1
|
Shin YJ, Chae SY, Lee H, Fang X, Cui S, Lim SW, Lee KI, Lee JY, Li C, Yang CW, Chung BH. CRISPR/Cas9-mediated suppression of A4GALT rescues endothelial cell dysfunction in a fabry disease vasculopathy model derived from human induced pluripotent stem cells. Atherosclerosis 2024; 397:118549. [PMID: 39141976 DOI: 10.1016/j.atherosclerosis.2024.118549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND AND AIMS The objective of this study was to investigate the efficacy of CRISPR/Cas9-mediated A4GALT suppression in rescuing endothelial dysfunction in Fabry disease (FD) endothelial cells (FD-ECs) derived from human induced pluripotent stem cells (hiPSCs). METHODS We differentiated hiPSCs (WT (wild-type), WTC-11), GLA-mutant hiPSCs (GLA-KO, CMC-Fb-002), and CRISPR/Cas9-mediated A4GALT-KO hiPSCs (GLA/A4GALT-KO, Fb-002-A4GALT-KO) into ECs and compared FD phenotypes and endothelial dysfunction. We also analyzed the effect of A4GALT suppression on reactive oxygen species (ROS) formation and transcriptome profiles through RNA sequencing. RESULTS GLA-mutant hiPSC-ECs (GLA-KO and CMC-Fb-002) showed downregulated expression of EC markers and significantly reduced α-GalA expression with increased Gb-3 deposition and intra-lysosomal inclusion bodies. However, CRISPR/Cas9-mediated A4GALT suppression in GLA/A4GALT-KO and Fb-002-A4GALT-KO hiPSC-ECs increased expression levels of EC markers and rescued these FD phenotypes. GLA-mutant hiPSC-ECs failed to form tube-like structure in tube formation assays, showing significantly decreased migration of cells into the scratched wound area. In contrast, A4GALT suppression improved tube formation and cell migration capacity. Western blot analysis revealed that MAPK and AKT phosphorylation levels were downregulated while SOD and catalase were upregulated in GLA-KO hiPSC-ECs. However, suppression of A4GALT restored these protein alterations. RNA sequencing analysis demonstrated significant transcriptome changes in GLA-mutant EC, especially in angiogenesis, cell death, and cellular response to oxidative stress. However, these were effectively restored in GLA/A4GALT-KO hiPSC-ECs. CONCLUSIONS CRISPR/Cas9-mediated A4GALT suppression rescued FD phenotype and endothelial dysfunction in GLA-mutant hiPSC-ECs, presenting a potential therapeutic approach for FD-vasculopathy.
Collapse
Affiliation(s)
- Yoo Jin Shin
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Yun Chae
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea
| | - Hanbi Lee
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea
| | - Xianying Fang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sheng Cui
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun Woo Lim
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | - Can Li
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Chul Woo Yang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea
| | - Byung Ha Chung
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea.
| |
Collapse
|
2
|
Gervas-Arruga J, Barba-Romero MÁ, Fernández-Martín JJ, Gómez-Cerezo JF, Segú-Vergés C, Ronzoni G, Cebolla JJ. In Silico Modeling of Fabry Disease Pathophysiology for the Identification of Early Cellular Damage Biomarker Candidates. Int J Mol Sci 2024; 25:10329. [PMID: 39408658 PMCID: PMC11477023 DOI: 10.3390/ijms251910329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal disease whose ultimate consequences are the accumulation of sphingolipids and subsequent inflammatory events, mainly at the endothelial level. The outcomes include different nervous system manifestations as well as multiple organ damage. Despite the availability of known biomarkers, early detection of FD remains a medical need. This study aimed to develop an in silico model based on machine learning to identify candidate vascular and nervous system proteins for early FD damage detection at the cellular level. A combined systems biology and machine learning approach was carried out considering molecular characteristics of FD to create a computational model of vascular and nervous system disease. A data science strategy was applied to identify risk classifiers by using 10 K-fold cross-validation. Further biological and clinical criteria were used to prioritize the most promising candidates, resulting in the identification of 36 biomarker candidates with classifier abilities, which are easily measurable in body fluids. Among them, we propose four candidates, CAMK2A, ILK, LMNA, and KHSRP, which have high classification capabilities according to our models (cross-validated accuracy ≥ 90%) and are related to the vascular and nervous systems. These biomarkers show promise as high-risk cellular and tissue damage indicators that are potentially applicable in clinical settings, although in vivo validation is still needed.
Collapse
Affiliation(s)
| | - Miguel Ángel Barba-Romero
- Department of Internal Medicine, Albacete University Hospital, 02006 Albacete, Spain;
- Albacete Medical School, Castilla-La Mancha University, 02006 Albacete, Spain
| | | | - Jorge Francisco Gómez-Cerezo
- Department of Internal Medicine, Infanta Sofía University Hospital, 28702 Madrid, Spain;
- Faculty of Medicine, European University of Madrid, 28670 Madrid, Spain
| | | | | | | |
Collapse
|
3
|
Faro DC, Di Pino FL, Rodolico MS, Costanzo L, Losi V, Di Pino L, Monte IP. Relationship between Capillaroscopic Architectural Patterns and Different Variant Subgroups in Fabry Disease: Analysis of Cases from a Multidisciplinary Center. Genes (Basel) 2024; 15:1101. [PMID: 39202460 PMCID: PMC11354189 DOI: 10.3390/genes15081101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Anderson-Fabry disease (AFD) is a genetic lysosomal storage disorder caused by mutations in the α-galactosidase A gene, leading to impaired lysosomal function and resulting in both macrovascular and microvascular alterations. AFD patients often exhibit increased intima-media thickness (IMT) and reduced flow-mediated dilation (FMD), indicating non-atherosclerotic arterial thickening and the potential for cardiovascular events. Nailfold capillaroscopy, a non-invasive diagnostic tool, has shown potential in diagnosing and monitoring microcirculatory disorders in AFD, despite limited research. This study evaluates nailfold capillaroscopy findings in AFD patients, exploring correlations with GLA gene variant subgroups (associated with classical or late-onset phenotypes and variants of uncertain significance (VUSs)), and assessing morpho-functional differences between sexes. It aims to determine whether capillaroscopy can assist in the early identification of individuals with multiorgan vascular involvement. A retrospective observational study was conducted with 25 AFD patients from AOUP "G. Rodolico-San Marco" in Catania (2020-2023). Patients underwent genetic testing, enzyme activity evaluation, and nailfold capillaroscopy using Horus basic HS 200 videodermatoscopy. Parameters like angiotectonic disorder, vascular areas, capillary density, and intimal thickening were assessed. The study identified significant differences in capillaroscopy findings among patients with different GLA gene variant subgroups. Classic AFD variant patients showed reduced capillary length and signs of erythrocyte aggregation and dilated subpapillary plexus. No correlation was found between enzymatic activity and capillaroscopy parameters. However, Lyso-Gb3 levels were positively correlated with average capillary length (ῤ = 0.453; p = 0.059). Sex-specific differences in capillaroscopy findings were observed in neoangiogenesis and average capillary length, with distinct implications for men and women. This study highlights the potential of nailfold capillaroscopy in the diagnostic process and clinical management of AFD, particularly in relation to specific GLA gene mutations, as a valuable tool for the early diagnosis and monitoring of AFD.
Collapse
Affiliation(s)
- Denise Cristiana Faro
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy; (D.C.F.); (F.L.D.P.); (V.L.); (L.D.P.)
| | - Francesco Lorenzo Di Pino
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy; (D.C.F.); (F.L.D.P.); (V.L.); (L.D.P.)
| | - Margherita Stefania Rodolico
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Section of Catania, 95126 Catania, Italy;
| | - Luca Costanzo
- Unit of Angiology, Policlinico “G. Rodolico-San Marco” University Hospital, 95123 Catania, Italy;
| | - Valentina Losi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy; (D.C.F.); (F.L.D.P.); (V.L.); (L.D.P.)
| | - Luigi Di Pino
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy; (D.C.F.); (F.L.D.P.); (V.L.); (L.D.P.)
- Unit of Cardiology, “G. Rodolico-S.Marco” University Hospital, 95123 Catania, Italy
| | - Ines Paola Monte
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy; (D.C.F.); (F.L.D.P.); (V.L.); (L.D.P.)
- Unit of Cardiology, “G. Rodolico-S.Marco” University Hospital, 95123 Catania, Italy
| |
Collapse
|
4
|
Faro DC, Di Pino FL, Monte IP. Inflammation, Oxidative Stress, and Endothelial Dysfunction in the Pathogenesis of Vascular Damage: Unraveling Novel Cardiovascular Risk Factors in Fabry Disease. Int J Mol Sci 2024; 25:8273. [PMID: 39125842 PMCID: PMC11312754 DOI: 10.3390/ijms25158273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Anderson-Fabry disease (AFD), a genetic disorder caused by mutations in the α-galactosidase-A (GLA) gene, disrupts lysosomal function, leading to vascular complications. The accumulation of globotriaosylceramide (Gb3) in arterial walls triggers upregulation of adhesion molecules, decreases endothelial nitric oxide synthesis, and induces reactive oxygen species production. This cascade results in fibrotic thickening, endothelial dysfunction, hypercontractility, vasospasm, and a pro-thrombotic phenotype. AFD patients display increased intima-media thickness (IMT) and reduced flow-mediated dilation (FMD), indicating heightened cardiovascular risk. Nailfold capillaroscopy (NFC) shows promise in diagnosing and monitoring microcirculatory disorders in AFD, though it remains underexplored. Morphological evidence of AFD as a storage disorder can be demonstrated through electron microscopy and immunodetection of Gb3. Secondary pathophysiological disturbances at cellular, tissue, and organ levels contribute to the clinical manifestations, with prominent lysosomal inclusions observed in vascular, cardiac, renal, and neuronal cells. Chronic accumulation of Gb3 represents a state of ongoing toxicity, leading to increased cell turnover, particularly in vascular endothelial cells. AFD-related vascular pathology includes increased renin-angiotensin system activation, endothelial dysfunction, and smooth muscle cell proliferation, resulting in IMT increase. Furthermore, microvascular alterations, such as atypical capillaries observed through NFC, suggest early microvascular involvement. This review aims to unravel the complex interplay between inflammation, oxidative stress, and endothelial dysfunction in AFD, highlighting the potential connections between metabolic disturbances, oxidative stress, inflammation, and fibrosis in vascular and cardiac complications. By exploring novel cardiovascular risk factors and potential diagnostic tools, we can advance our understanding of these mechanisms, which extend beyond sphingolipid accumulation to include other significant contributors to disease pathogenesis. This comprehensive approach can pave the way for innovative therapeutic strategies and improved patient outcomes.
