1
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
2
|
Xie L, Liu H, Zhang K, Pan Y, Chen M, Xue X, Wan G. Exploring the molecular mechanism of ginseng against anthracycline-induced cardiotoxicity based on network pharmacology, molecular docking and molecular dynamics simulation. Hereditas 2024; 161:31. [PMID: 39243097 PMCID: PMC11378563 DOI: 10.1186/s41065-024-00334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Previous clinical and basic studies have revealed that ginseng might have cardioprotective properties against anthracycline-induced cardiotoxicity (AIC). However, the underlying mechanism of ginseng action against AIC remains insufficiently understood. The aim of this study was to explore the related targets and pathways of ginseng against AIC using network pharmacology, molecular docking, cellular thermal shift assay (CETSA) and molecular dynamics (MD) simulations. RESULTS Fourteen drug-disease common targets were identified. Enrichment analysis showed that the AGE-RAGE in diabetic complications, fluid shear stress and atherosclerosis, and TNF signaling pathway were potentially involved in the action of ginseng against AIC. Molecular docking demonstrated that the core components including Kaempferol, beta-Sitosterol, and Fumarine had notable binding activity with the three core targets CCNA2, STAT1, and ICAM1. Furthermore, the stable complex of STAT1 and Kaempferol with favorable affinity was further confirmed by CETSA and MD simulation. CONCLUSIONS This study suggested that ginseng might exert their protective effects against AIC through the derived effector compounds beta-Sitosterol, Kaempferol and Fumarine by targeting CCNA2, STAT1, and ICAM1, and modulating AGE-RAGE in diabetic complications, fluid shear stress and atherosclerosis, and TNF signaling pathways.
Collapse
Affiliation(s)
- Lin Xie
- Department of Oncology, Institute of Medicine and Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Hanze Liu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang Road, Shiyan, Hubei, 442000, China
| | - Ke Zhang
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang Road, Shiyan, Hubei, 442000, China
| | - Yijun Pan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang Road, Shiyan, Hubei, 442000, China
| | - Mengyao Chen
- Department of Oncology, Institute of Medicine and Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xiangyue Xue
- Department of Oncology, Institute of Medicine and Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Guoxing Wan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang Road, Shiyan, Hubei, 442000, China.
| |
Collapse
|
3
|
Frangogiannis NG. The fate and role of the pericytes in myocardial diseases. Eur J Clin Invest 2024; 54:e14204. [PMID: 38586936 DOI: 10.1111/eci.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The adult mammalian heart contains a large population of pericytes that play important roles in homeostasis and disease. In the normal heart, pericytes regulate microvascular permeability and flow. Myocardial diseases are associated with marked alterations in pericyte phenotype and function. This review manuscript discusses the role of pericytes in cardiac homeostasis and disease. Following myocardial infarction (MI), cardiac pericytes participate in all phases of cardiac repair. During the inflammatory phase, pericytes may secrete cytokines and chemokines and may regulate leukocyte trafficking, through formation of intercellular gaps that serve as exit points for inflammatory cells. Moreover, pericyte contraction induces microvascular constriction, contributing to the pathogenesis of 'no-reflow' in ischemia and reperfusion. During the proliferative phase, pericytes are activated by growth factors, such as transforming growth factor (TGF)-β and contribute to fibrosis, predominantly through secretion of fibrogenic mediators. A fraction of pericytes acquires fibroblast identity but contributes only to a small percentage of infarct fibroblasts and myofibroblasts. As the scar matures, pericytes form a coat around infarct neovessels, promoting stabilization of the vasculature. Pericytes may also be involved in the pathogenesis of chronic heart failure, by regulating inflammation, fibrosis, angiogenesis and myocardial perfusion. Pericytes are also important targets of viral infections (such as SARS-CoV2) and may be implicated in the pathogenesis of cardiac complications of COVID19. Considering their role in myocardial inflammation, fibrosis and angiogenesis, pericytes may be promising therapeutic targets in myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
4
|
Esposito A, Gatti M, Trivieri MG, Agricola E, Peretto G, Gallone G, Catapano F, Pradella S, Devesa A, Bruno E, Fiore G, Francone M, Palmisano A. Imaging for the assessment of the arrhythmogenic potential of mitral valve prolapse. Eur Radiol 2024; 34:4243-4260. [PMID: 38078997 PMCID: PMC11164824 DOI: 10.1007/s00330-023-10413-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 05/18/2024]
Abstract
Mitral valve prolapse (MVP) is the most common valve disease in the western world and recently emerged as a possible substrate for sudden cardiac death (SCD). It is estimated an annual risk of sudden cardiac death of 0.2 to 1.9% mostly caused by complex ventricular arrhythmias (VA). Several mechanisms have been recognized as potentially responsible for arrhythmia onset in MVP, resulting from the combination of morpho-functional abnormality of the mitral valve, structural substrates (regional myocardial hypertrophy, fibrosis, Purkinje fibers activity, inflammation), and mechanical stretch. Echocardiography plays a central role in MVP diagnosis and assessment of severity of regurgitation. Several abnormalities detectable by echocardiography can be prognostic for the occurrence of VA, from morphological alteration including leaflet redundancy and thickness, mitral annular dilatation, and mitral annulus disjunction (MAD), to motion abnormalities detectable with "Pickelhaube" sign. Additionally, speckle-tracking echocardiography may identify MVP patients at higher risk for VA by detection of increased mechanical dispersion. On the other hand, cardiac magnetic resonance (CMR) has the capability to provide a comprehensive risk stratification combining the identification of morphological and motion alteration with the detection of myocardial replacement and interstitial fibrosis, making CMR an ideal method for arrhythmia risk stratification in patients with MVP. Finally, recent studies have suggested a potential role in risk stratification of new techniques such as hybrid PET-MR and late contrast enhancement CT. The purpose of this review is to provide an overview of the mitral valve prolapse syndrome with a focus on the role of imaging in arrhythmic risk stratification. CLINICAL RELEVANCE STATEMENT: Mitral valve prolapse is the most frequent valve condition potentially associated with arrhythmias. Imaging has a central role in the identification of anatomical, functional, mechanical, and structural alterations potentially associated with a higher risk of developing complex ventricular arrhythmia and sudden cardiac death. KEY POINTS: • Mitral valve prolapse is a common valve disease potentially associated with complex ventricular arrhythmia and sudden cardiac death. • The mechanism of arrhythmogenesis in mitral valve prolapse is complex and multifactorial, due to the interplay among multiple conditions including valve morphological alteration, mechanical stretch, myocardial structure remodeling with fibrosis, and inflammation. • Cardiac imaging, especially echocardiography and cardiac magnetic resonance, is crucial in the identification of several features associated with the potential risk of serious cardiac events. In particular, cardiac magnetic resonance has the advantage of being able to detect myocardial fibrosis which is currently the strongest prognosticator.
