1
|
Grøndal SM, Blø M, Nilsson LIH, Rayford AJ, Jackson A, Gausdal G, Lorens JB. Targeting AXL cellular networks in kidney fibrosis. Front Immunol 2024; 15:1446672. [PMID: 39559366 PMCID: PMC11570270 DOI: 10.3389/fimmu.2024.1446672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction The incidence of chronic kidney disease (CKD) is increasing, in parallel with risk factors including obesity and diabetes mellitus. AXL plays a central role in CKD, providing a rationale to evaluate clinical AXL targeting agents. Methods To determine the efficacy and underlying molecular mechanisms of AXL inhibition in CKD, we employed a murine unilateral ureteral obstruction (UUO) model preventively treated with a selective AXL kinase inhibitor (bemcentinib) during disease progression. We isolated kidneys at an early (3 days) or late (15 days) timepoint and profiled the cell populations using mass cytometry. Results Preventive treatment with bemcentinib significantly attenuated fibrosis in the UUO model. The anti-fibrotic effect correlated with a decrease in mesangial cells and inhibition of innate immune cell infiltration, while the proportion of epithelial cells increased. We mapped AXL expression to a unique network of cells in the kidney: mesangial cells, pericytes, macrophages and dendritic cells. Discussion We propose that AXL targeting affects an important cellular interaction network underlying fibrotic progression. These results support the clinical application of AXL targeting agents to treat CKD.
Collapse
Affiliation(s)
| | | | | | - Austin J. Rayford
- Department of Biomedicine, University of Bergen, Bergen, Norway
- BerGenBio ASA, Bergen, Norway
| | - Akil Jackson
- BerGenBio ASA, Bergen, Norway
- Clinical Development, BerGenBio Ltd., Oxford, United Kingdom
| | | | - James B. Lorens
- Department of Biomedicine, University of Bergen, Bergen, Norway
- BerGenBio ASA, Bergen, Norway
| |
Collapse
|
2
|
Lu X, Crowley SD. Actions of Dendritic Cells in the Kidney during Hypertension. Compr Physiol 2022; 12:4087-4101. [PMID: 35950656 DOI: 10.1002/cphy.c210050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immune response plays a critical role in the pathogenesis of hypertension, and immune cell populations can promote blood pressure elevation via actions in the kidney. Among these cell lineages, dendritic cells (DCs), the most potent antigen-presenting cells, play a central role in regulating immune response during hypertension and kidney disease. DCs have different subtypes, and renal DCs are comprised of the CD103+ CD11b- and CD103- CD11b+ subsets. DCs become mature and express costimulatory molecules on their surface once they encounter antigen. Isolevuglandin-modified proteins function as antigens to activate DCs and trigger them to stimulate T cells. Activated T cells accumulate in the hypertensive kidney, release effector cytokines, promote renal oxidative stress, and promote renal salt and water retention. Individual subsets of activated T cells can secrete tumor necrosis factor-alpha, interleukin-17A, and interferon-gamma, each of which has augmented the elevation of blood pressure in hypertensive models by enhancing renal sodium transport. Fms-like tyrosine kinase 3 ligand-dependent classical DCs are required to sustain the full hypertensive response, but C-X3 -C chemokine receptor 1 positive DCs do not regulate blood pressure. Excess sodium enters the DC through transporters to activate DCs, whereas the ubiquitin editor A20 in dendritic cells constrains blood pressure elevation by limiting T cell activation. By contrast, activation of the salt sensing kinase, serum/glucocorticoid kinase 1 in DCs exacerbates salt-sensitive hypertension. This article discusses recent studies illustrating mechanisms through which DC-T cell interactions modulate levels of pro-hypertensive mediators to regulate blood pressure via actions in the kidney. © 2022 American Physiological Society. Compr Physiol 12:1-15, 2022.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| |
Collapse
|
3
|
Hirschi KM, Tsai KYF, Davis T, Clark JC, Knowlton MN, Bikman BT, Reynolds PR, Arroyo JA. Growth arrest-specific protein-6/AXL signaling induces preeclampsia in rats†. Biol Reprod 2021; 102:199-210. [PMID: 31347670 DOI: 10.1093/biolre/ioz140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 07/06/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022] Open
Abstract
Preeclampsia (PE) is a complicated obstetric complication characterized by increased blood pressure, decreased trophoblast invasion, and inflammation. The growth arrest-specific 6 (Gas6) protein is known to induce dynamic cellular responses and is elevated in PE. Gas6 binds to the AXL tyrosine kinase receptor and AXL-mediated signaling is implicated in proliferation and migration observed in several tissues. Our laboratory utilized Gas6 to induce preeclamptic-like conditions in pregnant rats. Our objective was to determine the role of Gas6/AXL signaling as a possible model of PE. Briefly, pregnant rats were divided into three groups that received daily intraperitoneal injections (from gestational day 7.5 to 17.5) of phosphate buffered saline (PBS), Gas6, or Gas6 + R428 (an AXL inhibitor administered from gestational day 13.5 to 17.5). Animals dispensed Gas6 experienced elevated blood pressure, increased proteinuria, augmented caspase-3-mediated placental apoptosis, and diminished trophoblast invasion. Gas6 also enhanced expression of several PE-related genes and a number of inflammatory mediators. Gas6 further enhanced placental oxidative stress and impaired mitochondrial respiration. Each of these PE-related characteristics was ameliorated in dams and/or their placentae when AXL inhibition by R428 occurred in tandem with Gas6 treatment. We conclude that Gas6 signaling is capable of inducing PE and that inhibition of AXL prevents disease progression in pregnant rats. These results provide insight into pathways associated with PE that could be useful in the clarification of potential therapeutic approaches.