Collapse
Affiliation(s)
| | | | - Ines Paola Monte
- Department of General Surgery and Medical-Surgical Specialties (CHIRMED), University of Catania, Via S. Sofia 78, 95100 Catania, Italy; (D.C.F.); (F.L.D.P.)
| |
Collapse
|
5
|
Zedde M, Romani I, Scaravilli A, Cocozza S, Trojano L, Ragno M, Rifino N, Bersano A, Gerevini S, Pantoni L, Valzania F, Pascarella R. Expanding the Neurological Phenotype of Anderson-Fabry Disease: Proof of Concept for an Extrapyramidal Neurodegenerative Pattern and Comparison with Monogenic Vascular Parkinsonism. Cells 2024; 13:1131. [PMID: 38994983 PMCID: PMC11240674 DOI: 10.3390/cells13131131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Anderson-Fabry disease (AFD) is a genetic sphingolipidosis involving virtually the entire body. Among its manifestation, the involvement of the central and peripheral nervous system is frequent. In recent decades, it has become evident that, besides cerebrovascular damage, a pure neuronal phenotype of AFD exists in the central nervous system, which is supported by clinical, pathological, and neuroimaging data. This neurodegenerative phenotype is often clinically characterized by an extrapyramidal component similar to the one seen in prodromal Parkinson's disease (PD). We analyzed the biological, clinical pathological, and neuroimaging data supporting this phenotype recently proposed in the literature. Moreover, we compared the neurodegenerative PD phenotype of AFD with a classical monogenic vascular disease responsible for vascular parkinsonism and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). A substantial difference in the clinical and neuroimaging features of neurodegenerative and vascular parkinsonism phenotypes emerged, with AFD being potentially responsible for both forms of the extrapyramidal involvement, and CADASIL mainly associated with the vascular subtype. The available studies share some limitations regarding both patients' information and neurological and genetic investigations. Further studies are needed to clarify the potential association between AFD and extrapyramidal manifestations.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| | - Ilaria Romani
- Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, 50139 Firenze, Italy;
| | - Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80133 Napoli, Italy; (A.S.); (S.C.)
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80133 Napoli, Italy; (A.S.); (S.C.)
| | - Luigi Trojano
- Dipartimento di Psicologia, Università della Campania ‘Luigi Vanvitelli’, viale Ellittico 31, 81100 Caserta, Italy;
| | - Michele Ragno
- Centro Medico Salute 23, Via O. Licini 5, 63066 Grottammare (AP), Italy;
| | - Nicola Rifino
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; (N.R.); (A.B.)
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; (N.R.); (A.B.)
| | - Simonetta Gerevini
- Head Diagnostic Dept and Neuroradiology Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy;
| | - Leonardo Pantoni
- Neuroscience Research Center, Department of Biomedical and Clinical Science, University of Milan, 20122 Milano, Italy;
| | - Franco Valzania
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
6
|
De Marco O, Gambardella J, Bianco A, Fiordelisi A, Cerasuolo FA, Buonaiuto A, Avvisato R, Capuano I, Amicone M, Di Risi T, Riccio E, Spinelli L, Pisani A, Iaccarino G, Sorriento D. Cardiopulmonary determinants of reduced exercise tolerance in Fabry disease. Front Cardiovasc Med 2024; 11:1396996. [PMID: 38756750 PMCID: PMC11096481 DOI: 10.3389/fcvm.2024.1396996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Fabry disease (FD), also known as Anderson-Fabry disease, is a hereditary disorder of glycosphingolipid metabolism, caused by a deficiency of the lysosomal alpha-galactosidase A enzyme. This causes a progressive accumulation of glycosphingolipids in tissues and organs which represents the main pathogenetic mechanism of FD. The disease is progressive and multisystemic and is characterized by early symptoms and late complications (renal, cardiac and neurological dysfunction). Fatigue and exercise intolerance are early common symptoms in FD patients but the specific causes are still to be defined. In this narrative review, we deal with the contribution of cardiac and pulmonary dysfunctions in determining fatigue and exercise intolerance in FD patients.
Collapse
Affiliation(s)
- Oriana De Marco
- Department of Public Health, Federico II University, Naples, Italy
| | - Jessica Gambardella
- Centro Interdipartimentale di Ricerca in Ipertensione Arteriosa e Patologie Associate, Federico II University of Naples, Naples, Italy
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Antonio Bianco
- Department of Public Health, Federico II University, Naples, Italy
| | - Antonella Fiordelisi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | | | - Antonietta Buonaiuto
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Roberta Avvisato
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Ivana Capuano
- Department of Public Health, Federico II University, Naples, Italy
| | - Maria Amicone
- Department of Public Health, Federico II University, Naples, Italy
| | - Teodolinda Di Risi
- Department of Public Health, Federico II University, Naples, Italy
- CEINGE - Biotecnologie Avanzate, Naples, Italy
| | - Eleonora Riccio
- Department of Public Health, Federico II University, Naples, Italy
| | - Letizia Spinelli
- Centro Interdipartimentale di Ricerca in Ipertensione Arteriosa e Patologie Associate, Federico II University of Naples, Naples, Italy
| | - Antonio Pisani
- Department of Public Health, Federico II University, Naples, Italy
- Centro Interdipartimentale di Ricerca in Ipertensione Arteriosa e Patologie Associate, Federico II University of Naples, Naples, Italy
| | - Guido Iaccarino
- Centro Interdipartimentale di Ricerca in Ipertensione Arteriosa e Patologie Associate, Federico II University of Naples, Naples, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Daniela Sorriento
- Centro Interdipartimentale di Ricerca in Ipertensione Arteriosa e Patologie Associate, Federico II University of Naples, Naples, Italy
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
7
|
Lund N, Wieboldt H, Fischer L, Muschol N, Braun F, Huber T, Sorriento D, Iaccarino G, Müllerleile K, Tahir E, Adam G, Kirchhof P, Fabritz L, Patten M. Overexpression of VEGFα as a biomarker of endothelial dysfunction in aortic tissue of α-GAL-Tg/KO mice and its upregulation in the serum of patients with Fabry's disease. Front Cardiovasc Med 2024; 11:1355033. [PMID: 38374995 PMCID: PMC10875336 DOI: 10.3389/fcvm.2024.1355033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Fabry's disease is an X-linked lysosomal storage disorder caused by reduced activity of α-galactosidase A (GAL), leading to premature death on account of renal, cardiac, and vascular organ failure. Accumulation of the GAL substrate globotriaosylceramide (Gb3) in endothelial and smooth muscle cells is associated with early vascular cell damage, suggesting endothelial dysfunction as a driver of cardiorenal organ failure. Here, we studied the vascular expression of the key angiogenic factors, VEGFα and its antagonist angiostatin, in Fabry α-GAL-Tg/KO mice and determined circulating VEGFα and angiostatin serum levels in patients with Fabry's disease and healthy controls. Methods Cryopreserved aortic vessels from six α-GAL-Tg/KO and six wild-type (WT) mice were obtained and VEGFα and angiostatin levels were determined by performing Western blot analysis. VEGFα expression was visualized by an immunohistochemical staining of paraffin aortic rings. In addition, VEGFα and angiostatin serum levels were measured by using an enzyme-linked immunosorbent assay in 48 patients with genetically verified Fabry's disease (50% male) and 22 healthy controls and correlated with disease severity markers such as lyso-Gb3, albuminuria, NTproBNP, high-sensitive troponin T (hsTNT), and myocardial wall thickness. Results It was found that there was a significant increase in VEGFα protein expression (1.66 ± 0.35 vs. 0.62 ± 0.16, p = 0.0009) and a decrease in angiostatin expression (0.024 ± 0.007 vs. 0.053 ± 0.02, p = 0.038) in aortic lysates from α-GAL-Tg/KO compared with that from WT mice. Immunohistochemical staining revealed an adventitial VEGFα signal in α-GAL-Tg/KO mice, whereas no VEGFα signal could be detected in WT mice aortas. No differences in aortic angiostatin expression between α-GAL-Tg/KO- and WT mice could be visualized. The serum levels of VEGFα were significantly upregulated in patients with Fabry's disease compared with that in healthy controls (708.5 ± 426.3 vs. 458.5 ± 181.5 pg/ml, p = 0.048) and positively associated with albuminuria (r = 0.82, p < 0.0001) and elevated NTproBNP (r = 0.87, p < 0.0001) and hsTNT values (r = 0.41, p = 0.048) in male patients with Fabry's disease. For angiostatin, no significant difference was found between patients with Fabry's disease and healthy controls (747.6 ± 390.3 vs. 858.8 ± 599.3 pg/ml). Discussion In conclusion, an overexpression of VEGFα and downregulation of its counter player angiostatin in aortic tissue of α-GAL-Tg/KO mice support the hypothesis of an underlying vasculopathy in Fabry's disease. Elevated VEGFα serum levels were also observed in patients with Fabry's disease and were positively associated with elevated markers of organ manifestation in males. These findings suggest that angiogenetic markers, such as VEGFα, may be potentially useful biomarkers for the detection of endothelial dysfunction in classical Fabry's disease.
Collapse
Affiliation(s)
- N. Lund
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Intensive Care Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - H. Wieboldt
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L. Fischer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - N. Muschol
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - F. Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - D. Sorriento
- Department of Advanced Biomedical Sciences, Interdepartmental Center of Research on Hypertension and Related Conditions of the Federico II University, Naples, Italy
| | - G. Iaccarino
- Department of Clinical Medicine and Surgery, Interdepartmental Center of Research on Hypertension and Related Conditions of the Federico II University, Naples, Italy
| | - K. Müllerleile
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E. Tahir
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - G. Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P. Kirchhof
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L. Fabritz
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M. Patten
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Delaleu N, Marti HP, Strauss P, Sekulic M, Osman T, Tøndel C, Skrunes R, Leh S, Svarstad E, Nowak A, Gaspert A, Rusu E, Kwee I, Rinaldi A, Flatberg A, Eikrem O. Systems analyses of the Fabry kidney transcriptome and its response to enzyme replacement therapy identified and cross-validated enzyme replacement therapy-resistant targets amenable to drug repurposing. Kidney Int 2023; 104:803-819. [PMID: 37419447 DOI: 10.1016/j.kint.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
Fabry disease is a rare disorder caused by variations in the alpha-galactosidase gene. To a degree, Fabry disease is manageable via enzyme replacement therapy (ERT). By understanding the molecular basis of Fabry nephropathy (FN) and ERT's long-term impact, here we aimed to provide a framework for selection of potential disease biomarkers and drug targets. We obtained biopsies from eight control individuals and two independent FN cohorts comprising 16 individuals taken prior to and after up to ten years of ERT, and performed RNAseq analysis. Combining pathway-centered analyses with network-science allowed computation of transcriptional landscapes from four nephron compartments and their integration with existing proteome and drug-target interactome data. Comparing these transcriptional landscapes revealed high inter-cohort heterogeneity. Kidney compartment transcriptional landscapes comprehensively reflected differences in FN cohort characteristics. With exception of a few aspects, in particular arteries, early ERT in patients with classical Fabry could lastingly revert FN gene expression patterns to closely match that of control individuals. Pathways nonetheless consistently altered in both FN cohorts pre-ERT were mostly in glomeruli and arteries and related to the same biological themes. While keratinization-related processes in glomeruli were sensitive to ERT, a majority of alterations, such as transporter activity and responses to stimuli, remained dysregulated or reemerged despite ERT. Inferring an ERT-resistant genetic module of expressed genes identified 69 drugs for potential repurposing matching the proteins encoded by 12 genes. Thus, we identified and cross-validated ERT-resistant gene product modules that, when leveraged with external data, allowed estimating their suitability as biomarkers to potentially track disease course or treatment efficacy and potential targets for adjunct pharmaceutical treatment.