Collapse
Affiliation(s)
- Antonio Esposito
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- School of Medicine, Università Vita-Salute San Raffaele, Milan, Italy.
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, AOU Città Della Salute E Della Scienza Di Torino, University of Turin, Turin, Italy
| | - Maria Giovanna Trivieri
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eustachio Agricola
- School of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
- Cardiovascular Imaging Unit, Cardiothoracic Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Peretto
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guglielmo Gallone
- Città Della Salute E Della Scienza, University of Turin, Turin, Italy
| | - Federica Catapano
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Silvia Pradella
- Department of Emergency Radiology, University Hospital Careggi, Florence, Italy
| | - Ana Devesa
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elisa Bruno
- School of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Giorgio Fiore
- Cardiovascular Imaging Unit, Cardiothoracic Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Francone
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Anna Palmisano
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
5
|
Centner AM, Shiel EA, Farra W, Cannon EN, Landim-Vieira M, Salazar G, Chelko SP. High-Fat Diet Augments Myocardial Inflammation and Cardiac Dysfunction in Arrhythmogenic Cardiomyopathy. Nutrients 2024; 16:2087. [PMID: 38999835 PMCID: PMC11243382 DOI: 10.3390/nu16132087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a familial heart disease characterized by cardiac dysfunction, arrhythmias, and myocardial inflammation. Exercise and stress can influence the disease's progression. Thus, an investigation of whether a high-fat diet (HFD) contributes to ACM pathogenesis is warranted. In a robust ACM mouse model, 8-week-old Desmoglein-2 mutant (Dsg2mut/mut) mice were fed either an HFD or rodent chow for 8 weeks. Chow-fed wildtype (WT) mice served as controls. Echo- and electrocardiography images pre- and post-dietary intervention were obtained, and the lipid burden, inflammatory markers, and myocardial fibrosis were assessed at the study endpoint. HFD-fed Dsg2mut/mut mice showed numerous P-wave perturbations, reduced R-amplitude, left ventricle (LV) remodeling, and reduced ejection fraction (%LVEF). Notable elevations in plasma high-density lipoprotein (HDL) were observed, which correlated with the %LVEF. The myocardial inflammatory adipokines, adiponectin (AdipoQ) and fibroblast growth factor-1, were substantially elevated in HFD-fed Dsg2mut/mut mice, albeit no compounding effect was observed in cardiac fibrosis. The HFD not only potentiated cardiac dysfunction but additionally promoted adverse cardiac remodeling. Further investigation is warranted, particularly given elevated AdipoQ levels and the positive correlation of HDL with the %LVEF, which may suggest a protective effect. Altogether, the HFD worsened some, but not all, disease phenotypes in Dsg2mut/mut mice. Notwithstanding, diet may be a modifiable environmental factor in ACM disease progression.