Collapse
Affiliation(s)
- Kelsey M Hirschi
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Kary Y F Tsai
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Taylor Davis
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - J Christian Clark
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - M Nekel Knowlton
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Benjamin T Bikman
- Laboratory of Obesity and Metabolism, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Paul R Reynolds
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Juan A Arroyo
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
4
|
Korshunov VA, Smolock EM, Wines-Samuelson ME, Faiyaz A, Mickelsen DM, Quinn B, Pan C, Dugbartey GJ, Yan C, Doyley MM, Lusis AJ, Berk BC. Natriuretic Peptide Receptor 2 Locus Contributes to Carotid Remodeling. J Am Heart Assoc 2020; 9:e014257. [PMID: 32394795 PMCID: PMC7660849 DOI: 10.1161/jaha.119.014257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Carotid artery intima/media thickness (IMT) is a hallmark trait associated with future cardiovascular events. The goal of this study was to map new genes that regulate carotid IMT by genome-wide association. Methods and Results We induced IMT by ligation procedure of the left carotid artery in 30 inbred mouse strains. Histologic reconstruction revealed significant variation in left carotid artery intima, media, adventitia, external elastic lamina volumes, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio in inbred mice. The carotid remodeling trait was regulated by distinct genomic signatures with a dozen common single-nucleotide polymorphisms associated with left carotid artery intima volume, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio. Among genetic loci on mouse chromosomes 1, 4, and 12, there was natriuretic peptide receptor 2 (Npr2), a strong candidate gene. We observed that only male, not female, mice heterozygous for a targeted Npr2 deletion (Npr2+/-) exhibited defective carotid artery remodeling compared with Npr2 wild-type (Npr2+/+) littermates. Fibrosis in carotid IMT was significantly increased in Npr2+/- males compared with Npr2+/- females or Npr2+/+ mice. We also detected decreased Npr2 expression in human atherosclerotic plaques, similar to that seen in studies in Npr2+/- mice. Conclusions We found that components of carotid IMT were regulated by distinct genetic factors. We also showed a critical role for Npr2 in genetic regulation of vascular fibrosis associated with defective carotid remodeling.
Collapse
Affiliation(s)
| | - Elaine M Smolock
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | | | - Abrar Faiyaz
- Department of Electrical & Computer Engineering University of Rochester and Hajim School of Engineering & Applied Sciences Rochester NY
| | - Deanne M Mickelsen
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Breandan Quinn
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Calvin Pan
- Department of Medicine David Geffen School of Medicine University of California Los Angeles Los Angeles CA
| | - George J Dugbartey
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Chen Yan
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Marvin M Doyley
- Department of Electrical & Computer Engineering University of Rochester and Hajim School of Engineering & Applied Sciences Rochester NY
| | - Aldons J Lusis
- Department of Medicine David Geffen School of Medicine University of California Los Angeles Los Angeles CA
| | - Bradford C Berk
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY.,University of Rochester Neurorestoration Institute University of Rochester School of Medicine and Dentistry Rochester NY
| |
Collapse
|
5
|
Batchu SN, Dugbartey GJ, Wadosky KM, Mickelsen DM, Ko KA, Wood RW, Zhao Y, Yang X, Fowell DJ, Korshunov VA. Innate Immune Cells Are Regulated by Axl in Hypertensive Kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 188:1794-1806. [PMID: 30033030 DOI: 10.1016/j.ajpath.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/03/2018] [Accepted: 04/12/2018] [Indexed: 11/26/2022]
Abstract
The balance between adaptive and innate immunity in kidney damage in salt-dependent hypertension is unclear. We investigated early renal dysfunction and the influence of Axl, a receptor tyrosine kinase, on innate immune response in hypertensive kidney in mice with lymphocyte deficiency (Rag1-/-). The data suggest that increased presence of CD11b+ myeloid cells in the medulla might explain intensified salt and water retention as well as initial hypertensive response in Rag1-/- mice. Global deletion of Axl on Rag1-/- background reversed kidney dysfunction and accumulation of myeloid cells in the kidney medulla. Chimeric mice that lack Axl in innate immune cells (in the absence of lymphocytes) significantly improved kidney function and abolished early hypertensive response. The bioinformatics analyses of Axl-related gene-gene interaction networks established tissue-specific variation in regulatory pathways. It was confirmed that complement C3 is important for Axl-mediated interactions between myeloid and vascular cells in hypertensive kidney. In summary, innate immunity is crucial for renal dysfunction in early hypertension, and is highly influenced by the presence of Axl.