Collapse
Affiliation(s)
- Nicolas Delaleu
- 2cSysBioMed, Contra, Switzerland; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Philipp Strauss
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Tarig Osman
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Rannveig Skrunes
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Einar Svarstad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Albina Nowak
- Department of Endocrinology and Clinical Nutrition, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Ariana Gaspert
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Elena Rusu
- Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania; Department of Nephrology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ivo Kwee
- BigOmics Analytics, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Arnar Flatberg
- Central Administration, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
9
|
Rekova P, Dostalova G, Rob D, Vaneckova M, Pavlicova M, Linhart A, Kemlink D. Cerebrovascular Phenotype in Fabry Disease Patients Assessed by Ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2315-2330. [PMID: 37209359 DOI: 10.1002/jum.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/01/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVES Fabry disease (FD) is a rare X-linked lysosomal storage disorder with variable phenotypes, including neurological symptoms. These can be influenced by vascular impairment. Extracranial and transcranial vascular sonography is an effective and noninvasive method for measuring arterial structures and blood flow. The study aims to investigate cerebrovascular phenotype characteristics in FD patients compared to controls using neurosonology. METHODS This is a single-center, cross-sectional study of 130 subjects-65 patients (38 females), with genetically confirmed FD, and 65 sex- and age-matched controls. Using ultrasonography, we measured structural and hemodynamic parameters, including distal common carotid artery intima-media thickness, inner vertebral artery diameter, resting blood flow velocity, pulsatility index, and cerebral vasoreactivity (CVR) in the middle cerebral artery. To assess differences between FD and controls and to identify factors influencing investigated outcomes, unadjusted and adjusted regression analyses were performed. RESULTS In comparison to sex- and age-matched controls, FD patients displayed significantly increased carotid artery intima-media thickness (observed FD 0.69 ± 0.13 mm versus controls 0.63 ± 0.12 mm; Padj = .0014), vertebral artery diameter (observed FD 3.59 ± 0.35 mm versus controls 3.38 ± 0.33 mm; Padj = .0002), middle cerebral artery pulsatility index (observed FD 0.98 ± 0.19 versus controls 0.87 ± 0.11; Padj < .0001), and significantly decreased CVR (observed FD 1.21 ± 0.49 versus controls 1.35 ± 0.38; Padj = .0409), when adjusted by age, BMI, and sex. Additionally, FD patients had significantly more variable CVR (0.48 ± 0.25 versus 0.21 ± 0.14; Padj < .0001). CONCLUSIONS Our results suggest the presence of multiple vascular abnormalities and changes in hemodynamic parameters of cerebral arteries in patients with FD.
Collapse
Affiliation(s)
- Petra Rekova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Gabriela Dostalova
- Second Department of Internal-Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Daniel Rob
- Second Department of Internal-Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martina Pavlicova
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York, USA
| | - Ales Linhart
- Second Department of Internal-Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - David Kemlink
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
10
|
Turkmen K, Baloglu I, Aykut T, Demir S, Altın E, Akguzel ZA, Kocabas M, Yerlikaya FH. The Relationship between Serum TWEAK Levels and Carotid Intima-media Thickness in Patients with Fabry Disease. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2023; 34:406-415. [PMID: 38995299 DOI: 10.4103/1319-2442.397202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Fabry disease (FD) is associated with inflammation, proteinuria, and chronic kidney disease. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) plays an important role in inflammation in diabetic nephropathy and lupus nephritis. Since there is a close relationship linking serum TWEAK (sTWEAK), inflammation, and carotid intima-media thickness (CIMT) in various kidney diseases, we aimed to determine the relationship between sTWEAK levels and CIMT in subjects with and without proteinuria in a cross-sectional study involving 15 FD patients (seven females, eight males) and seven healthy controls (four females, three males). There were no differences in age, sex, estimated glomerular filtration rate, and biochemical parameters (serum glucose, albumin, creatinine, uric acid, C-reactive protein (CRP), low-density lipoprotein, and high-density lipoprotein) between FD patients and healthy controls. The spot urine protein-creatinine ratios of healthy controls and FD patients were 90 mg/g and 185 mg/g, respectively (P = 0.022). STWEAK levels were higher in FD patients than in healthy controls (P = 0.007). The CIMT of FD patients and healthy controls was 0.55 ± 0.14 mm and 0.42 ± 0.04 mm, respectively (P = 0.007). STWEAK was positively correlated with CRP and CIMT, and negatively with proteinuria (P = 0.005, P = 0.013, and P = 0.018, respectively). In the multivariate analysis, only sTWEAK was an independent variable of increased CIMT. We demonstrated that sTWEAK and CIMT were increased in FD patients. STWEAK might have a role in the pathogenesis of subclinical atherosclerosis in FD.
Collapse
Affiliation(s)
- Kultigin Turkmen
- Department of Internal Medicine, Division of Nephrology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Baloglu
- Department of Internal Medicine, Division of Nephrology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Talat Aykut
- Department of Internal Medicine, Division of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Salih Demir
- Department of Internal Medicine, Division of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ebru Altın
- Department of Internal Medicine, Division of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Zeynep Aybike Akguzel
- Department of Internal Medicine, Division of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Muhammet Kocabas
- Department of Internal Medicine, Division of Endocrinology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Fatma Humeyra Yerlikaya
- Department of Biochemistry, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| |
Collapse
|
11
|
Rabino M, Sommariva E, Zacchigna S, Pompilio G. From bedside to the bench: patient-specific hiPSC-EC models uncover endothelial dysfunction in genetic cardiomyopathies. Front Physiol 2023; 14:1237101. [PMID: 37538375 PMCID: PMC10394630 DOI: 10.3389/fphys.2023.1237101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
Genetic cardiomyopathies are a group of inherited disorders in which myocardial structure and function are damaged. Many of these pathologies are rare and present with heterogenous phenotypes, thus personalized models are required to completely uncover their pathological mechanisms and develop valuable therapeutic strategies. Both cardiomyocytes and fibroblasts, differentiated from patient-specific human induced pluripotent stem cells, represent the most studied human cardiac cell models in the context of genetic cardiomyopathies. While endothelial dysfunction has been recognized as a possible pathogenetic mechanism, human induced pluripotent stem cell-derived endothelial cells are less studied, despite they constitute a suitable model to specifically dissect the role of the dysfunctional endothelium in the development and progression of these pathologies. In this review, we summarize the main studies in which human induced pluripotent stem cell-derived endothelial cells are used to investigate endothelial dysfunction in genetic-based cardiomyopathies to highlight new potential targets exploitable for therapeutic intervention, and we discuss novel perspectives that encourage research in this direction.
Collapse
Affiliation(s)
- Martina Rabino
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
| | - Serena Zacchigna
- Unit of Cardio-Oncology, Centro Cardiologico Monzino—IRCCS, Milan, Italy
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Choi JB, Seol DW, Do HS, Yang HY, Kim TM, Byun YG, Park JM, Choi J, Hong SP, Chung WS, Suh JM, Koh GY, Lee BH, Wee G, Han YM. Fasudil alleviates the vascular endothelial dysfunction and several phenotypes of Fabry disease. Mol Ther 2023; 31:1002-1016. [PMID: 36755495 PMCID: PMC10124081 DOI: 10.1016/j.ymthe.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Fabry disease (FD), a lysosomal storage disorder, is caused by defective α-galactosidase (GLA) activity, which results in the accumulation of globotriaosylceramide (Gb3) in endothelial cells and leads to life-threatening complications such as left ventricular hypertrophy (LVH), renal failure, and stroke. Enzyme replacement therapy (ERT) results in Gb3 clearance; however, because of a short half-life in the body and the high immunogenicity of FD patients, ERT has a limited therapeutic effect, particularly in patients with late-onset disease or progressive complications. Because vascular endothelial cells (VECs) derived from FD-induced pluripotent stem cells display increased thrombospondin-1 (TSP1) expression and enhanced SMAD2 signaling, we screened for chemical compounds that could downregulate TSP1 and SMAD2 signaling. Fasudil reduced the levels of p-SMAD2 and TSP1 in FD-VECs and increased the expression of angiogenic factors. Furthermore, fasudil downregulated the endothelial-to-mesenchymal transition (EndMT) and mitochondrial function of FD-VECs. Oral administration of fasudil to FD mice alleviated several FD phenotypes, including LVH, renal fibrosis, anhidrosis, and heat insensitivity. Our findings demonstrate that fasudil is a novel candidate for FD therapy.
Collapse
Affiliation(s)
- Jong Bin Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Dong-Won Seol
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Hyo-Sang Do
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hee-Young Yang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Taek-Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | | | - Jae-Min Park
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Jinhyuk Choi
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Gabbine Wee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea.
| | - Yong-Mahn Han
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
13
|
Stauffer BB, Yu C. Plasma Lysosphingolipid Biomarker Measurement by Liquid Chromatography Tandem Mass Spectrometry. Methods Mol Biol 2022; 2546:271-284. [PMID: 36127597 DOI: 10.1007/978-1-0716-2565-1_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Plasma lysosphingolipids are highly elevated in patients with Gaucher, Krabbe, Fabry, and Niemann-Pick diseases and tend to accumulate to a greater extent than their respective primary sphingolipids in the plasma of affected patients. In this chapter, we describe two liquid chromatography tandem mass spectrometry (LC-MS/MS) methods to measure plasma concentrations of four lysosphingolipids species. The first method described measures glucosylsphingosine (lyso-GL1) and galactosylsphingosine (psychosine), biomarkers that accumulate in Gaucher and Krabbe diseases, respectively. The second method measures globotriaosylsphingosine (lyso-Gb3) and sphingosylphosphorylcholine (lyso-SPM), biomarkers for Fabry and Niemann-Pick diseases, respectively. Each method utilizes isotope-labeled internal standards and multipoint calibration curves to quantify the analytes of interest. Briefly, plasma samples are mixed with five volumes of LC-MS grade methanol containing internal standard, and protein is removed via centrifugation. Supernatant is dried and resuspended in initial mobile phase. Samples are separated by liquid chromatography using either a BEH amide column (lyso-GL1 + psychosine) or a C18 column (lyso-Gb3 + lyso-SPM). Protonated analytes are measured by selected reaction monitoring (SRM) in positive electrospray ionization mode. Using these methods, we have observed elevations of these lyso- species in Gaucher, Fabry, and Niemann-Pick and successfully distinguished different subtypes reflecting the disease severity.