Collapse
Affiliation(s)
- Ann M Centner
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Emily A Shiel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Waleed Farra
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Elisa N Cannon
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Gloria Salazar
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Tallahassee, FL 32306, USA
| | - Stephen P Chelko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Stratmann B, Eggers B, Mattern Y, de Carvalho TS, Marcus-Alic K, Tschoepe D. Maladaptive response following glucose overload in GLUT4-overexpressing H9C2 cardiomyoblasts. Diabetes Obes Metab 2024; 26:2379-2389. [PMID: 38528822 DOI: 10.1111/dom.15553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Glucose overload drives diabetic cardiomyopathy by affecting the tricarboxylic acid pathway. However, it is still unknown how cells could overcome massive chronic glucose influx on cellular and structural level. METHODS/MATERIALS Expression profiles of hyperglycemic, glucose transporter-4 (GLUT4) overexpressing H9C2 (KE2) cardiomyoblasts loaded with 30 mM glucose (KE230L) and wild type (WT) cardiomyoblasts loaded with 30 mM glucose (WT30L) were compared using proteomics, real-time polymerase quantitative chain reaction analysis, or Western blotting, and immunocytochemistry. RESULTS The findings suggest that hyperglycemic insulin-sensitive cells at the onset of diabetic cardiomyopathy present complex changes in levels of structural cell-related proteins like tissue inhibitor of metalloproteases-1 (1.3 fold), intercellular adhesion molecule 1 (1.8 fold), type-IV-collagen (3.2 fold), chaperones (Glucose-Regulated Protein 78: 1.8 fold), autophagy (Autophagosome Proteins LC3A, LC3B: 1.3 fold), and in unfolded protein response (UPR; activating transcription factor 6α expression: 2.3 fold and processing: 2.4 fold). Increased f-actin levels were detectable with glucose overload by immnocytochemistry. Effects on energy balance (1.6 fold), sirtuin expression profile (Sirtuin 1: 0.7 fold, sirtuin 3: 1.9 fold, and sirtuin 6: 4.2 fold), and antioxidant enzymes (Catalase: 0.8 fold and Superoxide dismutase 2: 1.5 fold) were detected. CONCLUSION In conclusion, these findings implicate induction of chronic cell distress by sustained glucose accumulation with a non-compensatory repair reaction not preventing final cell death. This might explain the chronic long lasting pathogenesis observed in developing heart failure in diabetes mellitus.
Collapse
Affiliation(s)
- Bernd Stratmann
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Britta Eggers
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Centre for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Yvonne Mattern
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Tayana Silva de Carvalho
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Katrin Marcus-Alic
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Centre for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Diethelm Tschoepe
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Stiftung DHD (Der herzkranke Diabetiker) Stiftung in der Deutschen Diabetes-Stiftung, Bad Oeynhausen, Germany
| |
Collapse
|
7
|
Xu C, Tsihlis G, Chau K, Trinh K, Rogers NM, Julovi SM. Novel Perspectives in Chronic Kidney Disease-Specific Cardiovascular Disease. Int J Mol Sci 2024; 25:2658. [PMID: 38473905 PMCID: PMC10931927 DOI: 10.3390/ijms25052658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects > 10% of the global adult population and significantly increases the risk of cardiovascular disease (CVD), which remains the leading cause of death in this population. The development and progression of CVD-compared to the general population-is premature and accelerated, manifesting as coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. CKD and CV disease combine to cause multimorbid cardiorenal syndrome (CRS) due to contributions from shared risk factors, including systolic hypertension, diabetes mellitus, obesity, and dyslipidemia. Additional neurohormonal activation, innate immunity, and inflammation contribute to progressive cardiac and renal deterioration, reflecting the strong bidirectional interaction between these organ systems. A shared molecular pathophysiology-including inflammation, oxidative stress, senescence, and hemodynamic fluctuations characterise all types of CRS. This review highlights the evolving paradigm and recent advances in our understanding of the molecular biology of CRS, outlining the potential for disease-specific therapies and biomarker disease detection.
Collapse
Affiliation(s)
- Cuicui Xu
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
| | - George Tsihlis
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
| | - Katrina Chau
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
- Blacktown Clinical School, School of Medicine, Western Sydney University, Sydney, NSW 2148, Australia
| | - Katie Trinh
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
| | - Natasha M. Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| | - Sohel M. Julovi
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| |
Collapse
|
8
|
Zhu Y, Chen B, Zu Y. Identifying OGN as a Biomarker Covering Multiple Pathogenic Pathways for Diagnosing Heart Failure: From Machine Learning to Mechanism Interpretation. Biomolecules 2024; 14:179. [PMID: 38397416 PMCID: PMC10886937 DOI: 10.3390/biom14020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The pathophysiologic heterogeneity of heart failure (HF) necessitates a more detailed identification of diagnostic biomarkers that can reflect its diverse pathogenic pathways. METHODS We conducted weighted gene and multiscale embedded gene co-expression network analysis on differentially expressed genes obtained from HF and non-HF specimens. We employed a machine learning integration framework and protein-protein interaction network to identify diagnostic biomarkers. Additionally, we integrated gene set variation analysis, gene set enrichment analysis (GSEA), and transcription factor (TF)-target analysis to unravel the biomarker-dominant pathways. Leveraging single-sample GSEA and molecular docking, we predicted immune cells and therapeutic drugs related to biomarkers. Quantitative polymerase chain reaction validated the expressions of biomarkers in the plasma of HF patients. A two-sample Mendelian randomization analysis was implemented to investigate the causal impact of biomarkers on HF. RESULTS We first identified COL14A1, OGN, MFAP4, and SFRP4 as candidate biomarkers with robust diagnostic performance. We revealed that regulating biomarkers in HF pathogenesis involves TFs (BNC2, MEOX2) and pathways (cell adhesion molecules, chemokine signaling pathway, cytokine-cytokine receptor interaction, oxidative phosphorylation). Moreover, we observed the elevated infiltration of effector memory CD4+ T cells in HF, which was highly related to biomarkers and could impact immune pathways. Captopril, aldosterone antagonist, cyclopenthiazide, estradiol, tolazoline, and genistein were predicted as therapeutic drugs alleviating HF via interactions with biomarkers. In vitro study confirmed the up-regulation of OGN as a plasma biomarker of HF. Mendelian randomization analysis suggested that genetic predisposition toward higher plasma OGN promoted the risk of HF. CONCLUSIONS We propose OGN as a diagnostic biomarker for HF, which may advance our understanding of the diagnosis and pathogenesis of HF.