Collapse
Affiliation(s)
- Sri N Batchu
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - George J Dugbartey
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Kristine M Wadosky
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Deanne M Mickelsen
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Kyung A Ko
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Ronald W Wood
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Deborah J Fowell
- Department of Microbiology and Immunology and David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Vyacheslav A Korshunov
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
6
|
McShane L, Tabas I, Lemke G, Kurowska-Stolarska M, Maffia P. TAM receptors in cardiovascular disease. Cardiovasc Res 2019; 115:1286-1295. [PMID: 30980657 PMCID: PMC6587925 DOI: 10.1093/cvr/cvz100] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/28/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
The TAM receptors are a distinct family of three receptor tyrosine kinases, namely Tyro3, Axl, and MerTK. Since their discovery in the early 1990s, they have been studied for their ability to influence numerous diseases, including cancer, chronic inflammatory and autoimmune disorders, and cardiovascular diseases. The TAM receptors demonstrate an ability to influence multiple aspects of cardiovascular pathology via their diverse effects on cells of both the vasculature and the immune system. In this review, we will explore the various functions of the TAM receptors and how they influence cardiovascular disease through regulation of vascular remodelling, efferocytosis and inflammation. Based on this information, we will suggest areas in which further research is required and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lucy McShane
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, UK,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ira Tabas
- Departments of Medicine, Physiology, and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Greg Lemke
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA,Immunobiology and Microbial Pathogenesis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mariola Kurowska-Stolarska
- Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, UK,Corresponding authors. Tel: +44 141 330 7142; E-mail: (P.M.) Tel: +44 141 330 6085; E-mail: (M.K.-S.)
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, UK,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK,Department of Pharmacy, University of Naples Federico II, Naples, Italy,Corresponding authors. Tel: +44 141 330 7142; E-mail: (P.M.) Tel: +44 141 330 6085; E-mail: (M.K.-S.)
| |
Collapse
|
7
|
Korshunov VA, Quinn B, Faiyaz A, Ahmed R, Sowden MP, Doyley MM, Berk BC. Strain-selective efficacy of sacubitril/valsartan on carotid fibrosis in response to injury in two inbred mouse strains. Br J Pharmacol 2019; 176:2795-2807. [PMID: 31077344 DOI: 10.1111/bph.14708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Sacubitril/valsartan (Sac/val) is more effective than valsartan in lowering BP and mortality in patients with heart failure. Here, we proposed that Sac/val treatment would be more effective in preventing pathological vascular remodelling in 129X1/SvJ (129X1), than in C57BL/6J (B6) inbred mice. EXPERIMENTAL APPROACH Sac/val (60 mg·kg-1 ·day-1 ) and valsartan (27 mg·kg-1 ·day-1 ) were given as prophylactic or therapeutic treatments, to 129X1 or B6 mice with carotid artery ligation for 14 days. Blood flow was measured by ultrasound. Ex vivo, carotid tissue was analysed with histological and morphometric techniques, together with RNA sequencing and gene ontology. KEY RESULTS Sac/val was more effective than valsartan in lowering BP in 129X1 compared with B6 mice. Liver expression of CYP2C9 and plasma cGMP levels were similar across treatments. A reduction in carotid thickening after prophylactic treatment with valsartan or Sac/val also resulted in significant arterial shrinkage in B6 mice. In 129X1 mice, Sac/val and prophylactic treatment with valsartan had no effect on carotid thickening but preserved carotid size. BP lowering significantly correlated with a decline in carotid stiffness (R2 = .37, P = .0096) in 129X1 but not in B6 mice. The gene expression signature associated with hyalurononglucosaminidase activity was down-regulated in injured arteries after both regimens of Sac/val only in 129X1 mice. Administration of Sac/val but not valsartan significantly reduced deposition of hyaluronic acid and carotid fibrosis in 129X1 mice. CONCLUSION AND IMPLICATIONS These results underscore the importance of the genetic background in the efficacy of the Sac/val on vascular fibrosis.
