formation, adenosine triphosphate and cytochrome C loss, c-Jun N-terminal kinase 2 (JNK2) phosphorylation, and cytokines. However, Atr or MLA significantly weakened the protective effect of AChEI by affecting mitochondrial function or JNK2 phosphorylation and inflammation response. These results suggest that central mAChR and α7nAChR, which are activated by accumulated acetylcholine resulting from AChEI, were responsible for the protective effect of AChEIs on APAP-induced liver injury. This indicates that Alzheimer's patients treated with AChEI could take APAP, as AChEI is unlikely to deteriorate the hepatotoxicity of APAP.
Collapse
Affiliation(s)
- Jianqiao Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai, People's Republic of China
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai, People's Republic of China
| | - Xue Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai, People's Republic of China
| | - Yanting Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai, People's Republic of China
| | - Liang Kong
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai, People's Republic of China
| | - Chengwen Lu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai, People's Republic of China
| | - Guangyao Lv
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai, People's Republic of China
| | - Tian Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai, People's Republic of China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai, People's Republic of China
| | - Fenghua Fu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai, People's Republic of China
| |
Collapse
|
48
|
Harwani SC, Ratcliff J, Sutterwala FS, Ballas ZK, Meyerholz DK, Chapleau MW, Abboud FM. Nicotine Mediates CD161a+ Renal Macrophage Infiltration and Premature Hypertension in the Spontaneously Hypertensive Rat. Circ Res 2016; 119:1101-1115. [PMID: 27660287 PMCID: PMC5085865 DOI: 10.1161/circresaha.116.309402] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE Renal inflammation contributes to the pathophysiology of hypertension. CD161a+ immune cells are dominant in the (SHR) spontaneously hypertensive rat and expand in response to nicotinic cholinergic activation. OBJECTIVE We aimed to phenotype CD161a+ immune cells in prehypertensive SHR after cholinergic activation with nicotine and determine if these cells are involved in renal inflammation and the development of hypertension. METHODS AND RESULTS Studies used young SHR and WKY (Wistar-Kyoto) rats. Splenocytes and bone marrow cells were exposed to nicotine ex vivo, and nicotine was infused in vivo. Blood pressures, kidney, serum, and urine were obtained. Flow cytometry, Luminex/ELISA, immunohistochemistry, confocal microscopy, and Western blot were used. Nicotinic cholinergic activation induced proliferation of CD161a+/CD68+ macrophages in SHR-derived splenocytes, their renal infiltration, and premature hypertension in SHR. These changes were associated with increased renal expression of MCP-1 (monocyte chemoattractant protein-1) and VLA-4 (very-late antigen-4). LLT1 (lectin-like transcript 1), the ligand for CD161a, was overexpressed in SHR kidney, whereas vascular cellular and intracellular adhesion molecules were similar to those in WKY. Inflammatory cytokines were elevated in SHR kidney and urine after nicotine infusion. Nicotine-mediated renal macrophage infiltration/inflammation was enhanced in denervated kidneys, not explained by angiotensin II levels or expression of angiotensin type-1/2 receptors. Moreover, expression of the anti-inflammatory α7-nAChR (α7-nicotinic acetylcholine receptor) was similar in young SHR and WKY rats. CONCLUSIONS A novel, inherited nicotinic cholinergic inflammatory effect exists in young SHR, measured by expansion of CD161a+/CD68+ macrophages. This leads to renal inflammation and premature hypertension, which may be partially explained by increased renal expression of LLT-1, MCP-1, and VLA-4.
Collapse
MESH Headings
- Age of Onset
- Angiotensin II/metabolism
- Animals
- Antigens, CD/analysis
- Antigens, Differentiation, Myelomonocytic/analysis
- Cell Movement/drug effects
- Cells, Cultured
- Chemokine CCL2/biosynthesis
- Chemokine CCL2/genetics
- Cytokines/biosynthesis
- Cytokines/genetics
- Denervation
- Gene Expression Regulation/drug effects
- Hypertension/etiology
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension, Renal/etiology
- Hypertension, Renal/genetics
- Hypertension, Renal/metabolism
- Hypertension, Renal/pathology
- Immunophenotyping
- Integrin alpha4beta1/biosynthesis
- Integrin alpha4beta1/genetics
- Kidney/innervation
- Kidney/pathology
- Lectins/biosynthesis
- Lectins/genetics
- Macrophages/classification
- Macrophages/drug effects
- Macrophages/pathology
- Male
- NK Cell Lectin-Like Receptor Subfamily B/analysis
- Nephritis/chemically induced
- Nephritis/physiopathology
- Nicotine/pharmacology
- Nicotine/toxicity
- Norepinephrine/metabolism
- Prehypertension/etiology
- Prehypertension/genetics
- Prehypertension/pathology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/biosynthesis
- Receptor, Angiotensin, Type 2/genetics
- alpha7 Nicotinic Acetylcholine Receptor/biosynthesis
- alpha7 Nicotinic Acetylcholine Receptor/genetics
Collapse
Affiliation(s)
- Sailesh C Harwani
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City.