Collapse
Affiliation(s)
| | - Chunli Yu
- Sema4, Stamford, CT, USA. .,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Consequences of excessive glucosylsphingosine in glucocerebrosidase-deficient zebrafish. J Lipid Res 2022; 63:100199. [PMID: 35315333 PMCID: PMC9058576 DOI: 10.1016/j.jlr.2022.100199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022] Open
Abstract
In Gaucher disease (GD), the deficiency of glucocerebrosidase causes lysosomal accumulation of glucosylceramide (GlcCer), which is partly converted by acid ceramidase to glucosylsphingosine (GlcSph) in the lysosome. Chronically elevated blood and tissue GlcSph is thought to contribute to symptoms in GD patients as well as to increased risk for Parkinson’s disease. On the other hand, formation of GlcSph may be beneficial since the water soluble sphingoid base is excreted via urine and bile. To study the role of excessive GlcSph formation during glucocerebrosidase deficiency, we studied zebrafish that have two orthologs of acid ceramidase, Asah1a and Asah1b. Only the latter is involved in the formation of GlcSph in glucocerebrosidase-deficient zebrafish as revealed by knockouts of Asah1a or Asah1b with glucocerebrosidase deficiency (either pharmacologically induced or genetic). Comparison of zebrafish with excessive GlcSph (gba1-/- fish) and without GlcSph (gba1-/-:asah1b-/- fish) allowed us to study the consequences of chronic high levels of GlcSph. Prevention of excessive GlcSph in gba1-/-:asah1b-/- fish did not restrict storage cells, GlcCer accumulation, or neuroinflammation. However, GD fish lacking excessive GlcSph show an ameliorated course of disease reflected by significantly increased lifespan, delayed locomotor abnormality, and delayed development of an abnormal curved back posture. The loss of tyrosine hydroxylase 1 (th1) mRNA, a marker of dopaminergic neurons, is slowed down in brain of GD fish lacking excessive GlcSph. In conclusion, in the zebrafish GD model, excess GlcSph has little impact on (neuro)inflammation or the presence of GlcCer-laden macrophages but rather seems harmful to th1-positive dopaminergic neurons.
Collapse
|
15
|
Kanack AJ, Aoki K, Tiemeyer M, Dahms NM. Platelet and myeloid cell phenotypes in a rat model of Fabry disease. FASEB J 2021; 35:e21818. [PMID: 34320241 DOI: 10.1096/fj.202001727rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/11/2022]
Abstract
Fabry disease results from a deficiency of the lysosomal enzyme ⍺-Galactosidase-A (⍺-Gal A) and is estimated to occur in approximately 1:4100 live births. Characteristic of the disease is the accumulation of α-Gal-A substrates, primarily the glycosphingolipids (GSLs) globotriaosylceramide and globotriaosylsphingosine. Thrombotic events are a significant concern for Fabry patients, with strokes contributing to a significant decrease in overall lifespan. Currently, the mechanisms underlying the increased risk of thrombotic events experienced by Fabry patients are incompletely defined. Using a rat model of Fabry disease, we provide an improved understanding of the mechanisms linking GSL accumulation to thrombotic risk. We found that ⍺-Gal A-deficient rats accumulate myeloid-derived leukocytes at sites of GSL accumulation, including in the bone marrow and circulation, and that myeloid-derived leukocyte and megakaryocyte populations were prominent among cell types that accumulated GSLs. In the circulation, ⍺-Gal A-deficient rats had increases in cytokine-producing cell types and a corresponding elevation of pro-inflammatory cytokines. Lastly, circulating platelets from ⍺-Gal A-deficient rats accumulated a similar set of ⍺-Galactosidase-A substrates as was observed in megakaryocytes in the bone marrow, and exhibited increased platelet binding to fibrinogen in microfluidic and flow cytometric assays.
Collapse
Affiliation(s)
- Adam J Kanack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
16
|
Viggiano E, Politano L. X Chromosome Inactivation in Carriers of Fabry Disease: Review and Meta-Analysis. Int J Mol Sci 2021; 22:ijms22147663. [PMID: 34299283 PMCID: PMC8304911 DOI: 10.3390/ijms22147663] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Anderson-Fabry disease is an X-linked inborn error of glycosphingolipid catabolism caused by a deficiency of α-galactosidase A. The incidence ranges between 1: 40,000 and 1:117,000 of live male births. In Italy, an estimate of incidence is available only for the north-western Italy, where it is of approximately 1:4000. Clinical symptoms include angiokeratomas, corneal dystrophy, and neurological, cardiac and kidney involvement. The prevalence of symptomatic female carriers is about 70%, and in some cases, they can exhibit a severe phenotype. Previous studies suggest a correlation between skewed X chromosome inactivation and symptoms in carriers of X-linked disease, including Fabry disease. In this review, we briefly summarize the disease, focusing on the clinical symptoms of carriers and analysis of the studies so far published in regards to X chromosome inactivation pattern, and manifesting Fabry carriers. Out of 151 records identified, only five reported the correlation between the analysis of XCI in leukocytes and the related phenotype in Fabry carriers, in particular evaluating the Mainz Severity Score Index or cardiac involvement. The meta-analysis did not show any correlation between MSSI or cardiac involvement and skewed XCI, likely because the analysis of XCI in leukocytes is not useful for predicting the phenotype in Fabry carriers.
Collapse
Affiliation(s)
- Emanuela Viggiano
- Department of Prevention, UOC Hygiene Service and Public Health, ASL Roma 2, 00142 Rome, Italy
- Correspondence: (E.V.); (L.P.)
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, Luigi Vanvitelli University, 80138 Naples, Italy
- Correspondence: (E.V.); (L.P.)
| |
Collapse
|
17
|
Carnicer-Cáceres C, Arranz-Amo JA, Cea-Arestin C, Camprodon-Gomez M, Moreno-Martinez D, Lucas-Del-Pozo S, Moltó-Abad M, Tigri-Santiña A, Agraz-Pamplona I, Rodriguez-Palomares JF, Hernández-Vara J, Armengol-Bellapart M, del-Toro-Riera M, Pintos-Morell G. Biomarkers in Fabry Disease. Implications for Clinical Diagnosis and Follow-up. J Clin Med 2021; 10:jcm10081664. [PMID: 33924567 PMCID: PMC8068937 DOI: 10.3390/jcm10081664] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder caused by deficient alpha-galactosidase A activity in the lysosome due to mutations in the GLA gene, resulting in gradual accumulation of globotriaosylceramide and other derivatives in different tissues. Substrate accumulation promotes different pathogenic mechanisms in which several mediators could be implicated, inducing multiorgan lesions, mainly in the kidney, heart and nervous system, resulting in clinical manifestations of the disease. Enzyme replacement therapy was shown to delay disease progression, mainly if initiated early. However, a diagnosis in the early stages represents a clinical challenge, especially in patients with a non-classic phenotype, which prompts the search for biomarkers that help detect and predict the evolution of the disease. We have reviewed the mediators involved in different pathogenic mechanisms that were studied as potential biomarkers and can be easily incorporated into clinical practice. Some accumulation biomarkers seem to be useful to detect non-classic forms of the disease and could even improve diagnosis of female patients. The combination of such biomarkers with some response biomarkers, may be useful for early detection of organ injury. The incorporation of some biomarkers into clinical practice may increase the capacity of detection compared to that currently obtained with the established diagnostic markers and provide more information on the progression and prognosis of the disease.
Collapse
Affiliation(s)
- Clara Carnicer-Cáceres
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (J.A.A.-A.); (C.C.-A.)
- Correspondence:
| | - Jose Antonio Arranz-Amo
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (J.A.A.-A.); (C.C.-A.)
| | - Cristina Cea-Arestin
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (J.A.A.-A.); (C.C.-A.)
| | - Maria Camprodon-Gomez
- Department of Internal Medicine, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (M.C.-G.); (D.M.-M.)
- Unit of Hereditary Metabolic Disorders, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.-S.); (M.d.-T.-R.); (G.P.-M.)
| | - David Moreno-Martinez
- Department of Internal Medicine, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (M.C.-G.); (D.M.-M.)
- Unit of Hereditary Metabolic Disorders, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.-S.); (M.d.-T.-R.); (G.P.-M.)
- Lysosomal Storage Disorders Unit, Royal Free Hospital NHS Foundation Trust and University College London, London WC1E 6BT, UK
| | - Sara Lucas-Del-Pozo
- Neurodegenerative Diseases Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.L.-D.-P.); (J.H.-V.); (M.A.-B.)
- Department of Neurology, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Marc Moltó-Abad
- Functional Validation & Preclinical Research, Drug Delivery & Targeting Group, CIBIM-Nanomedicine, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
| | - Ariadna Tigri-Santiña
- Unit of Hereditary Metabolic Disorders, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.-S.); (M.d.-T.-R.); (G.P.-M.)
| | - Irene Agraz-Pamplona
- Department of Nephrology, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Jose F Rodriguez-Palomares
- Department of Cardiology, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Jorge Hernández-Vara
- Neurodegenerative Diseases Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.L.-D.-P.); (J.H.-V.); (M.A.-B.)
- Department of Neurology, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Mar Armengol-Bellapart
- Neurodegenerative Diseases Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.L.-D.-P.); (J.H.-V.); (M.A.-B.)
- Department of Neurology, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Mireia del-Toro-Riera
- Unit of Hereditary Metabolic Disorders, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.-S.); (M.d.-T.-R.); (G.P.-M.)
- Department of Pediatric Neurology, Unit of Hereditary Metabolic Disorders, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - Guillem Pintos-Morell
- Unit of Hereditary Metabolic Disorders, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.-S.); (M.d.-T.-R.); (G.P.-M.)