Collapse
Affiliation(s)
- Vyacheslav A Korshunov
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York
| | - Breandan Quinn
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York
| | - Abrar Faiyaz
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Rifat Ahmed
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Mark P Sowden
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Bradford C Berk
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York.,Neurorestoration Institute, University of Rochester, Rochester, New York
| |
Collapse
|
8
|
Landolt L, Furriol J, Babickova J, Ahmed L, Eikrem Ø, Skogstrand T, Scherer A, Suliman S, Leh S, Lorens JB, Gausdal G, Marti H, Osman T. AXL targeting reduces fibrosis development in experimental unilateral ureteral obstruction. Physiol Rep 2019; 7:e14091. [PMID: 31134766 PMCID: PMC6536582 DOI: 10.14814/phy2.14091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
The AXL receptor tyrosine kinase (RTK) is involved in partial epithelial-to-mesenchymal transition (EMT) and inflammation - both main promoters of renal fibrosis development. The study aim was to investigate the role of AXL inhibition in kidney fibrosis due to unilateral ureteral obstruction (UUO). Eight weeks old male C57BL/6 mice underwent UUO and were treated with oral AXL inhibitor bemcentinib (n = 22), Angiotensin-converting enzyme inhibitor (ACEI, n = 10), ACEI and bemcentinib (n = 10) or vehicle alone (n = 22). Mice were sacrificed after 7 or 15 days and kidney tissues were analyzed by immunohistochemistry (IHC), western blot, ELISA, Sirius Red (SR) staining, and hydroxyproline (Hyp) quantification. RNA was extracted from frozen kidney tissues and sequenced on an Illumina HiSeq4000 platform. After 15 days the ligated bemcentinib-treated kidneys showed less fibrosis compared to the ligated vehicle-treated kidneys in SR analyses and Hyp quantification. Reduced IHC staining for Vimentin (VIM) and alpha smooth muscle actin (αSMA), as well as reduced mRNA abundance of key regulators of fibrosis such as transforming growth factor (Tgfβ), matrix metalloproteinase 2 (Mmp2), Smad2, Smad4, myofibroblast activation (Aldh1a2, Crlf1), and EMT (Snai1,2, Twist), in ligated bemcentinib-treated kidneys was compatible with reduced (partial) EMT induction. Furthermore, less F4/80 positive cells, less activity of pathways related to the immune system and lower abundance of MCP1, MCP3, MCP5, and TARC in ligated bemcentinib-treated kidneys was compatible with reduction in inflammatory infiltrates by bemcentinib treatment. The AXL RTK pathway represents a promising target for pharmacologic therapy of kidney fibrosis.
Collapse
Affiliation(s)
- Lea Landolt
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Jessica Furriol
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Janka Babickova
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | | | - Øystein Eikrem
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Trude Skogstrand
- Department of MedicineHaukeland University HospitalBergenNorway
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Andreas Scherer
- SpheromicsKontiolahtiFinland
- Institute for Molecular Medicine Finland FIMMHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Salwa Suliman
- Department of Clinical DentistryCenter for Clinical Dental ResearchUniversity of BergenBergenNorway
| | - Sabine Leh
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - James B. Lorens
- Department of BiomedicineCenter for Cancer BiomarkersUniversity of BergenBergenNorway
| | | | - Hans‐Peter Marti
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Tarig Osman
- Department of Clinical MedicineUniversity of BergenBergenNorway
| |
Collapse
|
9
|
Silaghi CN, Ilyés T, Filip VP, Farcaș M, van Ballegooijen AJ, Crăciun AM. Vitamin K Dependent Proteins in Kidney Disease. Int J Mol Sci 2019; 20:ijms20071571. [PMID: 30934817 PMCID: PMC6479974 DOI: 10.3390/ijms20071571] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have an increased risk of developing vascular calcifications, as well as bone dynamics impairment, leading to a poor quality of life and increased mortality. Certain vitamin K dependent proteins (VKDPs) act mainly as calcification inhibitors, but their involvement in the onset and progression of CKD are not completely elucidated. This review is an update of the current state of knowledge about the relationship between CKD and four extrahepatic VKDPs: matrix Gla protein, osteocalcin, growth-arrest specific protein 6 and Gla-rich protein. Based on published literature in the last ten years, the purpose of this review is to address fundamental aspects about the link between CKD and circulating VKDPs levels as well as to raise new topics about how the interplay between molecular weight and charge could influence the modifications of circulating VKDPs at the glomerular level, or whether distinct renal etiologies have effect on VKDPs. This review is the output of a systematic literature search and may open future research avenues in this niche domain.
