1
|
Huang J, Caliskan Guzelce E, Gholami SK, Gawelek KL, Mitchell RN, Pojoga LH, Romero JR, Williams GH, Adler GK. Effects of Mineralocorticoid Receptor Blockade and Statins on Kidney Injury Marker 1 (KIM-1) in Female Rats Receiving L-NAME and Angiotensin II. Int J Mol Sci 2023; 24:6500. [PMID: 37047470 PMCID: PMC10095483 DOI: 10.3390/ijms24076500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Kidney injury molecule-1 (KIM-1) is a biomarker of renal injury and a predictor of cardiovascular disease. Aldosterone, via activation of the mineralocorticoid receptor, is linked to cardiac and renal injury. However, the impact of mineralocorticoid receptor activation and blockade on KIM-1 is uncertain. We investigated whether renal KIM-1 is increased in a cardiorenal injury model induced by L-NAME/ANG II, and whether mineralocorticoid receptor blockade prevents the increase in KIM-1. Since statin use is associated with lower aldosterone, we also investigated whether administering eiSther a lipophilic statin (simvastatin) or a hydrophilic statin (pravastatin) prevents the increase in renal KIM-1. Female Wistar rats (8-10 week old), consuming a high salt diet (1.6% Na+), were randomized to the following conditions for 14 days: control; L-NAME (0.2 mg/mL in drinking water)/ANG II (225 ug/kg/day on days 12-14); L-NAME/ANG II + eplerenone (100 mg/kg/day p.o.); L-NAME/ANG II + pravastatin (20 mg/kg/day p.o.); L-NAME/ANG II + simvastatin (20 mg/kg/day p.o.). Groups treated with L-NAME/ANG II had significantly higher blood pressure, plasma and urine aldosterone, cardiac injury/stroke composite score, and renal KIM-1 than the control group. Both eplerenone and simvastatin reduced 24-h urinary KIM-1 (p = 0.0046, p = 0.031, respectively) and renal KIM-1 immunostaining (p = 0.004, p = 0.037, respectively). Eplerenone also reduced renal KIM-1 mRNA expression (p = 0.012) and cardiac injury/stroke composite score (p = 0.04). Pravastatin did not affect these damage markers. The 24-h urinary KIM-1, renal KIM-1 immunostaining, and renal KIM-1 mRNA expression correlated with cardiac injury/stroke composite score (p < 0.0001, Spearman ranked correlation = 0.69, 0.66, 0.59, respectively). In conclusion, L-NAME/ANG II increases renal KIM-1 and both eplerenone and simvastatin blunt this increase in renal KIM-1.
Collapse
Affiliation(s)
- Jiayan Huang
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ezgi Caliskan Guzelce
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shadi K. Gholami
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kara L. Gawelek
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Richard N. Mitchell
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Luminita H. Pojoga
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jose R. Romero
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gordon H. Williams
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gail K. Adler
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
The prognosis of lipid reprogramming with the HMG-CoA reductase inhibitor, rosuvastatin, in castrated Egyptian prostate cancer patients: Randomized trial. PLoS One 2022; 17:e0278282. [PMID: 36480560 PMCID: PMC9731457 DOI: 10.1371/journal.pone.0278282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
AIM The role of surgical castration and rosuvastatin treatment on lipid profile and lipid metabolism related markers was evaluated for their prognostic significance in metastatic prostate cancer (mPC) patients. METHODS A total of 84 newly diagnosed castrated mPC patients treated with castration were recruited and divided into two groups: Group I served as control (statin non-users) while group II treated with Rosuvastatin (20 mg/day) for 6 months and served as statin users. Prostate specific antigen (PSA), epidermal growth factor receptor (EGFR), Caveolin-1 (CAV1), lipid profile (LDL, HDL, triglycerides (TG) and total cholesterol (TC)) and lipid metabolism related markers (aldoketoreductase (AKR1C4), HMG-CoA reductase (HMGCR), ATP-binding cassette transporter A1 (ABCA1), and soluble low density lipoprotein receptor related protein 1 (SLDLRP1)) were measured at baseline, after 3 and 6 months. Overall survival (OS) was analyzed by Kaplan-Meier and COX regression for prognostic significance. RESULTS Before castration, HMG-CoA reductase was elevated in patients <65 years (P = 0.009). Bone metastasis was associated with high PSA level (P = 0.013), but low HMGCR (P = 0.004). Patients with positive family history for prostate cancer showed high levels of EGFR, TG, TC, LDL, alkaline phosphatase (ALP), but low AKR1C4, SLDLRP1, CAV1 and ABCA-1 levels. Smokers had high CAV1 level (P = 0.017). After 6 months of castration and rosuvastatin administration, PSA, TG, LDL and TC were significantly reduced, while AKR1C4, HMGCR, SLDLRP1, CAV1 and ABCA-1 were significantly increased. Overall survival was reduced in patients with high baseline of SLDLRP1 (>3385 pg/ml, P = 0.001), PSA (>40 ng/ml, P = 0.003) and CAV1 (>4955 pg/ml, P = 0.021). CONCLUSION Results of the current study suggest that the peripheral lipidogenic effects of rosuvastatin may have an impact on the treatment outcome and survival of castrated mPC patients. TRAIL REGISTRATION This trial was registered at the Pan African Clinical Trial Registry with identification number PACTR202102664354163 and at ClinicalTrials.gov with identification number NCT04776889.