| | - Jason Ratcliff
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Fayyaz S Sutterwala
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Zuhair K Ballas
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - David K Meyerholz
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Mark W Chapleau
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Francois M Abboud
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| |
Collapse
|
49
|
Baroreflex deficiency aggravates atherosclerosis via α7 nicotinic acetylcholine receptor in mice. Vascul Pharmacol 2016; 87:92-99. [PMID: 27568460 DOI: 10.1016/j.vph.2016.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 07/12/2016] [Accepted: 08/23/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Inflammation and oxidative stress play a key role in the initiation, propagation, and development of atherosclerosis. Arterial baroreflex (ABR) dysfunction induced by sinoaortic denervation (SAD) promoted the development of atherosclerosis in ApoE-/- mice. The present work was designed to examine whether ABR deficiency affected inflammation and oxidative stress via α7 nicotinic acetylcholine receptor (α7nAChR) leading to the aggravation of atherosclerosis in mice. METHODS AND RESULTS ApoE-/- mice were fed with a high-cholesterol diet for 6weeks and half of the mice received sinoaortic denervation that destroyed ABR. We studied the expression of vesicular acetylcholine transporter (VAChT), α7nAChR and levels of inflammatory response and oxidative stress. The results showed that baroreflex dysfunction could promote atherosclerosis, meanwhile, decrease the expression of VAChT and α7nAChR and significantly increase the levels of oxidative stress and inflammation in SAD mice. After treated with PNU-282987 (a selective α7nAChR agonist, 0.53mg/kg/day) for 6weeks in SAD and Sham mice, we found that PNU-282987 could attenuate atherosclerosis and significantly decreased oxidative stress and inflammation after SAD. In addition, α7nAChR+/+ and α7nAChR-/- mice fed with a high-cholesterol diet for 8weeks were co-treated with ketanserin (0.6mg/kg/day), a drug that can enhance baroreflex sensitivity (BRS). Ketanserin could alleviate atherosclerosis and markedly decrease oxidative stress and inflammation in α7nAChR+/+ mice. But there were no effects in α7nAChR knockout mice. CONCLUSIONS Our results demonstrate that ABR dysfunction aggravates atherosclerosis in mice via the vagus-ACh-α7nAChR-inflammation and oxidative stress pathway.
Collapse
|
50
|
Silva RC, Terra FF, Guise YF, Prado MAM, Prado VF, Hiyane MI, Costa Malheiros DMA, Prado CM, Camara NOS, Braga TT. Reduced expression of VAChT increases renal fibrosis. ACTA ACUST UNITED AC 2016; 23:229-36. [PMID: 27524473 DOI: 10.1016/j.pathophys.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is associated with several other long-lasting conditions such as diabetes and cardiovascular diseases and it is a significant contributor to mortality worldwide. Obstructive kidney disease is one of the leading causes of CKD in children and may result from a wide variety of pathologic processes. Recent studies have shown that α7 nicotinic acetylcholine receptor (α7 nAChR) activation in the cholinergic anti-inflammatory pathway reduces production of inflammatory mediators and consequently prevents tissue injury and death. Here, we examined the role of endogenous release of acetylcholine on the development of fibrosis in renal tissue using a model of unilateral ureter obstruction (UUO)-induced CKD, in which obstruction promotes inflammation-mediated kidney damages. To interfere with acetylcholine secretion, we used mice in which the vesicular acetylcholine transporter is genetically reduced (VAChT KD(hom) mice). We observed a higher renal damage in VAChT mutant mice when compared to wild type controls, exemplified by higher proteinuria and increased amount of type 1 collagen in the kidney tissue, indicating accentuated fibrogenesis. These results were accompanied by enhanced localized kidney inflammation, with increased TH1/TH17 profile response. Administration of PNU-282987, a selective agonist of α7 nAChR, significantly attenuated kidney injury after UUO in VAChT KD(hom) mice, indicating that the lack of acetylcholine release decrease the action of the cholinergic anti-inflammatory pathway, promoting an up-regulation of pro-inflammatory and pro-fibrotic pathways. These results suggest that physiological activation of the cholinergic anti-inflammatory pathway regulates inflammatory responses in the kidney suggesting a new therapeutic approach for kidney disease.
Collapse
Affiliation(s)
- Reinaldo Correia Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | - Fernanda Fernandes Terra
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | - Yuri Felipe Guise
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | - Marco Antônio Máximo Prado
- Robarts Research Institute, Department of Anatomy & Cell Biology and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Vânia Ferreira Prado
- Robarts Research Institute, Department of Anatomy & Cell Biology and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Meire Ioshie Hiyane
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | | | - Carla Maximo Prado
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Niels Olsen Saraiva Camara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil; Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; Renal Pathophysiology Laboratory (LIM16), Faculty of Medicine, University of São Paulo, Brazil
| | - Tarcio Teodoro Braga
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil.
| |
Collapse
|