- Functional Validation & Preclinical Research, Drug Delivery & Targeting Group, CIBIM-Nanomedicine, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
| |
Collapse
|
18
|
Reversal of the Inflammatory Responses in Fabry Patient iPSC-Derived Cardiovascular Endothelial Cells by CRISPR/Cas9-Corrected Mutation. Int J Mol Sci 2021; 22:ijms22052381. [PMID: 33673551 PMCID: PMC7956852 DOI: 10.3390/ijms22052381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
The late-onset type of Fabry disease (FD) with GLA IVS4 + 919G > A mutation has been shown to lead to cardiovascular dysfunctions. In order to eliminate variations in other aspects of the genetic background, we established the isogenic control of induced pluripotent stem cells (iPSCs) for the identification of the pathogenetic factors for FD phenotypes through CRISPR/Cas9 genomic editing. We adopted droplet digital PCR (ddPCR) to efficiently capture mutational events, thus enabling isolation of the corrected FD from FD-iPSCs. Both of these exhibited the characteristics of pluripotency and phenotypic plasticity, and they can be differentiated into endothelial cells (ECs). We demonstrated the phenotypic abnormalities in FD iPSC-derived ECs (FD-ECs), including intracellular Gb3 accumulation, autophagic flux impairment, and reactive oxygen species (ROS) production, and these abnormalities were rescued in isogenic control iPSC-derived ECs (corrected FD-ECs). Microarray profiling revealed that corrected FD-derived endothelial cells reversed the enrichment of genes in the pro-inflammatory pathway and validated the downregulation of NF-κB and the MAPK signaling pathway. Our findings highlighted the critical role of ECs in FD-associated vascular dysfunctions by establishing a reliable isogenic control and providing information on potential cellular targets to reduce the morbidity and mortality of FD patients with vascular complications.
Collapse
|
19
|
The Cardiovascular Phenotype in Fabry Disease: New Findings in the Research Field. Int J Mol Sci 2021; 22:ijms22031331. [PMID: 33572752 PMCID: PMC7865937 DOI: 10.3390/ijms22031331] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder, depending on defects in alpha-galactosidase A (GAL) activity. At the clinical level, FD shows a high phenotype variability. Among them, cardiovascular dysfunction is often recurrent or, in some cases, is the sole symptom (cardiac variant) representing the leading cause of death in Fabry patients. The existing therapies, besides specific symptomatic treatments, are mainly based on the restoration of GAL activity. Indeed, mutations of the galactosidase alpha gene (GLA) cause a reduction or lack of GAL activity leading to globotriaosylceramide (Gb3) accumulation in several organs. However, several other mechanisms are involved in FD’s development and progression that could become useful targets for therapeutics. This review discusses FD’s cardiovascular phenotype and the last findings on molecular mechanisms that accelerate cardiac cell damage.
Collapse
|
20
|
Vujkovac AC, Vujkovac B, Novaković S, Števanec M, Šabovič M. Characteristics of Vascular Phenotype in Fabry Patients. Angiology 2020; 72:426-433. [PMID: 33342225 DOI: 10.1177/0003319720981521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fabry disease is a rare X-linked lysosomal disorder. Alpha-galactosidase A deficiency caused by mutation leads to accumulation of glycosphingolipids predominantly in endothelial cells, leading to impairment of vascular wall morphology and function. We assessed vascular wall hypertrophy (carotid artery intima-media thickness, cIMT), endothelial function (brachial artery flow-mediated dilation, FMD), presence of atherosclerotic plaques in the carotid and femoral arteries, and levels of endothelial adhesion and inflammatory biomarkers in 33 Fabry patients compared with 66 healthy matched controls. Fabry patients had thicker cIMT (0.07 ± 0.02 vs 0.06 ± 0.02 cm; P = .021), as well as dilated common carotid arteries (0.80 ± 0.12 vs 0.70 ± 0.06 cm; P < .001), and aortic annulus than controls (3.07 ± 0.48 vs 2.7 ± 0.48 cm; P = .001). Flow-mediated dilation was reduced (4.48 ± 8.80 vs 10.67 ± 8.72%; P = .001) and atherosclerotic plaques were less present in Fabry patients (9.10% vs 43.94%; P < .001). Vascular cell adhesion molecule-1, interleukin-6, tumor necrosis factor α, and high-sensitivity CRP were significantly higher and E-selectin lower in Fabry patients. Our results suggest that a complex vascular phenotype is present in Fabry patients. This represents a challenge for further research that could have important clinical applications.
Collapse
Affiliation(s)
- Andreja Cokan Vujkovac
- Department of Internal Medicine, 37672General Hospital Slovenj Gradec, Slovenj Gradec, Slovenia
| | - Bojan Vujkovac
- Department of Internal Medicine, 37672General Hospital Slovenj Gradec, Slovenj Gradec, Slovenia
| | - Srdjan Novaković
- Department of Molecular Diagnostics, 68196Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Milan Števanec
- Institute of Anatomy, 37664Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mišo Šabovič
- Department of Vascular Diseases, 37663University of Ljubljana Medical Center, Ljubljana, Slovenia
| |
Collapse
|
21
|
Effects of agalsidase-β administration on vascular function and blood pressure in familial Anderson-Fabry disease. Eur J Hum Genet 2020; 29:218-224. [PMID: 32948848 DOI: 10.1038/s41431-020-00721-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/03/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Fabry is an X-linked disorder of glycosphingolipid metabolism that is caused by variants of the GLA gene that codes for α-galactosidase A, leading to lysosomal accumulation of globotriaosylceramide in many cell types. As a result, affected patients manifest with an increased risk of developing ischemic stroke, peripheral neuropathy, cardiac dysfunction, and chronic kidney disease. The protective effects of enzyme replacement therapy (ERT), the milestone in Fabry disease treatment, against globotriaosylceramide (GL-3) accumulation and Fabry disease progression are well known. However, the mechanism of action of ERT is not well understood. Since GL-3 also accumulates in the vascular endothelium, we investigated the effects of agalsidase-β, a recombinant human α-Gal enzyme approved for the treatment of Fabry disease. In this study, vascular function and blood pressure in four adult siblings affected by Fabry disease were evaluated upon agalsidase-β. In all patients, agalsidase-β infusion improves flow-mediated dilation and augmentation index. These changes occurred after the first infusion and were then maintained for the whole period of observation, i.e., 1 year, with more pronounced additional increments in flow-mediated dilation after the second agalsidase-β infusion. Blood pressure was also maintained at optimal levels in all of the patients for the whole period of observation. Our findings show that agalsidase-β administration can improve vascular function in patients suffering from Fabry disease. Changes in flow-mediated dilation and augmentation index persisted for the whole period of observation (1 year), thus suggesting that early substitutive therapy should be promoted in order to protect the cardiovascular system.
Collapse
|
22
|
Forstenpointner J, Moeller P, Sendel M, Reimer M, Hüllemann P, Baron R. Stratification of patients with unclassified pain in the FabryScan database. J Pain Res 2019; 12:2223-2230. [PMID: 31413620 PMCID: PMC6662527 DOI: 10.2147/jpr.s206223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/22/2019] [Indexed: 01/29/2023] Open
Abstract
Purpose Fabry disease belongs to lysosomal storage disorders and can be successfully treated today. On the contrary, the correct diagnostic classification of its symptoms can be challenging and most patients suffer from pain for years, until they are diagnosed correctly. The aim of this project was to characterize patients with unclassified extremity pain and to present a simple algorithm for a retrospective stratification approach. Patients and methods The FabryScan includes a bedside-test and a questionnaire, consisting of 10 symptom-orientated and anamnestic questions. For the stratification of patients according to the likelihood for Fabry disease two different approaches were conducted. First, a prospective subgrouping based on the previously invented FabryScan evaluation system was conducted. The second retrospective approach consisted of a factor analysis and a subsequent two-way cluster analysis. Further on, 4 patients diagnosed with Fabry disease were stratified according to both approaches. Results In total, 183 completed datasets were included in the statistical analysis. The first approach prospectively classified patients into 3 subgroups (n=40 [likely], n=96 [possible], n=47 [unlikely]) according to the FabryScan evaluation system. The second approach retrospectively stratified patients into 3 subgroups (n=47 [cluster 1], n=95 [cluster 2], n=41 [cluster 3]). Finally, the Fabry patients were sorted to the subgroups, indicative for the highest possibility of Fabry disease in both stratification approaches A and B. Conclusion Both stratification approaches sorted patients with confirmed Fabry disease to the subgroups, indicative for the highest likelihood for Fabry. These results indicate validity of the initially selected FabryScan outcome parameters.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Paul Moeller
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Maren Reimer
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Philipp Hüllemann
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
23
|
Germain DP, Arad M, Burlina A, Elliott PM, Falissard B, Feldt-Rasmussen U, Hilz MJ, Hughes DA, Ortiz A, Wanner C, Weidemann F, Spada M. The effect of enzyme replacement therapy on clinical outcomes in female patients with Fabry disease - A systematic literature review by a European panel of experts. Mol Genet Metab 2019; 126:224-235. [PMID: 30413388 DOI: 10.1016/j.ymgme.2018.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Heterozygous females with Fabry disease have a wide range of clinical phenotypes depending on the nature of their mutation and their X-chromosome inactivation pattern; it is therefore important to examine outcomes of enzyme replacement therapy (ERT) in the female patient population specifically. This paper presents the findings of a systematic literature review of treatment outcomes with ERT in adult female patients. METHODS A comprehensive systematic literature review was conducted through January 2017 to retrieve published papers with original data on ERT in the treatment of Fabry disease. The review included all original articles that presented ERT outcomes data on patients with Fabry disease, irrespective of the study type. RESULTS Clinical evidence for the efficacy of ERT in female patients was available from 67 publications including six clinical trial publications, and indicates significant reductions in plasma and urine globotriaosylceramide (GL-3) accumulation (in female patients with elevated pre-treatment levels) and improvements in cardiac parameters and quality of life (QoL). To date, data are insufficient to conclude on the effects of ERT on the nervous system, gastrointestinal manifestations, and pain in female patients with Fabry disease. CONCLUSIONS This review of available literature data demonstrates that ERT in adult female patients with Fabry disease has a beneficial effect on GL-3 levels and cardiac outcomes. The current evidence also suggests that ERT may improve QoL in this patient population, though further studies are needed to examine these results.
Collapse
Affiliation(s)
- Dominique P Germain
- French Referral Center for Fabry disease, Division of Medical Genetics and INSERM U1179, University of Versailles, Paris-Saclay University, Montigny, France.