Collapse
Affiliation(s)
- Ciprian N Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Tamás Ilyés
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Vladimir P Filip
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Marius Farcaș
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Adriana J van Ballegooijen
- Department of Nephrology & Epidemiology and Biostatistics, Amsterdam University Medical Center, VUmc, 1117 HV Amsterdam, The Netherlands.
| | - Alexandra M Crăciun
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| |
Collapse
|
10
|
Saik OV, Demenkov PS, Ivanisenko TV, Bragina EY, Freidin MB, Dosenko VE, Zolotareva OI, Choynzonov EL, Hofestaedt R, Ivanisenko VA. Search for New Candidate Genes Involved in the Comorbidity of Asthma and Hypertension Based on Automatic Analysis of Scientific Literature. J Integr Bioinform 2018; 15:/j/jib.2018.15.issue-4/jib-2018-0054/jib-2018-0054.xml. [PMID: 30864351 PMCID: PMC6348743 DOI: 10.1515/jib-2018-0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
Comorbid states of diseases significantly complicate diagnosis and treatment. Molecular mechanisms of comorbid states of asthma and hypertension are still poorly understood. Prioritization is a way for identifying genes involved in complex phenotypic traits. Existing methods of prioritization consider genetic, expression and evolutionary data, molecular-genetic networks and other. In the case of molecular-genetic networks, as a rule, protein-protein interactions and KEGG networks are used. ANDSystem allows reconstructing associative gene networks, which include more than 20 types of interactions, including protein-protein interactions, expression regulation, transport, catalysis, etc. In this work, a set of genes has been prioritized to find genes potentially involved in asthma and hypertension comorbidity. The prioritization was carried out using well-known methods (ToppGene and Endeavor) and a cross-talk centrality criterion, calculated by analysis of associative gene networks from ANDSystem. The identified genes, including IL1A, CD40LG, STAT3, IL15, FAS, APP, TLR2, C3, IL13 and CXCL10, may be involved in the molecular mechanisms of comorbid asthma/hypertension. An analysis of the dynamics of the frequency of mentioning the most priority genes in scientific publications revealed that the top 100 priority genes are significantly enriched with genes with increased positive dynamics, which may be a positive sign for further studies of these genes.
Collapse
Affiliation(s)
- Olga V Saik
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel S Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Timofey V Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena Yu Bragina
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | - Maxim B Freidin
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | - Victor E Dosenko
- Bogomoletz Institute of Physiology, National Academy of Science, Kiev, Ukraine
| | - Olga I Zolotareva
- Bielefeld University, International Research Training Group "Computational Methods for the Analysis of the Diversity and Dynamics of Genomes", Bielefeld, Germany
| | - Evgeniy L Choynzonov
- Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Ralf Hofestaedt
- Bielefeld University, Technical Faculty, AG Bioinformatics and Medical Informatics, Bielefeld, Germany
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
11
|
Liu C, Li H. Correlation of the severity of chronic kidney disease with serum inflammation, osteoporosis and vitamin D deficiency. Exp Ther Med 2018; 17:368-372. [PMID: 30651805 PMCID: PMC6307476 DOI: 10.3892/etm.2018.6916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Correlation of the severity of chronic kidney disease (CKD) with serum inflammation, osteoporosis and vitamin D deficiency was investigated. A total of 78 patients suffering from CKD who presented to the Union Hospital from December 2015 to December 2017 were selected randomly and divided into three groups based on the severity of the disease. Comparisons of interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), indicators of osteoporosis [serum phosphate, serum calcium and bone mineral density (BMD)], content of 25(OH)D, serum sodium, serum potassium and BUN were conducted among groups. The correlation of in vivo creatinine (Cr) with C-reactive protein (CRP), TNF-α, BMD and vitamin D deficiency were analyzed. With the aggravation of illness, IL-6, CRP, TNF-α, serum phosphate, serum sodium, serum potassium and blood urea nitrogen (BUN) were increased gradually, while serum calcium, BMD and vitamin D were decreased significantly (P<0.05). The content of Cr in patients suffering from osteoporosis was significantly higher than that in normal group (P<0.05). The Cr of patients in the group with abnormal CRP was significantly higher than that with normal CRP (P<0.05). Analysis showed that there is positive correlation between Cr and CRP (r=0.6961, P<0.001), as well as between Cr and TNF-α (r=0.8969, P<0.001); and negative correlation between Cr and BMD (r=0.5472, P<0.001), and between Cr and 25(OH)D (r=0.4733, P<0.001). The severity of CKD is correlated with serum inflammation, osteoporosis and vitamin D deficiency. The higher the severity of the illness, the worse the condition of osteoporosis will be.
