1
|
Liang J, Fu Z, Liu Q, Shen Y, Zhang X, Weng Z, Xu J, Li W, Xu C, Zhou Y, Gu A. Interactions among maternal smoking, breastfeeding, and offspring genetic factors on the risk of adult-onset hypertension. BMC Med 2022; 20:454. [PMID: 36424578 PMCID: PMC9694874 DOI: 10.1186/s12916-022-02648-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Previous studies have reported that maternal smoking during pregnancy and breastfeeding may affect the occurrence of hypertension, but whether early life factors modify the impact of the offspring's genetic risk on hypertension is still unknown. The aim of this study was to investigate the relationships among maternal smoking and breastfeeding with adult-onset hypertension and the modified impact of offspring genetic susceptibility. METHODS This study included 437,185 participants from the UK Biobank who were initially free of hypertension and provided a prospective cohort of individuals aged 40 to 69 years. The association of maternal smoking during pregnancy and breastfeeding with hypertension was examined by using the Cox regression model. Then, a polygenic risk score (PRS) for hypertension was used to test the gene-environmental interaction on hypertension. RESULTS During a median follow-up period of 8.7 years, a total of 68,148 cases of hypertension were identified in this study. The hazard ratios (HRs) and 95% confidence intervals (CIs) of hypertension for maternal smoking and breastfeeding were 1.11 (1.09, 1.13) and 0.96 (0.94, 0.98), respectively. However, no evidence of an interaction between maternal smoking and breastfeeding was observed. Across all levels of genetic risk, including high genetic risk, maternal smoking and nonbreastfeeding had higher hypertension hazards than nonmaternal smoking and breastfeeding, respectively. The adjusted HRs (95% CIs) of hypertension were 1.80 (1.73, 1.87) in those who had high genetic predisposition plus maternal smoking and 1.67 (1.60-1.74) in those with nonbreastfeeding and high genetic risk. There were significant additive interactions between maternal smoking or breastfeeding and genetic factors on the incidence of hypertension. CONCLUSIONS Maternal smoking and nonbreastfeeding were associated with a higher risk of hypertension in adulthood and may attenuate the risk of hypertension related to genetic factors. These results suggested that adherence to nonmaternal smoking and breastfeeding was associated with a lower risk of hypertension among participants with all gradients of genetic risk.
Collapse
Affiliation(s)
- Jingjia Liang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zuqiang Fu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.,School of Public Health, Southeast University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yuehong Shen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Wenxiang Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China.
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China. .,School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Weng Z, Liu Q, Yan Q, Liang J, Zhang X, Xu J, Li W, Xu C, Gu A. Associations of genetic risk factors and air pollution with incident hypertension among participants in the UK Biobank study. CHEMOSPHERE 2022; 299:134398. [PMID: 35339527 DOI: 10.1016/j.chemosphere.2022.134398] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The purposes of this study were to quantify the association of the combination of air pollution and genetic risk factors with hypertension and explore the interactions between air pollution and genetic risk. This study included 391,366 participants of European ancestry initially free from pre-existing hypertension in the UK Biobank. Exposure to ambient air pollutants, including particulate matter (PM2.5 PM2.5-10, and PM10), nitrogen dioxide (NO2) and nitrogen oxides (NOX), was estimated through land use regression modelling, and the associations between air pollutants and the incidence of hypertension were investigated using a Cox proportional hazards model adjusted for covariates. Furthermore, we established a polygenic risk score for hypertension and assessed the combined effect of genetic susceptibility and air pollution on incident hypertension. The results showed significant associations between the risk of hypertension and exposure to PM2.5 (hazard ratio [HR]: 1.41, 95% confidence interval [CI]: 1.29-1.53; per 10 μg/m3), PM10 (1.05, 1.00-1.09; per 10 μg/m3), and NOX (1.01, 1.01-1.02 per 10 μg/m3). Additive effects of PM2.5 and NOX exposure and genetic risk were observed. Compared to individuals with a low genetic risk and low air pollution exposure, participants with high air pollution exposure and a high genetic risk had a significantly increased risk of hypertension (PM2.5: 71% (66%-76%), PM10: 59% (55%-64%), NOX: 65% (60%-70%)). Our results indicate that long-term exposure to air pollution is associated with an increased risk of hypertension, especially in individuals with a high genetic risk.
Collapse
Affiliation(s)
- Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenxiang Li
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|