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, and Tel Aviv University, Israel
| | | | - Perry M Elliott
- University College London and Barts Heart Centre, London, United Kingdom
| | - Bruno Falissard
- INSERM U1018, University of Paris-Sud, University of Paris-Descartes, Paris, France
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology, Section 2132, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Max J Hilz
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Derralynn A Hughes
- Lysosomal Storage Disorders Unit, Department of Haematology, Royal Free London NHS Foundation Trust and University College London, United Kingdom
| | - Alberto Ortiz
- Unidad de Diálisis, IIS-Fundación Jiménez Díaz/UAM, IRSIN and REDINREN, Madrid, Spain
| | - Christoph Wanner
- Division of Nephrology, University Clinic, University of Würzburg, Würzburg, Germany
| | - Frank Weidemann
- Department of Cardiology, Innere Klinik II, Katharinen-Hospital, Unna, Germany
| | - Marco Spada
- Department of Paediatrics, University of Torino, Torino, Italy
| |
Collapse
|
24
|
Matanes F, Twal WO, Hammad SM. Sphingolipids as Biomarkers of Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:109-138. [DOI: 10.1007/978-3-030-21162-2_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Katsuta H, Tsuboi K, Yamamoto H, Goto H. Correlations Between Serum Cholesterol and Vascular Lesions in Fabry Disease Patients. Circ J 2018; 82:3058-3063. [PMID: 30282881 DOI: 10.1253/circj.cj-18-0378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Fabry disease is an X-linked lysosomal storage disorder and shows globotriosylceramide (Gb3) accumulation in multiple organs, resulting from a deficiency of α-galactosidase. In patients with Fabry disease, cardiovascular disease occurs at an early age. Previous studies have shown that serum levels of high-density lipoprotein-cholesterol (HDL-C) increase in this disease, yet its clinical significance for cardiovascular disease remains unclear. Methods and Results: In order to determine why the serum HDL-cholesterol is high in various cardiovascular diseases of Fabry disease patients, we evaluated the serum lipid profiles, ocular vascular lesions, and levels of serum vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 in 69 patients with Fabry disease diagnosed by genetic examination. The serum HDL-C/total cholesterol (T-Chol) ratio was significantly high, especially in male patients (41.5±1.7%) regardless of body mass index. Ocular vascular lesions were more likely to occur in female patients with a high HDL-C/T-Chol ratio compared with most male patients. Female patients with a high HDL-C/T-Chol ratio also presented a high serum VEGF level, suggesting that vascular endothelium dysfunction and arteriosclerotic changes progress more severely than in patients with a normal HDL-C/T-Chol ratio. In most patients, enzyme replacement therapy improved serum Gb3 and lyso-Gb3 levels, but these Gb3 and lyso-Gb3 still remained higher than in healthy controls, which appears to result in continuous vascular arteriosclerotic changes. CONCLUSIONS We concluded that increased low-density lipoprotein-cholesterol uptake to the vascular wall caused by endothelial dysfunction is likely to contribute to the high HDL-C/T-Chol ratio observed in Fabry disease patients.
Collapse
|
26
|
Loso J, Lund N, Avanesov M, Muschol N, Lezius S, Cordts K, Schwedhelm E, Patten M. Serum Biomarkers of Endothelial Dysfunction in Fabry Associated Cardiomyopathy. Front Cardiovasc Med 2018; 5:108. [PMID: 30159316 PMCID: PMC6104487 DOI: 10.3389/fcvm.2018.00108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Fabry disease (FD) is characterized by early development of vasculopathy and endothelial dysfunction. However, it is unclear whether these findings also play a pivotal role in cardiac manifestation. As Fabry cardiomyopathy (FC) is the leading cause of death in FD, we aimed to gather a better insight in pathological mechanisms of the disease. Methods: Serum samples were obtained from 17 healthy controls, 15 FD patients with and 7 without FC. FC was defined by LV wall thickening of >12 mm in cardiac magnetic resonance imaging and serum level of proBNP, high sensitive Troponin T (hsT), and globotriaosylsphingosine (lyso-GB3) were obtained. A multiplex ELISA-Assay for 23 different angiogenesis markers was performed in pooled samples. Markers showing significant differences among groups were further analyzed in single samples using specific Elisa antibody assays. L-homoarginine (hArg), L-arginine, asymmetric (ADMA), and symmetric Dimethylarginine (SDMA) were quantified by liquid chromatography—mass spectrometry. Results: Angiostatin and matrix metalloproteinase 9 (MMP-9) were elevated in FD patients compared to controls independently of the presence of FC (angiostatin: 98 ± 25 vs. 75 ± 15 ng/mL; p = 0.001; MMP-9: 8.0 ± 3.4 vs. 5.0 ± 2.4 μg/mL; p = 0.002). SDMA concentrations were highest in patients with FC (0.90 ± 0.64 μmol/l) compared to patients without (0.57 ± 0.10 μmol/l; p = 0.027) and vs. controls (0.58 ± 0.12 μmol/l; p = 0.006) and was positively correlated with indexed LV-mass (r = 0.61; p = 0.003), hsT (r = 0.56, p = 0.008), and lyso-Gb3 (r = 0.53, p = 0.013). Accordingly, the ratio of L-homoarginine to SDMA (hArg/SDMA) was lowest in patients with FC (2.63 ± 1.78) compared to controls (4.16 ± 1.44; p = 0.005). For L-arginine, hArg and ADMA no significant differences among groups could be detected, although a trend toward higher ADMA and lower hArg levels could be observed in the FC group. Furthermore, a significant relationship between kidney and cardiac function could be revealed (p = 0.045). Conclusion: Elevated MMP-9 and angiostatin levels suggest an increased extracellular matrix turnover in FD patients. Furthermore, endothelial dysfunction may also be involved in FC, as SDMA and hArg/SDMA are altered in these patients.
Collapse
Affiliation(s)
- Jefferson Loso
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Natalie Lund
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Maxim Avanesov
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Nicole Muschol
- Department of Pediatrics, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Susanne Lezius
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Kathrin Cordts
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research e.V.), Hamburg, Germany
| | - Edzard Schwedhelm
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research e.V.), Hamburg, Germany
| | - Monica Patten
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research e.V.), Hamburg, Germany
| |
Collapse
|
27
|
Arends M, Biegstraaten M, Wanner C, Sirrs S, Mehta A, Elliott PM, Oder D, Watkinson OT, Bichet DG, Khan A, Iwanochko M, Vaz FM, van Kuilenburg ABP, West ML, Hughes DA, Hollak CEM. Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: an international cohort study. J Med Genet 2018; 55:351-358. [PMID: 29437868 PMCID: PMC5931248 DOI: 10.1136/jmedgenet-2017-104863] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/07/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
Background Two recombinant enzymes (agalsidase alfa 0.2 mg/kg/every other week and agalsidase beta 1.0 mg/kg/every other week) have been registered for the treatment of Fabry disease (FD), at equal high costs. An independent international initiative compared clinical and biochemical outcomes of the two enzymes. Methods In this multicentre retrospective cohort study, clinical event rate, left ventricular mass index (LVMI), estimated glomerular filtration rate (eGFR), antibody formation and globotriaosylsphingosine (lysoGb3) levels were compared between patients with FD treated with agalsidase alfa and beta at their registered dose after correction for phenotype and sex. Results 387 patients (192 women) were included, 248 patients received agalsidase alfa. Mean age at start of enzyme replacement therapy was 46 (±15) years. Propensity score matched analysis revealed a similar event rate for both enzymes (HR 0.96, P=0.87). The decrease in plasma lysoGb3 was more robust following treatment with agalsidase beta, specifically in men with classical FD (β: −18 nmol/L, P<0.001), persisting in the presence of antibodies. The risk to develop antibodies was higher for patients treated with agalsidase beta (OR 2.8, P=0.04). LVMI decreased in a higher proportion following the first year of agalsidase beta treatment (OR 2.27, P=0.03), while eGFR slopes were similar. Conclusions Treatment with agalsidase beta at higher dose compared with agalsidase alfa does not result in a difference in clinical events, which occurred especially in those with more advanced disease. A greater biochemical response, also in the presence of antibodies, and better reduction in left ventricular mass was observed with agalsidase beta.
Collapse
Affiliation(s)
- Maarten Arends
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Marieke Biegstraaten
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Christoph Wanner
- Department of Internal Medicine I, Division of Nephrology and Cardiology, Comprehensive Heart Failure Center (CHFC) and Fabry Center for Interdisciplinary Therapy (FAZIT), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Sandra Sirrs
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Atul Mehta
- Department of Haematology, Royal Free London NHS Foundation Trust and University College London, London, UK
| | - Perry M Elliott
- Department of Cardiology, St Bartholomew's Hospital, London, UK.,University College London, London, UK
| | - Daniel Oder
- Department of Internal Medicine I, Division of Nephrology and Cardiology, Comprehensive Heart Failure Center (CHFC) and Fabry Center for Interdisciplinary Therapy (FAZIT), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Oliver T Watkinson
- Department of Cardiology, St Bartholomew's Hospital, London, UK.,University College London, London, UK
| | - Daniel G Bichet
- Department of Medicine, University of Montreal, Montreal, Canada
| | - Aneal Khan
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Mark Iwanochko
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Michael L West
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Derralynn A Hughes
- Department of Haematology, Royal Free London NHS Foundation Trust and University College London, London, UK
| | - Carla E M Hollak
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
28
|
|
29
|
Siegenthaler M, Huynh-Do U, Krayenbuehl P, Pollock E, Widmer U, Debaix H, Olinger E, Frank M, Namdar M, Ruschitzka F, Nowak A. Impact of cardio-renal syndrome on adverse outcomes in patients with Fabry disease in a long-term follow-up. Int J Cardiol 2017; 249:261-267. [DOI: 10.1016/j.ijcard.2017.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/10/2017] [Accepted: 09/11/2017] [Indexed: 02/08/2023]
|
30
|
Rozenfeld P, Feriozzi S. Contribution of inflammatory pathways to Fabry disease pathogenesis. Mol Genet Metab 2017; 122:19-27. [PMID: 28947349 DOI: 10.1016/j.ymgme.2017.09.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/25/2023]
Abstract
Lysosomal storage diseases are usually considered to be pathologies in which the passive deposition of unwanted materials leads to functional changes in lysosomes. Lysosomal deposition of unmetabolized glycolipid substrates stimulates the activation of pathogenic cascades, including immunological processes, and particularly the activation of inflammation. In lysosomal storage diseases, the inflammatory response is continuously being activated because the stimulus cannot be eliminated. Consequently, inflammation becomes a chronic process. Lysosomes play a role in many steps of the immune response. Leukocyte perturbation and over-expression of immune molecules have been reported in Fabry disease. Innate immunity is activated by signals originating from dendritic cells via interactions between toll-like receptors and globotriaosylceramide (Gb3) and/or globotriaosylsphingosine (lyso-Gb3). Evidence indicates that these glycolipids can activate toll-like receptors, thus triggering inflammation and fibrosis cascades. In the kidney, Gb3 deposition is associated with the increased release of transforming growth factor beta and with epithelial-to-mesenchymal cell transition, leading to the over-expression of pro-fibrotic molecules and to renal fibrosis. Interstitial fibrosis is also a typical feature of heart involvement in Fabry disease. Endomyocardial biopsies show infiltration of lymphocytes and macrophages, suggesting a role for inflammation in causing tissue damage. Inflammation is present in all tissues and may be associated with other potentially pathologic processes such as apoptosis, impaired autophagy, and increases in pro-oxidative molecules, which could all contribute synergistically to tissue damage. In Fabry disease, the activation of chronic inflammation over time leads to organ damage. Therefore, enzyme replacement therapy must be started early, before this process becomes irreversible.