Collapse
Affiliation(s)
- Cewen Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Li
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
12
|
Shu J, Liu Z, Jin L, Wang H. An RNA‑sequencing study identifies candidate genes for angiotensin II‑induced cardiac remodeling. Mol Med Rep 2017; 17:1954-1962. [PMID: 29138860 DOI: 10.3892/mmr.2017.8043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/24/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to reveal the underlying mechanism of angiotensin II (AngII)‑induced cardiac remodeling and to identify potential therapeutic targets for prevention. Rat cardiac fibroblasts (CFs) were cultured with 10 nM AngII for 12 h, and CFs without AngII were used as the control. Following RNA isolation from AngII treated and control CFs, RNA‑sequencing was performed to detect gene expression levels. Differentially‑expressed genes (DEGs) were identified using the linear models for microarray analysis package in R software, and their functions and pathways were examined via enrichment analysis. In addition, potential associations at the protein level were revealed via the construction of a protein‑protein interaction (PPI) network. The expression levels of genes of interest were validated via reverse transcription‑quantitative polymerase chain reaction analysis. In total, 126 upregulated and 140 downregulated DEGs were identified. According to the enrichment analysis, acetyl coA carboxylase β (ACACB), interleukin 1β (IL1B), interleukin 1α (IL1A), nitric oxide synthase 2 (NOS2) and matrix metallopeptidase 3 (MMP3) were associated with the immune response, regulation of angiogenesis, superoxide metabolic process and carboxylic acid binding biological processes. Among them, ACACB and MPP3 were two predominant nodes in the PPI network. In addition, IL1B and MMP3 were demonstrated to be upregulated. These five genes, particularly IL1B and MMP3, may be used as candidate markers for the prevention of AngII‑induced cardiac remodeling.
Collapse
Affiliation(s)
- Jin Shu
- Department of Gerontology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Zhanwen Liu
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Li Jin
- Department of Gerontology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Haiya Wang
- Department of Gerontology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, P.R. China
| |
Collapse
|
13
|
Serafín V, Torrente-Rodríguez RM, Batlle M, García de Frutos P, Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Comparative evaluation of the performance of electrochemical immunosensors using magnetic microparticles and nanoparticles. Application to the determination of tyrosine kinase receptor AXL. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2455-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Protective Effects of Growth Arrest-Specific Protein 6 (Gas6) on Sepsis-Induced Acute Kidney Injury. Inflammation 2017; 39:575-82. [PMID: 26552404 DOI: 10.1007/s10753-015-0282-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acute kidney injury (AKI) is a serious complication of sepsis, which has a high mortality rate. Growth arrest-specific protein 6 (Gas6), the protein product of the growth arrest specific gene 6, has been shown to have an anti-apoptotic effect as well as pro-survival capability. Here, we investigated the effects of Gas6 on sepsis-associated AKI in mice subjected to cecal ligation and puncture (CLP). We found that the administration of rmGas6 significantly reduced serum urea nitrogen and creatinine and improved the survival of septic mice. Furthermore, the renal pathological damage induced by CLP was attenuated by rmGas6 treatment. Finally, rmGas6 reduced the renal tissue apoptotic index and the expression of Bax, while it upregulated the expression of Bcl-2. The data suggest that rmGas6 might be used as a potential therapeutic agent for sepsis-induced AKI.
Collapse
|
15
|
Protective Effects of Pterostilbene Against Myocardial Ischemia/Reperfusion Injury in Rats. Inflammation 2017; 40:578-588. [DOI: 10.1007/s10753-016-0504-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Batchu N, Hughson A, Wadosky KM, Morrell CN, Fowell DJ, Korshunov VA. Role of Axl in T-Lymphocyte Survival in Salt-Dependent Hypertension. Arterioscler Thromb Vasc Biol 2016; 36:1638-1646. [PMID: 27365404 PMCID: PMC5096552 DOI: 10.1161/atvbaha.116.307848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Survival of immune and nonimmune cells relies on Axl, a receptor tyrosine kinase, which is implicated in hypertension. Activated T lymphocytes are involved in regulation of high blood pressure. The goal of the study was to investigate the role of Axl in T-lymphocyte functions and its contribution to salt-dependent hypertension. APPROACH AND RESULTS We report increased apoptosis in peripheral blood from Axl(-/-) mice because of lower numbers of white blood cells mostly lymphocytes. In vitro studies showed modest reduction in interferon gamma production in Axl(-/-) type 1 T helper cells. Axl did not affect basic proliferation capacity or production of interleukin 4 in Axl(-/-) type 2 T helper cells. However, competitive repopulation of Axl(-/-) bone marrow or adoptive transfer of Axl(-/-) CD4(+) T cells to Rag1(-/-) mice showed robust effect of Axl on T lymphocyte expansion in vivo. Adoptive transfer of Axl(-/-) CD4(+) T cells was protective in a later phase of deoxycorticosterone-acetate and salt hypertension. Reduced numbers of CD4(+) T cells in circulation and in perivascular adventitia decreased vascular remodeling and increased vascular apoptosis in the late phase of hypertension. CONCLUSIONS These findings suggest that Axl is critical for survival of T lymphocytes, especially during vascular remodeling in hypertension.