Collapse
Affiliation(s)
- Yihao Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Chen
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Lin-gang), Shanghai 201306, China
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| |
Collapse
|
9
|
Hundemer GL, Leung AA, Kline GA, Brown JM, Turcu AF, Vaidya A. Biomarkers to Guide Medical Therapy in Primary Aldosteronism. Endocr Rev 2024; 45:69-94. [PMID: 37439256 PMCID: PMC10765164 DOI: 10.1210/endrev/bnad024] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Primary aldosteronism (PA) is an endocrinopathy characterized by dysregulated aldosterone production that occurs despite suppression of renin and angiotensin II, and that is non-suppressible by volume and sodium loading. The effectiveness of surgical adrenalectomy for patients with lateralizing PA is characterized by the attenuation of excess aldosterone production leading to blood pressure reduction, correction of hypokalemia, and increases in renin-biomarkers that collectively indicate a reversal of PA pathophysiology and restoration of normal physiology. Even though the vast majority of patients with PA will ultimately be treated medically rather than surgically, there is a lack of guidance on how to optimize medical therapy and on key metrics of success. Herein, we review the evidence justifying approaches to medical management of PA and biomarkers that reflect endocrine principles of restoring normal physiology. We review the current arsenal of medical therapies, including dietary sodium restriction, steroidal and nonsteroidal mineralocorticoid receptor antagonists, epithelial sodium channel inhibitors, and aldosterone synthase inhibitors. It is crucial that clinicians recognize that multimodal medical treatment for PA can be highly effective at reducing the risk for adverse cardiovascular and kidney outcomes when titrated with intention. The key biomarkers reflective of optimized medical therapy are unsurprisingly similar to the physiologic expectations following surgical adrenalectomy: control of blood pressure with the fewest number of antihypertensive agents, normalization of serum potassium without supplementation, and a rise in renin. Pragmatic approaches to achieve these objectives while mitigating adverse effects are reviewed.
Collapse
Affiliation(s)
- Gregory L Hundemer
- Department of Medicine, Division of Nephrology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Alexander A Leung
- Department of Medicine, Division of Endocrinology and Metabolism, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gregory A Kline
- Department of Medicine, Division of Endocrinology and Metabolism, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jenifer M Brown
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anand Vaidya
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Zhang YL, Bai J, Yu WJ, Lin QY, Li HH. CD11b mediates hypertensive cardiac remodeling by regulating macrophage infiltration and polarization. J Adv Res 2024; 55:17-31. [PMID: 36822392 PMCID: PMC10770112 DOI: 10.1016/j.jare.2023.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
INTRODUCTION Leukocyte infiltration is an early event during cardiac remodeling frequently leading to heart failure (HF). Integrins mediate leukocyte infiltration during inflammation. However, the importance of specific integrins in hypertensive cardiac remodeling is still unclear. OBJECTIVES To elucidate the significance of CD11b in hypertensive cardiac remodeling. METHODS Angiotensin (Ang II) or deoxycorticosterone acetate (DOCA)-salt was used to induce cardiac remodeling in mice of gene knockout (KO), bone marrow (BM) chimera, and the CD11b neutralizing antibody or agonist leukadherin-1 (LA1) treatment. RESULTS Our microarray data showed that integrin subunits Itgam (CD11b) and Itgb2 (CD18) were the most highly upregulated in Ang II-infused hearts. CD11b expression and CD11b/CD18+ myelomonocytes were also time-dependently increased. KO or pharmacological blockade of CD11b greatly attenuated cardiac remodeling and macrophage infiltration and M1 polarization induced by Ang II or DOCA-salt. This protection was verified in wild-type mice transplanted with CD11b-deficient BM cells. Conversely, administration of CD11b agonist LA1 showed the opposite effects. Further, CD11b KO reduced Ang II-induced macrophage adhesion and M1 polarization, leading to reduction of cardiomyocyte enlargement and fibroblast differentiation in vitro. The numbers of CD14+CD11b+CD18+ monocytes and CD15+CD11b+CD18+ granulocytes were obviously higher in HF patients than in normal controls. CONCLUSION Our data demonstrate an important role of CD11b+ myeloid cells in hypertensive cardiac remodeling, and suggest that HF may benefit from targeting CD11b.
Collapse
Affiliation(s)
- Yun-Long Zhang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing 100020, China
| | - Jie Bai
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, No.193, Lianhe Road, Xigang District, Dalian 116011, China
| | - Wei-Jia Yu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, No.193, Lianhe Road, Xigang District, Dalian 116011, China
| | - Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, No.193, Lianhe Road, Xigang District, Dalian 116011, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing 100020, China.