Collapse
Affiliation(s)
- Paula Rozenfeld
- IIFP (Instituto de Estudios Inmunológicos y Fisiopatológicos) UNLP, CONICET, Facultad de Ciencias Exactas, Buenos Aires, Argentina.
| | - Sandro Feriozzi
- Nephrology and Dialysis Unit, Belcolle Hospital, Viterbo, Italy.
| |
Collapse
|
31
|
Skrunes R, Tøndel C, Leh S, Larsen KK, Houge G, Davidsen ES, Hollak C, van Kuilenburg AB, Vaz FM, Svarstad E. Long-Term Dose-Dependent Agalsidase Effects on Kidney Histology in Fabry Disease. Clin J Am Soc Nephrol 2017; 12:1470-1479. [PMID: 28625968 PMCID: PMC5586567 DOI: 10.2215/cjn.01820217] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES Dose-dependent clearing of podocyte globotriaosylceramide has previously been shown in patients with classic Fabry disease treated with enzyme replacement. Our study evaluates the dose-dependent effects of agalsidase therapy in serial kidney biopsies of patients treated for up to 14 years. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Twenty patients with classic Fabry disease (12 men) started enzyme replacement therapy at a median age of 21 (range =7-62) years old. Agalsidase-α or -β was prescribed for a median of 9.4 (range =5-14) years. The lower fixed dose group received agalsidase 0.2 mg/kg every other week throughout the follow-up period. The higher dose group received a range of agalsidase doses (0.2-1.0 mg/kg every other week). Dose changes were made due to disease progression, suboptimal effect, or agalsidase-β shortage. Serial kidney biopsies were performed along with clinical assessment and biomarkers and scored according to recommendations from the International Study Group of Fabry Nephropathy. RESULTS No statistical differences were found in baseline or final GFR or albuminuria. Kidney biopsies showed significant reduction of podocyte globotriaosylceramide in both the lower fixed dose group (-1.39 [SD=1.04]; P=0.004) and the higher dose group (-3.16 [SD=2.39]; P=0.002). Podocyte globotriaosylceramide (Gb3) reduction correlated with cumulative agalsidase dose (r=0.69; P=0.001). Arterial/arteriolar intima Gb3 cleared significantly in the higher dose group, all seven patients with baseline intimal Gb3 cleared the intima, one patient gained intimal Gb3 inclusions (P=0.03), and medial Gb3 did not change statistically in either group. Residual plasma globotriaosylsphingosine levels remained higher in the lower fixed dose group (20.1 nmol/L [SD=11.9]) compared with the higher dose group (10.4 nmol/L [SD=8.4]) and correlated with cumulative agalsidase dose in men (r=0.71; P=0.01). CONCLUSIONS Reduction of podocyte globotriaosylceramide was found in patients with classic Fabry disease treated with long-term agalsidase on different dosing regimens, correlating with cumulative dose. Limited clearing of arterial/arteriolar globotriaosylceramide raises concerns regarding long-term vascular effects of current therapy. Residual plasma globotriaosylsphingosine correlated with cumulative dose in men.
Collapse
Affiliation(s)
- Rannveig Skrunes
- Departments of Medicine
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; and
| | - Camilla Tøndel
- Pediatrics
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; and
| | - Sabine Leh
- Pathology, and
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; and
| | | | - Gunnar Houge
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Carla Hollak
- Departments of Endocrinology and Metabolism and
- Pediatrics and
| | | | - Frédéric M. Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Einar Svarstad
- Departments of Medicine
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; and
| |
Collapse
|
32
|
Olivera-González S, Josa-Laorden C, Torralba-Cabeza MA. The pathophysiology of Fabry disease. Rev Clin Esp 2017; 218:22-28. [PMID: 28843599 DOI: 10.1016/j.rce.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/12/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
Fabry disease is a lysosomal condition with systemic clinical expression, caused by the tissue deposit of globotriaosylceramide, due to a deficit in its degradation. As with most lysosomal diseases, the presence of a mutation in a gene does not explain the pathophysiological disorders shown by patients. We conducted a comprehensive review of the pathogenic mechanisms that occur in Fabry disease.
Collapse
Affiliation(s)
- S Olivera-González
- Unidad de Enfermedades Minoritarias, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España.
| | - C Josa-Laorden
- Servicio de Medicina Interna, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España
| | - M A Torralba-Cabeza
- Unidad de Enfermedades Minoritarias, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España
| |
Collapse
|
33
|
Abstract
BACKGROUND Fabry disease, an X-linked disorder of glycosphingolipids, markedly increases the risk of systemic vasculopathy, ischemic stroke, small-fiber peripheral neuropathy, cardiac dysfunction, and chronic kidney disease. METHODS We performed an extensive PubMed search on the topic of Fabry disease and drew from our cumulative 43 years of experience. RESULTS Most of these complications are nonspecific in nature and clinically indistinguishable from similar abnormalities that occur in the context of more common disorders in the general population. This disease is caused by variants of the GLA gene, and its incidence may have been underestimated. However, one must also guard against overdiagnosis of Fabry disease and unjustified enzyme replacement therapy, because some of the gene variants are benign. Specific therapy for Fabry disease has been developed in the last few years, but its clinical effect has been modest. Novel therapeutic agents are being developed. Standard "nonspecific" medical and surgical therapy is necessary and effective in slowing deterioration or compensating for organ failure in patients with Fabry disease. CONCLUSIONS Fabry disease is a treatable and modifiable genetic risk factor for a myriad of clinical organ complications. Fabry disease may be frequently overlooked but on occasion overdiagnosed.
Collapse
Affiliation(s)
- Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, Texas.
| | - Markus Ries
- Department of Pediatric Neurology and Metabolic Medicine, Center for Rare Disorders, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
34
|
Ranieri M, Bedini G, Parati EA, Bersano A. Fabry Disease: Recognition, Diagnosis, and Treatment of Neurological Features. Curr Treat Options Neurol 2016; 18:33. [DOI: 10.1007/s11940-016-0414-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Ferraz MJ, Marques ARA, Appelman MD, Verhoek M, Strijland A, Mirzaian M, Scheij S, Ouairy CM, Lahav D, Wisse P, Overkleeft HS, Boot RG, Aerts JM. Lysosomal glycosphingolipid catabolism by acid ceramidase: formation of glycosphingoid bases during deficiency of glycosidases. FEBS Lett 2016; 590:716-25. [PMID: 26898341 DOI: 10.1002/1873-3468.12104] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 12/19/2022]
Abstract
Glycosphingoid bases are elevated in inherited lysosomal storage disorders with deficient activity of glycosphingolipid catabolizing glycosidases. We investigated the molecular basis of the formation of glucosylsphingosine and globotriaosylsphingosine during deficiency of glucocerebrosidase (Gaucher disease) and α-galactosidase A (Fabry disease). Independent genetic and pharmacological evidence is presented pointing to an active role of acid ceramidase in both processes through deacylation of lysosomal glycosphingolipids. The potential pathophysiological relevance of elevated glycosphingoid bases generated through this alternative metabolism in patients suffering from lysosomal glycosidase defects is discussed.
Collapse
Affiliation(s)
- Maria J Ferraz
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - André R A Marques
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Monique D Appelman
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Marri Verhoek
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Anneke Strijland
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Mina Mirzaian
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Saskia Scheij
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Cécile M Ouairy
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Daniel Lahav
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Patrick Wisse
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Rolf G Boot
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Johannes M Aerts
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands.,Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| |
Collapse
|
36
|
Ferraz MJ, Marques ARA, Gaspar P, Mirzaian M, van Roomen C, Ottenhoff R, Alfonso P, Irún P, Giraldo P, Wisse P, Sá Miranda C, Overkleeft HS, Aerts JM. Lyso-glycosphingolipid abnormalities in different murine models of lysosomal storage disorders. Mol Genet Metab 2016; 117:186-93. [PMID: 26750750 DOI: 10.1016/j.ymgme.2015.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 01/01/2023]
Abstract
In lysosomal glycosphingolipid storage disorders, marked elevations in corresponding glycosphingoid bases (lyso-glycosphingolipids) have been reported, such as galactosylsphingosine in Krabbe disease, glucosylsphingosine in Gaucher disease and globotriaosylsphingosine in Fabry disease. Using LC–MS/MS, we comparatively investigated the occurrence of abnormal lyso-glycosphingolipids in tissues and plasma of mice with deficiencies in lysosomal α-galactosidase A, glucocerebrosidase and galactocerebrosidase. The nature and specificity of lyso-glycosphingolipid abnormalities are reported and compared to that in correspondingly more abundant N-acylated glycosphingolipids. Specific elevations in tissue and plasma globotriaosylsphingosine were detected in α-galactosidase A-deficient mice; glucosylsphingosine in glucocerebrosidase-deficient mice and galactosylsphingosine in galactocerebrosidase-deficient animals. A similar investigation was conducted for two mouse models of Niemann Pick type C (Npc1nih and Npc1nmf164), revealing significant tissue elevation of several neutral glycosphingolipids and concomitant increased plasma glucosylsphingosine. This latter finding was recapitulated by analysis of plasma of NPC patients. The value of plasma glucosylsphingosine in biochemical confirmation of the diagnosis of NPC is discussed.
Collapse
Affiliation(s)
- Maria J Ferraz
- Department of Medical Biochemistry, Academic Medical Center, 1105, AZ, Amsterdam, The Netherlands
| | - André R A Marques
- Department of Medical Biochemistry, Academic Medical Center, 1105, AZ, Amsterdam, The Netherlands
| | - Paulo Gaspar
- Organelle Biogenesis & Function Group, Instituto de Investigação e Inovação em Saúde (I3S), 4200-135 Porto, Portugal; Lysosome and Peroxisome Biology Unit (UniLiPe), Institute of Molecular and Cell Biology (IBMC), Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Mina Mirzaian
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, 2333, CC, Leiden, The Netherlands
| | - Cindy van Roomen
- Department of Medical Biochemistry, Academic Medical Center, 1105, AZ, Amsterdam, The Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, 1105, AZ, Amsterdam, The Netherlands
| | - Pilar Alfonso
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad de Investigación Translacional, Zaragoza, Spain
| | - Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad de Investigación Translacional, Zaragoza, Spain
| | - Pilar Giraldo
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad de Investigación Translacional, Zaragoza, Spain
| | - Patrick Wisse
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333, CC, Leiden, The Netherlands
| | - Clara Sá Miranda
- Organelle Biogenesis & Function Group, Instituto de Investigação e Inovação em Saúde (I3S), 4200-135 Porto, Portugal; Lysosome and Peroxisome Biology Unit (UniLiPe), Institute of Molecular and Cell Biology (IBMC), Universidade do Porto, 4150-180 Porto, Portugal
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333, CC, Leiden, The Netherlands
| | - Johannes M Aerts
- Department of Medical Biochemistry, Academic Medical Center, 1105, AZ, Amsterdam, The Netherlands; Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, 2333, CC, Leiden, The Netherlands.
