1
|
Zohora FT, Arora S, Swiss A, Vyavahare N. Reversal of heavy arterial calcification in a rat model of chronic kidney disease using targeted ethylene diamine tetraacetic acid-loaded albumin nanoparticles. Cardiovasc Diagn Ther 2024; 14:489-508. [PMID: 39263487 PMCID: PMC11384463 DOI: 10.21037/cdt-24-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/03/2024] [Indexed: 09/13/2024]
Abstract
Background Elastin degradation and severe calcification in the medial layer of the vessel wall, known as medial arterial calcification (MAC), is typical in the aging population and patients with metabolic disorders, such as diabetes and chronic kidney disease (CKD). We have previously reported that ethylene diamine tetraacetic acid (EDTA) delivery to the site of calcification can be achieved by tagging nanoparticles with an elastin antibody that recognizes explicitly damaged elastin, and such systemic therapy can remove focal calcium deposits from the calcified arteries in CKD rodent model. The current study aims to test whether heavy calcification seen throughout arterial tree and kidneys in CKD can be reversed with nanoparticle therapy. Methods Thirty healthy male Sprague-Dawley rats weighing approximately 300 g, were placed on an adenine diet for 21 non-consecutive days to induce kidney failure, followed by daily vitamin D3 (VitD3) injections for 4 sequential days to cause severe calcification throughout the cardiovascular system and kidneys. DiR-dye loaded and elastin antibody conjugated albumin nanoparticles were used to confirm the targeting of nanoparticles to the calcification area. The rats were divided into two groups for targeted removal of calcification starting at day 7 of the last doses of VitD3. The experimental group received biweekly IV injections of anti-elastin antibody conjugated EDTA loaded human serum albumin nanoparticles (EDTA-HSA-El-Ab NPs), while the sham controls received blank nanoparticles (Blank-HSA-El-Ab NPs) (5 injections in total). Micro-computed tomography (microCT) was used to analyze the extent of calcification. Reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry studies were performed for osteogenic markers, including bone morphogenic protein 2 (BMP2), runt-related transcription factor 2 (RUNX2), and tissue non-specific alkaline phosphatase (TNAP). For comparison, aortic ring organ cultures from healthy rats were treated with high phosphate to induce calcification in vitro, and then they were treated with EDTA. Human calcified femoral arteries were also treated ex vivo with EDTA-HSA-EL-Ab NPs to test if nanoparticles remove heavy calcification. Results EDTA-loaded nanoparticles that specifically target degraded elastin reversed existing heavy mineral deposits in arteries, as per elemental calcium analysis (124.161±34.410 µg Ca per mg of the dry aorta in Blank-HSA-El-Ab NPs vs. 100.520±19.131 µg in EDTA-HSA-El-Ab NPs group, P=0.04) and microCT (object volume, 129.001±37.785 vs. 29.815±24.169 mm3, P=0.0005). The reversal of aortic calcification was accompanied by a significant reduction of bone-associated mRNA expression of BMP2 and RUNX2 (P=0.01). Immunohistochemistry studies corroborated RT-PCR results, showing a reduction of BMP2 and RUNX2 stains in the vessel wall. The rat aortic ring culture study also showed similar results, where osteogenic genes (BMP2, RUNX2) and proteins (BMP2, RUNX2, TNAP) were suppressed upon reversal of calcification with EDTA (P=0.001). We also show ex vivo reversal of human femoral artery calcification by microCT (calcium intensity: untreated, 57.721±28.551 vs. day 6 of treatment, 5.441±3.615, P=0.01) by EDTA nanoparticle therapy. Conclusions This is the first study showing the removal of calcium from heavily calcified arteries by using intravenous targeted EDTA therapy. Such therapy also reversed vascular smooth muscle cell osteoblastic transition and apoptosis in the arterial tissue, thereby potentially creating an environment for suitable tissue repair.
Collapse
Affiliation(s)
| | - Shivani Arora
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | | | - Naren Vyavahare
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
2
|
Cheang I, Zhu X, Lu X, Yue X, Tang Y, Gao R, Liao S, Yao W, Zhou Y, Zhang H, Yiu KH, Li X. Associations of Inflammation with Risk of Cardiovascular and All-Cause Mortality in Adults with Hypertension: An Inflammatory Prognostic Scoring System. J Inflamm Res 2022; 15:6125-6136. [PMID: 36386589 PMCID: PMC9653039 DOI: 10.2147/jir.s384977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/22/2022] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Inflammation is one of the major pathways in the progression of hypertension (HTN), and the related inflammatory markers have demonstrated certain predictive values. The current study aimed to integrate these markers to construct an inflammatory prognostic scoring (IPS) system and to assess the prognostic values of IPS in patients with HTN. METHODS A total of 9846 adult participants with HTN from NHANES 1999-2010 were enrolled and followed up. Demographic characteristics and the related laboratory results for the 12 inflammatory markers were collected. LASSO-COX regression, Kaplan-Meier, restricted cubic spline COX regression (RCS), receiver operator characteristic curve (ROC), and random survival forests (RSF) analysis were applied to explore the values of individual and IPS parameters. RESULTS At the census date of follow-up, 2387 (24.2%) were identified as all-cause deaths and 484 (4.9%) as cardiovascular deaths. All inflammatory markers showed certain prognostic values. Then, based on the LAASO analysis, LDH, ALP, LYM, NLR, MLR, SIRI, and RDW were included in the construction of the IPS system. The higher IPS had significantly worse long-term prognosis in Kaplan-Meier analysis (p log-rank <0.001). Also, IPS remained an independent prognosticator compared to the lowest quartile (All p for trend <0.001), and the ROC showed satisfactory values in the long-term prognosis of both cardiovascular and all-cause mortality. RCS further showed a linear association of IPS with cardiovascular mortality and all-cause mortality (p for non-linearity >0.05). Two different algorithms of RSF, variable importance and minimal depth, to evaluate the prognostic importance showed that IPS was the best in survival prediction. CONCLUSION Our results highlight that a higher IPS (system integrating the inflammatory markers) was associated with the increased risk of cardiovascular and all-cause mortality in patients with HTN, suggesting that IPS is a useful method for risk stratification in HTN.