| |
Collapse
|
11
|
Ito S, Yamatani F, Arai Y, Manabe E, Tsujino T. Dimethyl Fumarate Ameliorated Cardiorenal Anemia Syndrome and Improved Overall Survival in Dahl/Salt-Sensitive Rats. J Pharmacol Exp Ther 2023; 387:299-305. [PMID: 37857438 DOI: 10.1124/jpet.123.001692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Cardiovascular disease, chronic kidney disease, and anemia are known to adversely affect each other. Inflammation is commonly involved in these diseases. Cardiorenal anemia syndrome (CRAS) is the name given to this mutually harmful condition. Dimethyl fumarate (DMF) is a Food and Drug Administration-approved antioxidant and anti-inflammatory agent. The purpose of this study was to investigate the effects of DMF on Dahl/salt-sensitive (DS) rats as a CRAS model. Six-week-old DS rats were divided into three groups: the control group, the high-salt (HS) group, and the HS+DMF group. The HS and HS+DMF groups were fed a high-salt diet (8% NaCl) from 6 weeks of age. In the HS+DMF group, DMF (90 mg/kg per day) was orally administered from 6 to 15 weeks of age. Systolic blood pressure was measured every 2 weeks. The heart and renal injuries were assessed with histopathological analysis. The heart and renal expression of mRNAs was assessed by reverse-transcription polymerase chain reaction. DMF significantly improved overall survival, which was shortened by HS in DS rats. Systolic blood pressure increased in the HS group compared with the control group, and DMF tended to suppress this change. DMF ameliorated the cardiac and renal abnormalities confirmed in the HS group by histopathological analysis. Furthermore, the changes in mRNA expressions associated with disease exacerbation in the HS group were suppressed by DMF. DMF also improved anemia. This study suggests that DMF improves overall survival in DS rats through organ-protective effects and is effective against cardiorenal anemia syndrome. SIGNIFICANCE STATEMENT: Dimethyl fumarate was found to improve overall survival in Dahl/salt-sensitive rats, associated with its ability to ameliorate anemia and induce cardioprotective and renoprotective effects through anti-inflammatory and antifibrotic effects.
Collapse
Affiliation(s)
- Satoyasu Ito
- The Second Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy (S.I., F.Y., Y.A., E.M., T.T.) and Department of Cardiovascular and Renal Medicine, School of Medicine (E.M., T.T.), Hyogo Medical University, Hyogo, Japan
| | - Fuyuka Yamatani
- The Second Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy (S.I., F.Y., Y.A., E.M., T.T.) and Department of Cardiovascular and Renal Medicine, School of Medicine (E.M., T.T.), Hyogo Medical University, Hyogo, Japan
| | - Yuri Arai
- The Second Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy (S.I., F.Y., Y.A., E.M., T.T.) and Department of Cardiovascular and Renal Medicine, School of Medicine (E.M., T.T.), Hyogo Medical University, Hyogo, Japan
| | - Eri Manabe
- The Second Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy (S.I., F.Y., Y.A., E.M., T.T.) and Department of Cardiovascular and Renal Medicine, School of Medicine (E.M., T.T.), Hyogo Medical University, Hyogo, Japan
| | - Takeshi Tsujino
- The Second Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy (S.I., F.Y., Y.A., E.M., T.T.) and Department of Cardiovascular and Renal Medicine, School of Medicine (E.M., T.T.), Hyogo Medical University, Hyogo, Japan
| |
Collapse
|
12
|
Drăgan A, Mateescu AD. Novel Biomarkers and Advanced Cardiac Imaging in Aortic Stenosis: Old and New. Biomolecules 2023; 13:1661. [PMID: 38002343 PMCID: PMC10669288 DOI: 10.3390/biom13111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, the symptomatic status and left ventricular ejection fraction (LVEF) play a crucial role in aortic stenosis (AS) assessment. However, the symptoms are often subjective, and LVEF is not a sensitive marker of left ventricle (LV) decompensation. Over the past years, the cardiac structure and function research on AS has increased due to advanced imaging modalities and potential therapies. New imaging parameters emerged as predictors of disease progression in AS. LV global longitudinal strain has proved useful for risk stratification in asymptomatic severe AS patients with preserved LVEF. The assessment of myocardial fibrosis by cardiac magnetic resonance is the most studied application and offers prognostic information on AS. Moreover, the usage of biomarkers in AS as objective measures of LV decompensation has recently gained more interest. The present review focuses on the transition from compensatory LV hypertrophy (H) to LV dysfunction and the biomarkers associated with myocardial wall stress, fibrosis, and myocyte death. Moreover, we discuss the potential impact of non-invasive imaging parameters for optimizing the timing of aortic valve replacement and provide insight into novel biomarkers for possible prognostic use in AS. However, data from randomized clinical trials are necessary to define their utility in daily practice.