Collapse
|
3
|
He J, Cui Z, Zhu Y. The role of caveolae in endothelial dysfunction. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:78-91. [PMID: 37724072 PMCID: PMC10388784 DOI: 10.1515/mr-2021-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Caveolae, the specialized cell-surface plasma membrane invaginations which are abundant in endothelial cells, play critical roles in regulating various cellular processes, including cholesterol homeostasis, nitric oxide production, and signal transduction. Endothelial caveolae serve as a membrane platform for compartmentalization, modulation, and integration of signal events associated with endothelial nitric oxide synthase, ATP synthase β, and integrins, which are involved in the regulation of endothelial dysfunction and related cardiovascular diseases, such as atherosclerosis and hypertension. Furthermore, these dynamic microdomains on cell membrane are modulated by various extracellular stimuli, including cholesterol and flow shear stress. In this brief review, we summarize the critical roles of caveolae in the orchestration of endothelial function based on recent findings as well as our work over the past two decades.
Collapse
Affiliation(s)
- Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin300070, China
| | - Zhen Cui
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin300070, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin300070, China
| |
Collapse
|
4
|
Nishimi K, Adler GK, Roberts AL, Sumner JA, Jung SJ, Chen Q, Tworoger S, Koenen KC, Kubzansky LD. Associations of trauma and posttraumatic stress disorder with aldosterone in women. Psychoneuroendocrinology 2021; 132:105341. [PMID: 34217044 PMCID: PMC8487934 DOI: 10.1016/j.psyneuen.2021.105341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) has been associated with increased cardiovascular risk, however, underlying mechanisms have not been fully specified. PTSD is associated with stress-related hormones, including dysregulated glucocorticoid activity. Dysregulation of aldosterone, a mineralocorticoid activated by psychological stress and implicated in cardiovascular damage, may be a relevant pathway linking PTSD and cardiovascular risk. Few studies to date have evaluated the association between PTSD and aldosterone, none with repeated measures of aldosterone. We examined if trauma and PTSD were associated with altered aldosterone levels relative to women unexposed to trauma. METHODS The association of trauma exposure and chronic PTSD with plasma aldosterone levels was investigated in 521 middle-aged women in the Nurses' Health Study II. Aldosterone was assessed at two time points, 10-16 years apart, and trauma exposure and PTSD were also ascertained for both time points. Regarding exposure assessment, women were characterized based on a structured diagnostic interview as: having chronic PTSD (PTSD at both time points; n = 174); being trauma-exposed (trauma exposure at first time point but no PTSD; n = 174); and being unexposed (no trauma exposure at either time point; reference group for all analyses; n = 173). Linear mixed models examined associations of trauma and PTSD status with log-transformed aldosterone levels, adjusting for covariates and health-related variables that may confound or lie on the pathway between PTSD and altered aldosterone levels. RESULTS Across the sample, mean aldosterone concentration decreased over time. Adjusting for covariates, women with chronic PTSD had significantly lower aldosterone levels averaged over time, compared to women unexposed to trauma (β = - 0.08, p = 0.04). Interactions between trauma/PTSD group and time were not significant, indicating change in aldosterone over time did not differ by trauma/PTSD status. Post-hoc exploratory analyses suggested that menopausal status partially mediated the relationship between chronic PTSD status and aldosterone level, such that postmenopausal status explained 7% of the effect of PTSD on aldosterone. CONCLUSIONS These findings indicate that PTSD is associated with lower levels of aldosterone. Further work is needed to understand implications of this type of dysregulation in a key biological stress system for cardiovascular and other health outcomes previously linked with PTSD.
Collapse
Affiliation(s)
- Kristen Nishimi
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA.
| | - Gail K. Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Andrea L. Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA
| | - Jennifer A. Sumner
- Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095 USA
| | - Sun Jae Jung
- Department of Preventive Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu Seoul 03722 S. Korea
| | - Qixuan Chen
- Department of Biostatistics, Mailman School of Public Health, Columbia University, 722 West 168th St. New York, NY 10032 USA
| | - Shelley Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA,Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Karestan C. Koenen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA
| | - Laura D. Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA
| |
Collapse
|