Collapse
Affiliation(s)
- N Batchu
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Angie Hughson
- Department of Microbiology and Immunology and David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Kristine M Wadosky
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Craig N Morrell
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Deborah J Fowell
- Department of Microbiology and Immunology and David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Vyacheslav A Korshunov
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA.,Biomedical Genetics, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| |
Collapse
|
17
|
Liu X, Zhang Q, Wu H, Du H, Liu L, Shi H, Wang C, Xia Y, Guo X, Li C, Bao X, Su Q, Sun S, Wang X, Zhou M, Jia Q, Zhao H, Song K, Niu K. Blood Neutrophil to Lymphocyte Ratio as a Predictor of Hypertension. Am J Hypertens 2015; 28:1339-46. [PMID: 25824450 DOI: 10.1093/ajh/hpv034] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/13/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hypertension is a significant global public health challenge. Low-grade inflammation is known to facilitate the development of essential hypertension and target-organ hypertensive damage. Neutrophil to lymphocyte ratio (NLR) is a simple and reliable indicator of inflammation that may also be useful in the prediction of hypertension. METHODS Participants were recruited from Tianjin Medical University's General Hospital-Health Management Centre. A total of 28,850 initially hypertension-free subjects were followed from 2007 to 2013. Adjusted Cox proportional hazards regression models were used to assess relationships between NLR categories and incidence of hypertension. RESULTS During the ~6-year follow-up period (median duration of follow-up (interquartile range): 2.63 (2.58-2.68)), 1,824 subjects developed hypertension. The hazard ratios of hypertension incidence were evaluated in increasing NLR quintiles. Compared with participants with the lowest NLR levels, the multivariable-adjusted hazard ratios (95% confidence interval) of hypertension were related to increasing NLR quintiles and were as follows: 1.08 (0.92, 1.26), 0.97 (0.83, 1.14), 1.10 (0.94, 1.28), and 1.23 (1.06, 1.43), respectively (P for trend < 0.01). Similar results also were observed in the white blood cell and neutrophil counts, but not lymphocyte counts. CONCLUSIONS The study is the first to show the elevated NLR levels significantly correlate with an increased risk of developing hypertension. This result may be useful in elucidating the mechanism underlying the development of hypertension. New therapeutic approaches aimed at inflammation might be proposed to control hypertension and hypertensive damage.
Collapse
Affiliation(s)
- Xing Liu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huanmin Du
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongbin Shi
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Chongjin Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Xia
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaoyan Guo
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Chunlei Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xue Bao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qian Su
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Honglin Zhao
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China; Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
18
|
Affiliation(s)
- Philip Wenzel
- Department of Medicine 2, University Medical Center Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Medicine 2, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
19
|
Batchu SN, Xia J, Ko KA, Doyley MM, Abe JI, Morrell CN, Korshunov VA. Axl modulates immune activation of smooth muscle cells in vein graft remodeling. Am J Physiol Heart Circ Physiol 2015; 309:H1048-58. [PMID: 26276821 DOI: 10.1152/ajpheart.00495.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
Abstract
The pathophysiological mechanisms of the immune activation of smooth muscle cells are not well understood. Increased expression of Axl, a receptor tyrosine kinase, was recently found in arteries from patients after coronary bypass grafts. In the present study, we hypothesized that Axl-dependent immune activation of smooth muscle cells regulates vein graft remodeling. We observed a twofold decrease in intimal thickening after vascular and systemic depletion of Axl in vein grafts. Local depletion of Axl had the greatest effect on immune activation, whereas systemic deletion of Axl reduced intima due to an increase in apoptosis in vein grafts. Primary smooth muscle cells isolated from Axl knockout mice had reduced proinflammatory responses by prevention of the STAT1 pathway. The absence of Axl increased suppressor of cytokine signaling (SOCS)1 expression in smooth muscle cells, a major inhibitory protein for STAT1. Ultrasound imaging suggested that vascular depletion of Axl reduced vein graft stiffness. Axl expression determined the STAT1-SOCS1 balance in vein graft intima and progression of the remodeling. The results of this investigation demonstrate that Axl promotes STAT1 signaling via inhibition of SOCS1 in activated smooth muscle cells in vein graft remodeling.