Collapse
Affiliation(s)
- Anca Drăgan
- Department of Cardiovascular Anaesthesiology and Intensive Care, Emergency Institute for Cardiovascular Diseases “Prof Dr C C Iliescu”, 258 Fundeni Road, 022328 Bucharest, Romania
| | - Anca Doina Mateescu
- Department of Cardiology, Emergency Institute for Cardiovascular Diseases “Prof Dr C C Iliescu”, 258 Fundeni Road, 022328 Bucharest, Romania;
| |
Collapse
|
13
|
Guo T, Chen L, Li F, Cao Y, Li D, Xiong Q, Ling Z. Biomimetic nanoparticles loaded lutein functionalized by macrophage membrane for targeted amelioration pressure overload-induced cardiac fibrosis. Biomed Pharmacother 2023; 167:115579. [PMID: 37776637 DOI: 10.1016/j.biopha.2023.115579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Lutein is a strong antioxidant with anti-inflammatory, anti-oxidative and cardioprotective effects and could be a promising candidate for the treatment of hypertensive heart disease (HHD), but is not clinically appealing because of its low oral bioavailability and main distribution in the eyes. To address this, a biomimetic drug delivery system-MMLNPs was established by coating macrophage membranes (MMs) onto lutein-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (LNPs). This study characterized the physical properties of biomimetic nanoparticles and examined the targeting capability, therapeutic effects and mechanism, and biosecurity of administering them for cardiac fibrosis therapy in the transverse aortic constriction (TAC) model and in vitro. Transmission electron microscope mapping and dynamic light scattering analysis proved that MMLNPs were spherical nanoparticles camouflaged by a layer of cell membrane and had negative zeta potential. Confocal laser scanning microscopy and flow cytometry analysis showed that MMs on the biomimetic nanoparticles hindered the phagocytosis of macrophages and facilitated the targeting of activated endothelial cells. Ex vivo fluorescence imaging experiments demonstrated the targeting of biomimetic nanoparticles to the injured heart. EdU assay indicated that MMLNPs have the same potential to inhibit angiotensin (Ang) II-induced cardiac fibroblast proliferation as free lutein. Furthermore, echocardiography showed that MMLNPs improved cardiac function and structure, and Masson staining and western blotting showed that MMLNPs ameliorated cardiac fibrosis. We found MMLNPs inhibited the interleukin (IL)-11/ERK signaling pathway which was up-regulated in the TAC model compared to the sham-operated mouse. Biochemical testing and hematoxylin and eosin staining proved that the long-term use of MMLNPs lacked biological toxicity. Collectively, MMLNPs might be a promising nanodrug delivery approach to attenuate pressure overload (PO)-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Lihua Chen
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Fang Li
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Dan Li
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Qingsong Xiong
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Zhiyu Ling
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| |
Collapse
|
14
|
Allbritton-King JD, García-Cardeña G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front Cell Dev Biol 2023; 11:1278166. [PMID: 37965580 PMCID: PMC10642230 DOI: 10.3389/fcell.2023.1278166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The vascular endothelium is a multifunctional cellular system which directly influences blood components and cells within the vessel wall in a given tissue. Importantly, this cellular interface undergoes critical phenotypic changes in response to various biochemical and hemodynamic stimuli, driving several developmental and pathophysiological processes. Multiple studies have indicated a central role of the endothelium in the initiation, progression, and clinical outcomes of cardiac disease. In this review we synthesize the current understanding of endothelial function and dysfunction as mediators of the cardiomyocyte phenotype in the setting of distinct cardiac pathologies; outline existing in vivo and in vitro models where key features of endothelial cell dysfunction can be recapitulated; and discuss future directions for development of endothelium-targeted therapeutics for cardiac diseases with limited existing treatment options.
Collapse
Affiliation(s)
- Jules D. Allbritton-King
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Guillermo García-Cardeña
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
15
|
Ravassa S, López B, Treibel TA, San José G, Losada-Fuentenebro B, Tapia L, Bayés-Genís A, Díez J, González A. Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med 2023; 93:101194. [PMID: 37384998 DOI: 10.1016/j.mam.2023.101194] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.
Collapse
Affiliation(s)
- Susana Ravassa
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, UK; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Gorka San José
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Blanca Losada-Fuentenebro
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Leire Tapia
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain; Servei de Cardiologia i Unitat d'Insuficiència Cardíaca, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
16
|
Cattaneo M, Aleksova A, Malovini A, Avolio E, Thomas A, Alvino VV, Kilcooley M, Pieronne-Deperrois M, Ouvrard-Pascaud A, Maciag A, Spinetti G, Kussauer S, Lemcke H, Skorska A, Vasudevan P, Castiglione S, Raucci A, David R, Richard V, Beltrami AP, Madeddu P, Puca AA. BPIFB4 and its longevity-associated haplotype protect from cardiac ischemia in humans and mice. Cell Death Dis 2023; 14:523. [PMID: 37582912 PMCID: PMC10427721 DOI: 10.1038/s41419-023-06011-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023]
Abstract
Long-living individuals (LLIs) escape age-related cardiovascular complications until the very last stage of life. Previous studies have shown that a Longevity-Associated Variant (LAV) of the BPI Fold Containing Family B Member 4 (BPIFB4) gene correlates with an extraordinarily prolonged life span. Moreover, delivery of the LAV-BPIFB4 gene exerted therapeutic action in murine models of atherosclerosis, limb ischemia, diabetic cardiomyopathy, and aging. We hypothesize that downregulation of BPIFB4 expression marks the severity of coronary artery disease (CAD) in human subjects, and supplementation of the LAV-BPIFB4 protects the heart from ischemia. In an elderly cohort with acute myocardial infarction (MI), patients with three-vessel CAD were characterized by lower levels of the natural logarithm (Ln) of peripheral blood BPIFB4 (p = 0.0077). The inverse association between Ln BPIFB4 and three-vessel CAD was confirmed by logistic regression adjusting for confounders (Odds Ratio = 0.81, p = 0.0054). Moreover, in infarcted mice, a single administration of LAV-BPIFB4 rescued cardiac function and vascularization. In vitro studies showed that LAV-BPIFB4 protein supplementation exerted chronotropic and inotropic actions on induced pluripotent stem cell (iPSC)-derived cardiomyocytes. In addition, LAV-BPIFB4 inhibited the pro-fibrotic phenotype in human cardiac fibroblasts. These findings provide a strong rationale and proof of concept evidence for treating CAD with the longevity BPIFB4 gene/protein.