| |
Collapse
|
37
|
Goker-Alpan O, Gambello MJ, Maegawa GHB, Nedd KJ, Gruskin DJ, Blankstein L, Weinreb NJ. Reduction of Plasma Globotriaosylsphingosine Levels After Switching from Agalsidase Alfa to Agalsidase Beta as Enzyme Replacement Therapy for Fabry Disease. JIMD Rep 2015; 25:95-106. [PMID: 26303609 PMCID: PMC5059194 DOI: 10.1007/8904_2015_483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/23/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Agalsidase alfa and agalsidase beta, recombinant enzyme preparations for treatment of Fabry disease (FD), have different approved dosing schedules: 0.2 mg/kg and 1.0 mg/kg every other week (EOW), respectively. METHODS This open-label, multicenter, exploratory phase 4 study evaluated plasma globotriaosylsphingosine (lyso-GL-3) and plasma and urine globotriaosylceramide (GL-3) levels at baseline and 2, 4, and 6 months after the switch from agalsidase alfa (0.2 mg/kg EOW for ≥12 months) to agalsidase beta (1.0 mg/kg EOW) in 15 male patients with FD. Immunoglobulin (Ig)G antidrug antibody titers were assessed, and safety was monitored throughout the study. RESULTS Plasma lyso-GL-3 concentrations decreased significantly within 2 months after switch and reductions continued through month 6 (mean absolute changes, -12.8, -16.1, and -16.7 ng/mL at 2, 4, and 6 months, respectively; all P < 0.001). The mean percentage reduction from baseline was 39.5% (P < 0.001) at month 6. For plasma GL-3, the mean absolute change from baseline (-0.9 μg/mL) and percentage reduction (17.9%) at month 6 were both significant (P < 0.05). Urine GL-3 measurements showed intra-patient variability and changes from baseline were not significant. No clinical outcomes were assessed in this 6-month study, and, therefore, no conclusions can be drawn regarding the correlation of observed reductions in glycosphingolipid concentrations with clinically relevant outcomes. There were no differences in IgG antidrug antibody titers between the two enzymes. The switch from agalsidase alfa to agalsidase beta was well tolerated. CONCLUSION Plasma lyso-GL-3 and GL-3 levels reduced after switching from agalsidase alfa to agalsidase beta, indicating that agalsidase beta has a greater pharmacodynamic effect on these markers at the recommended dose. These data further support the use of agalsidase beta 1.0 mg/kg EOW as enzyme replacement therapy in FD.
Collapse
Affiliation(s)
- Ozlem Goker-Alpan
- Lysosomal Disorders Research and Treatment Unit, Center for Clinical Trials, 11212 Waples Mill Road, Fairfax, VA, 22030, USA.
| | | | | | | | | | | | - Neal J Weinreb
- University Research Foundation for Lysosomal Storage Diseases, Coral Springs, FL, USA
| |
Collapse
|
38
|
|
39
|
Kolodny E, Fellgiebel A, Hilz MJ, Sims K, Caruso P, Phan TG, Politei J, Manara R, Burlina A. Cerebrovascular Involvement in Fabry Disease. Stroke 2015; 46:302-13. [PMID: 25492902 DOI: 10.1161/strokeaha.114.006283] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Edwin Kolodny
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Andreas Fellgiebel
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Max J. Hilz
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Katherine Sims
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Paul Caruso
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Thanh G. Phan
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Juan Politei
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Renzo Manara
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| | - Alessandro Burlina
- From the Department of Neurology, New York University School of Medicine (E.K.); Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany (A.F.); Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany (M.J.H.); Center for Human Genetic Research and Neurology Department (K.S.), Division of Neuroradiology, Department of Radiology (P.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Stroke Unit, Department of Neurosciences,
| |
Collapse
|
40
|
Marazzi MG, Galliera E, Vianello E, Dozio E, Stella A, Tettamanti G, Tacchini L, Corsi Romanelli MM. Hypertension in adult Fabry's disease: is cardiotrophin-1 a diagnostic biomarker? IMMUNITY & AGEING 2014; 11:27. [PMID: 25598833 PMCID: PMC4296686 DOI: 10.1186/s12979-014-0027-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cardiotrophin-1 (CT-1), a cytokine produced by cardiomyocytes and non-cardiomyocytes in conditions of stress, can be used as a biomarker of left ventricular hypertrophy and dysfunction in hypertensive patients. Hypertension is one of the main adverse events in the third and last phase of Fabry's disease (FD). We measured CT-1 in order to examine its correlation with the vascular and cardiac alterations at different ages and assess its potential for use as a biomarker of hypertension in FD. FINDINGS The level of CT-1 was clearly higher in hypertensive adults than in adult FD patients. FD patients show a small, non-significant decrease in plasma CT-1 with age, while in hypertensive patients CT-1 in plasma rises strongly and highly significantly with age. CONCLUSIONS CT-1 can be considered a good biomarker of the progression of hypertension with age, but particular care is needed when following hypertension in FD patients, since CT-1 does not correlate the same way with this disease.
Collapse
Affiliation(s)
- Monica Gioia Marazzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Galliera
- Department of Biomedical, Surgical and Oral Sciences, Università degli Studi di Milano, Milan, Italy ; IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Elena Vianello
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Elena Dozio
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Andrea Stella
- Department of Sciences for Health, Università degli Studi di Milano - Bicocca, Milan, Italy
| | | | - Lorenza Tacchini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano M Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy ; IRCCS Policlinico San Donato, San Donato, Milano, Italy
| |
Collapse
|
41
|
Ferraz MJ, Kallemeijn WW, Mirzaian M, Herrera Moro D, Marques A, Wisse P, Boot RG, Willems LI, Overkleeft H, Aerts J. Gaucher disease and Fabry disease: New markers and insights in pathophysiology for two distinct glycosphingolipidoses. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:811-25. [DOI: 10.1016/j.bbalip.2013.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/25/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
|
42
|
Sirrs SM, Bichet DG, Casey R, Clarke JTR, Lemoine K, Doucette S, West ML. Outcomes of patients treated through the Canadian Fabry disease initiative. Mol Genet Metab 2014; 111:499-506. [PMID: 24534763 DOI: 10.1016/j.ymgme.2014.01.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND The Canadian Fabry disease initiative (CFDI) tracks outcomes of subjects with Fabry disease treated enzyme replacement therapy (ERT) given to subjects who meet evidence-based treatment guidelines and cardiovascular risk factor modification. METHODS We report 5 year follow-up data on 362 subjects for a composite endpoint (death, neurologic or cardiovascular events, development of end-stage renal disease or sustained increase in serum creatinine of 50% from baseline). RESULTS At enrollment, 86 subjects had previously received ERT (Cohort 1a) and 67 subjects were newly started (Cohort 1b) and randomized to agalsidase alfa or agalsidase beta. 209 subjects did not initially meet ERT criteria (Cohort 1c), 25 of whom met ERT criteria in follow-up and were moved to Cohort 1b (total N=178 ERT treated subjects). Use of supportive therapies such as aspirin (78%), renin-angiotensin blockade (59%), and statins (55%) was common in ERT treated subjects. In Cohort 1a, 32 subjects met the composite endpoint with 8 deaths. In Cohort 1b, 16 subjects met the composite endpoint with 1 death. Cohort 1b had fewer clinical events than Cohort 1a (p=0.039) suggesting that the treatment protocol was effective in targeting subjects at an earlier stage. 19.4% of Cohort 1b subjects on agalsidase alfa and 13.3% on agalsidase beta had a clinical event (p=0.57). 10 Cohort 1c subjects had clinical events, none of which would have been prevented by earlier use of ERT. CONCLUSIONS Cardiovascular risk factor modification and targeted use of ERT reduce the risk of adverse outcomes related to Fabry disease.
Collapse
Affiliation(s)
- S M Sirrs
- Department of Medicine University of British Columbia, Canada.
| | - D G Bichet
- Department of Medicine University of Montreal, Canada
| | - R Casey
- Department of Pediatrics University of Calgary, Canada
| | - J T R Clarke
- Department of Pediatrics, Hospital for Sick Children and Centre Hospitalier Universitaire de Sherbrooke, Canada
| | - K Lemoine
- Department of Pediatrics, Capital District Health Authority, Canada
| | - S Doucette
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - M L West
- Department of Medicine Dalhousie University, Canada
| |
Collapse
|
43
|
Establishing 3-nitrotyrosine as a biomarker for the vasculopathy of Fabry disease. Kidney Int 2014; 86:58-66. [PMID: 24402087 PMCID: PMC4077934 DOI: 10.1038/ki.2013.520] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 11/04/2013] [Accepted: 11/14/2013] [Indexed: 02/07/2023]
Abstract
The endothelial dysfunction of Fabry disease results from α-galactosidase A deficiency leading to the accumulation of globotriaosylceramide. Vasculopathy in the α-galactosidase A null mouse is manifested as oxidant-induced thrombosis, accelerated atherogenesis, and impaired arterial reactivity. To better understand the pathogenesis of Fabry disease in humans, we generated a human cell model by using RNA interference. Hybrid endothelial cells were transiently transfected with small interfering RNA (siRNA) specifically directed against α-galactosidase A. Knockdown of α-galactosidase A was confirmed using immunoblotting and globotriaosylceramide accumulation. Endothelial nitric oxide synthase (eNOS) activity was correspondingly decreased by >60%. Levels of 3-nitrotyrosine (3NT), a specific marker for reactive nitrogen species and quantified using mass spectrometry, increased by 40- to 120-fold without corresponding changes in other oxidized amino acids, consistent with eNOS-derived reactive nitrogen species as the source of the reactive oxygen species. eNOS uncoupling was confirmed by the observed increase in free plasma and protein-bound aortic 3NT levels in the α-galactosidase A knockout mice. Finally, 3NT levels, assayed in biobanked plasma samples from patients with classical Fabry disease, were over sixfold elevated compared with age- and gender-matched controls. Thus, 3NT may serve as a biomarker for the vascular involvement in Fabry disease.
Collapse
|
44
|
Lavoie P, Boutin M, Auray-Blais C. Multiplex Analysis of Novel Urinary Lyso-Gb3-Related Biomarkers for Fabry Disease by Tandem Mass Spectrometry. Anal Chem 2013; 85:1743-52. [DOI: 10.1021/ac303033v] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pamela Lavoie
- Service of
Genetics, Department of Pediatrics, Faculty
of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke (Québec),
Canada J1H 5N4
| | - Michel Boutin
- Service of
Genetics, Department of Pediatrics, Faculty
of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke (Québec),
Canada J1H 5N4
| | - Christiane Auray-Blais
- Service of
Genetics, Department of Pediatrics, Faculty
of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke (Québec),
Canada J1H 5N4
| |
Collapse
|