Collapse
Affiliation(s)
- Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, 999077, People’s Republic of China
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Xinyi Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Xin Yue
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Yuan Tang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Rongrong Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Wenming Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, People’s Republic of China
| | - Kai-Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, 999077, People’s Republic of China
- Division of Cardiology, Department of Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, People’s Republic of China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| |
Collapse
|
3
|
Rahbani JF, Scholtes C, Lagarde DM, Hussain MF, Roesler A, Dykstra CB, Bunk J, Samborska B, O'Brien SL, Tripp E, Pacis A, Angueira AR, Johansen OS, Cinkornpumin J, Hossain I, Lynes MD, Zhang Y, White AP, Pastor WA, Chondronikola M, Sidossis L, Klein S, Kralli A, Cypess AM, Pedersen SB, Jessen N, Tseng YH, Gerhart-Hines Z, Seale P, Calebiro D, Giguère V, Kazak L. ADRA1A-Gα q signalling potentiates adipocyte thermogenesis through CKB and TNAP. Nat Metab 2022; 4:1459-1473. [PMID: 36344764 PMCID: PMC9684074 DOI: 10.1038/s42255-022-00667-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis1. Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α1-adrenergic receptor (AR) and β3-AR signalling induces the expression of thermogenic genes of the futile creatine cycle2,3, and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α1-AR subtype (ADRA1A) and Gαq to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gαq and Gαs signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A-Gαq-futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis.
Collapse
Affiliation(s)
- Janane F Rahbani
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Charlotte Scholtes
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Damien M Lagarde
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Mohammed F Hussain
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Anna Roesler
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Christien B Dykstra
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jakub Bunk
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bozena Samborska
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Shannon L O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Emma Tripp
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Alain Pacis
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Anthony R Angueira
- Institute for Diabetes, Obesity & Metabolism and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia S Johansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Ishtiaque Hossain
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Matthew D Lynes
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Yang Zhang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Andrew P White
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - William A Pastor
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Maria Chondronikola
- Department of Nutrition and Radiology, University of California, Davis, Davis, CA, USA
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Labros Sidossis
- Department of Kinesiology and Health, School of Arts and Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Samuel Klein
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, USA
| | - Anastasia Kralli
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steen B Pedersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Vincent Giguère
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Aresta Branco MSL, Gutierrez Cruz A, Dayton J, Perrino BA, Mutafova-Yambolieva VN. Mechanosensitive Hydrolysis of ATP and ADP in Lamina Propria of the Murine Bladder by Membrane-Bound and Soluble Nucleotidases. Front Physiol 2022; 13:918100. [PMID: 35784885 PMCID: PMC9246094 DOI: 10.3389/fphys.2022.918100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Prior studies suggest that urothelium-released adenosine 5′-triphosphate (ATP) has a prominent role in bladder mechanotransduction. Urothelial ATP regulates the micturition cycle through activation of purinergic receptors that are expressed in many cell types in the lamina propria (LP), including afferent neurons, and might also be important for direct mechanosensitive signaling between urothelium and detrusor. The excitatory action of ATP is terminated by enzymatic hydrolysis, which subsequently produces bioactive metabolites. We examined possible mechanosensitive mechanisms of ATP hydrolysis in the LP by determining the degradation of 1,N6-etheno-ATP (eATP) at the anti-luminal side of nondistended (empty) or distended (full) murine (C57BL/6J) detrusor-free bladder model, using HPLC. The hydrolysis of eATP and eADP was greater in contact with LP of distended than of nondistended bladders whereas the hydrolysis of eAMP remained unchanged during filling, suggesting that some steps of eATP hydrolysis in the LP are mechanosensitive. eATP and eADP were also catabolized in extraluminal solutions (ELS) that were in contact with the LP of detrusor-free bladders, but removed from the organ chambers prior to addition of substrate. The degradation of both purines was greater in ELS from distended than from nondistended preparations, suggesting the presence of mechanosensitive release of soluble nucleotidases in the LP. The released enzyme activities were affected differently by Ca2+ and Mg2+. The common nucleotidase inhibitors ARL67156, POM-1, PSB06126, and ENPP1 Inhibitor C, but not the alkaline phosphatase inhibitor (-)-p-bromotetramisole oxalate, inhibited the enzymes released during bladder distention. Membrane-bound nucleotidases were identified in tissue homogenates and in concentrated ELS from distended preparations by Wes immunodetection. The relative distribution of nucleotidases was ENTPD1 >> ENPP1 > ENTPD2 = ENTPD3 > ENPP3 = NT5E >> ENTPD8 = TNAP in urothelium and ENTPD1 >> ENTPD3 >> ENPP3 > ENPP1 = ENTPD2 = NT5E >> ENTPD8 = TNAP in concentrated ELS, suggesting that regulated ectodomain shedding of membrane-bound nucleotidases possibly occurs in the LP during bladder filling. Mechanosensitive degradation of ATP and ADP by membrane-bound and soluble nucleotidases in the LP diminishes the availability of excitatory purines in the LP at the end of bladder filling. This might be a safeguard mechanism to prevent over-excitability of the bladder. Proper proportions of excitatory and inhibitory purines in the bladder wall are determined by distention-associated purine release and purine metabolism.
Collapse
|