Collapse
Grants
- PG/18/66/33838 British Heart Foundation
- British Heart Foundation (BHF)
- Ministery of health RF-2016-02364864 IRCCS MultiMedica
- the Italian Ministry of Health, Ricerca Corrente to the Centro Cardiologico Monzino IRCCS
- EU structural Fund (ESF/14-BM-A55-0024/18), the DFG (DA1296/6-1), the German Heart Foundation (F/01/12), the FORUN Program of Rostock University Medical Centre (889001 and 889003),the Josef and Käthe Klinz Foundation (T319/29737/2017), the DAMP Foundation and the BMBF (VIP+ 00240).
- Regione Friuli Venezia Giulia, within the framework of “legge regionale 17/2004: Contributi per la ricerca clinica, traslazionale, di base, epidemiologica e organizzativa”; Project HEARTzheimer"
Collapse
Affiliation(s)
| | - Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Alberto Malovini
- Laboratory of Informatics and Systems Engineering for Clinical Research, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Elisa Avolio
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anita Thomas
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Michael Kilcooley
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | - Anna Maciag
- Cardiovascular Department, IRCCS MultiMedica, Milan, Italy
| | - Gaia Spinetti
- Cardiovascular Department, IRCCS MultiMedica, Milan, Italy
| | - Sophie Kussauer
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | - Anna Skorska
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | - Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | - Stefania Castiglione
- Experimental Cardio-oncology and Cardiovascular Aging Unit Centro Cardiologico Monzino, Milan, Italy
| | - Angela Raucci
- Experimental Cardio-oncology and Cardiovascular Aging Unit Centro Cardiologico Monzino, Milan, Italy
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | | | - Antonio Paolo Beltrami
- Department of Medicine, University of Udine, Academic Hospital of Udine, ASUFC, Udine, Italy
| | - Paolo Madeddu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Annibale Alessandro Puca
- Cardiovascular Department, IRCCS MultiMedica, Milan, Italy.
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy.
| |
Collapse
|
17
|
Giro P, Cunningham JW, Rasmussen-Torvik L, Bielinski SJ, Larson NB, Colangelo LA, Jacobs DR, Gross M, Reiner AP, Lloyd-Jones DM, Guo X, Taylor K, Vaduganathan M, Post WS, Bertoni A, Ballantyne C, Shah A, Claggett B, Boerwinkle E, Yu B, Solomon SD, Shah SJ, Patel RB. Missense Genetic Variation of ICAM1 and Incident Heart Failure. J Card Fail 2023; 29:1163-1172. [PMID: 36882149 PMCID: PMC10477308 DOI: 10.1016/j.cardfail.2023.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Intercellular adhesion molecule-1 (ICAM-1) is a cell surface protein that participates in endothelial activation and is hypothesized to play a central role in heart failure (HF). We evaluated associations of ICAM1 missense genetic variants with circulating ICAM-1 levels and with incident HF. METHODS AND RESULTS We identified 3 missense variants within ICAM1 (rs5491, rs5498 and rs1799969) and evaluated their associations with ICAM-1 levels in the Coronary Artery Risk Development in Young Adults Study and the Multi-Ethnic Study of Atherosclerosis (MESA). We determined the association among these 3 variants and incident HF in MESA. We separately evaluated significant associations in the Atherosclerosis Risk in Communities (ARIC) study. Of the 3 missense variants, rs5491 was common in Black participants (minor allele frequency [MAF] > 20%) and rare in other race/ethnic groups (MAF < 5%). In Black participants, the presence of rs5491 was associated with higher levels of circulating ICAM-1 at 2 timepoints separated by 8 years. Among Black participants in MESA (n = 1600), the presence of rs5491 was associated with an increased risk of incident HF with preserved ejection fraction (HFpEF; HR = 2.30; [95% CI 1.25-4.21; P = 0.007]). The other ICAM1 missense variants (rs5498 and rs1799969) were associated with ICAM-1 levels, but there were no associations with HF. In ARIC, rs5491 was significantly associated with incident HF (HR = 1.24 [95% CI 1.02 - 1.51]; P = 0.03), with a similar direction of effect for HFpEF that was not statistically significant. CONCLUSIONS A common ICAM1 missense variant among Black individuals may be associated with increased risk of HF, which may be HFpEF-specific.