Collapse
Affiliation(s)
- Sri N Batchu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Jixiang Xia
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Kyung Ae Ko
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester and Hajim School of Engineering and Applied Sciences, Rochester, New York; and
| | - Jun-Ichi Abe
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Craig N Morrell
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Vyacheslav A Korshunov
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| |
Collapse
|
20
|
Batchu SN, Smolock EM, Dyachenko IA, Murashev AN, Korshunov VA. Autonomic dysfunction determines stress-induced cardiovascular and immune complications in mice. J Am Heart Assoc 2015; 4:JAHA.115.001952. [PMID: 25999402 PMCID: PMC4599426 DOI: 10.1161/jaha.115.001952] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Clinical studies suggest that acute inflammation in patients with elevated heart rate (HR) increases morbidity and mortality. The SJL/J (SJL) inbred mouse strain is a unique genetic model that has higher HR and systemic and vascular inflammation compared with C3HeB/FeJ (C3HeB) mice. The goal of this study was to investigate the role of stress on cardiac and vascular complications between 2 strains. METHODS AND RESULTS Radiotelemetry was used for continuous recordings of HR and blood pressure in mice. Hemodynamic differences between mouse strains were very small without stress; however, tail-cuff training generated mild stress and significantly increased HR (≈2-fold) in SJL compared with C3HeB mice. Circulating proinflammatory monocytes (CD11b(+)Ly6C(H) (i)) significantly increased in SJL mice but not in C3HeB mice after stress. Presence of Ly6C(+) cells in injured carotids was elevated only in SJL mice after stress; however, a transfer of bone marrow cells from SJL/C3HeB to C3HeB/SJL chimeras had no effect on HR or vascular inflammation following stress. Arterial inflammation (VCAM-1(+)) was greater in SJL inbred mice or SJL recipient chimeras, even without stress or injury. HR variability was reduced in SJL mice compared with C3HeB mice. CONCLUSIONS We found that impaired parasympathetic activity is central for stress-induced elevation of HR and systemic and vascular inflammation; however, immune cells from stress-susceptible mice had no effect on HR or vascular inflammation in stress-protected mice.
Collapse
Affiliation(s)
- Sri N Batchu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (S.N.B., E.M.S., V.A.K.)
| | - Elaine M Smolock
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (S.N.B., E.M.S., V.A.K.)
| | - Igor A Dyachenko
- Pushchino State Natural-Science Institute, Pushchino, Russia (I.A.D., A.N.M.) Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Pushchino, Russia (I.A.D., A.N.M.)
| | - Arkady N Murashev
- Pushchino State Natural-Science Institute, Pushchino, Russia (I.A.D., A.N.M.) Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Pushchino, Russia (I.A.D., A.N.M.)
| | - Vyacheslav A Korshunov
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (S.N.B., E.M.S., V.A.K.) Biomedical Genetics, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (V.A.K.)
| |
Collapse
|
21
|
Abstract
The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context.
Collapse
|
22
|
Hyde GD, Taylor RF, Ashton N, Borland SJ, Wu HSG, Gilmore AP, Canfield AE. Axl tyrosine kinase protects against tubulo-interstitial apoptosis and progression of renal failure in a murine model of chronic kidney disease and hyperphosphataemia. PLoS One 2014; 9:e102096. [PMID: 25019319 PMCID: PMC4096921 DOI: 10.1371/journal.pone.0102096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/13/2014] [Indexed: 11/24/2022] Open
Abstract
Chronic kidney disease (CKD) is defined as the progressive loss of renal function often involving glomerular, tubulo-interstitial and vascular pathology. CKD is associated with vascular calcification; the extent of which predicts morbidity and mortality. However, the molecular regulation of these events and the progression of chronic kidney disease are not fully elucidated. To investigate the function of Axl receptor tyrosine kinase in CKD we performed a sub-total nephrectomy and fed high phosphate (1%) diet to Axl+/+ and Axl−/− mice. Plasma Gas6 (Axl' ligand), renal Axl expression and downstream Akt signalling were all significantly up-regulated in Axl+/+ mice following renal mass reduction and high phosphate diet, compared to age-matched controls. Axl−/− mice had significantly enhanced uraemia, reduced bodyweight and significantly reduced survival following sub-total nephrectomy and high phosphate diet compared to Axl+/+ mice; only 45% of Axl−/− mice survived to 14 weeks post-surgery compared to 87% of Axl+/+ mice. Histological analysis of kidney remnants revealed no effect of loss of Axl on glomerular hypertrophy, calcification or renal sclerosis but identified significantly increased tubulo-interstitial apoptosis in Axl−/− mice. Vascular calcification was not induced in Axl+/+ or Axl−/− mice in the time frame we were able to examine. In conclusion, we identify the up-regulation of Gas6/Axl signalling as a protective mechanism which reduces tubulo-interstitial apoptosis and slows progression to end-stage renal failure in the murine nephrectomy and high phosphate diet model of CKD.
Collapse
Affiliation(s)
- Gareth D. Hyde
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Rebecca F. Taylor
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Nick Ashton
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Samantha J. Borland
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Andrew P. Gilmore
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ann E. Canfield
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|