Collapse
Affiliation(s)
- Pedro Giro
- From the Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jonathan W Cunningham
- Division of Cardiology, Department of Medicine, Brigham and Woman's Hospital, Boston, MA
| | - Laura Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Nicholas B Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Laura A Colangelo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Donald M Lloyd-Jones
- From the Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Kent Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Muthiah Vaduganathan
- Division of Cardiology, Department of Medicine, Brigham and Woman's Hospital, Boston, MA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Alain Bertoni
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | | | - Amil Shah
- Division of Cardiology, Department of Medicine, Brigham and Woman's Hospital, Boston, MA
| | - Brian Claggett
- Division of Cardiology, Department of Medicine, Brigham and Woman's Hospital, Boston, MA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX
| | - Scott D Solomon
- Division of Cardiology, Department of Medicine, Brigham and Woman's Hospital, Boston, MA
| | - Sanjiv J Shah
- From the Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ravi B Patel
- From the Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
18
|
Francisco J, Guan J, Zhang Y, Nakada Y, Mareedu S, Sung EA, Hu CM, Oka S, Zhai P, Sadoshima J, Del Re DP. Suppression of myeloid YAP antagonizes adverse cardiac remodeling during pressure overload stress. J Mol Cell Cardiol 2023; 181:1-14. [PMID: 37235928 PMCID: PMC10524516 DOI: 10.1016/j.yjmcc.2023.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Inflammation is an integral component of cardiovascular disease and is thought to contribute to cardiac dysfunction and heart failure. While ischemia-induced inflammation has been extensively studied in the heart, relatively less is known regarding cardiac inflammation during non-ischemic stress. Recent work has implicated a role for Yes-associated protein (YAP) in modulating inflammation in response to ischemic injury; however, whether YAP influences inflammation in the heart during non-ischemic stress is not described. We hypothesized that YAP mediates a pro-inflammatory response during pressure overload (PO)-induced non-ischemic injury, and that targeted YAP inhibition in the myeloid compartment is cardioprotective. In mice, PO elicited myeloid YAP activation, and myeloid-specific YAP knockout mice (YAPF/F;LysMCre) subjected to PO stress had better systolic function, and attenuated pathological remodeling compared to control mice. Inflammatory indicators were also significantly attenuated, while pro-resolving genes including Vegfa were enhanced, in the myocardium, and in isolated macrophages, of myeloid YAP KO mice after PO. Experiments using bone marrow-derived macrophages (BMDMs) from YAP KO and control mice demonstrated that YAP suppression shifted polarization toward a resolving phenotype. We also observed attenuated NLRP3 inflammasome priming and function in YAP deficient BMDMs, as well as in myeloid YAP KO hearts following PO, indicating disruption of inflammasome induction. Finally, we leveraged nanoparticle-mediated delivery of the YAP inhibitor verteporfin and observed attenuated PO-induced pathological remodeling compared to DMSO nanoparticle control treatment. These data implicate myeloid YAP as an important molecular nodal point that facilitates cardiac inflammation and fibrosis during PO stress and suggest that selective inhibition of YAP may prove a novel therapeutic target in non-ischemic heart disease.
Collapse
Affiliation(s)
- Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jin Guan
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yu Zhang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yasuki Nakada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Satvik Mareedu
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Che-Ming Hu
- Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | - Shinichi Oka
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
19
|
Mezue K, Driggin E. Genetic Variation in Intercellular Adhesion Molecule-1 (ICAM-1) and Diastolic Heart Failure in the Black Population in the United States. J Card Fail 2023; 29:1173-1174. [PMID: 37062471 DOI: 10.1016/j.cardfail.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Affiliation(s)
- Kenechukwu Mezue
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT.
| | - Elissa Driggin
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
20
|
Baumeier C, Harms D, Aleshcheva G, Gross U, Escher F, Schultheiss HP. Advancing Precision Medicine in Myocarditis: Current Status and Future Perspectives in Endomyocardial Biopsy-Based Diagnostics and Therapeutic Approaches. J Clin Med 2023; 12:5050. [PMID: 37568452 PMCID: PMC10419903 DOI: 10.3390/jcm12155050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The diagnosis and specific and causal treatment of myocarditis and inflammatory cardiomyopathy remain a major clinical challenge. Despite the rapid development of new imaging techniques, endomyocardial biopsies remain the gold standard for accurate diagnosis of inflammatory myocardial disease. With the introduction and continued development of immunohistochemical inflammation diagnostics in combination with viral nucleic acid testing, myocarditis diagnostics have improved significantly since their introduction. Together with new technologies such as miRNA and gene expression profiling, quantification of specific immune cell markers, and determination of viral activity, diagnostic accuracy and patient prognosis will continue to improve in the future. In this review, we summarize the current knowledge on the pathogenesis and diagnosis of myocarditis and inflammatory cardiomyopathies and highlight future perspectives for more in-depth and specialized biopsy diagnostics and precision, personalized medicine approaches.
Collapse
Affiliation(s)
- Christian Baumeier
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
| | - Dominik Harms
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
- Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Ganna Aleshcheva
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
| | - Ulrich Gross
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
| | - Felicitas Escher
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Virchow Klinikum, 13353 Berlin, Germany;
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Heinz-Peter Schultheiss
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
| |
Collapse
|
21
|
Kyle Martin W, Schladweiler MC, Oshiro W, Smoot J, Fisher A, Williams W, Valdez M, Miller CN, Jackson TW, Freeborn D, Kim YH, Davies D, Ian Gilmour M, Kodavanti U, Kodavanti P, Hazari MS, Farraj AK. Wildfire-related smoke inhalation worsens cardiovascular risk in sleep disrupted rats. FRONTIERS IN ENVIRONMENTAL HEALTH 2023; 2:1166918. [PMID: 38116203 PMCID: PMC10726696 DOI: 10.3389/fenvh.2023.1166918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Introduction As a lifestyle factor, poor sleep status is associated with increased cardiovascular morbidity and mortality and may be influenced by environmental stressors, including air pollution. Methods To determine whether exposure to air pollution modified cardiovascular effects of sleep disruption, we evaluated the effects of single or repeated (twice/wk for 4 wks) inhalation exposure to eucalyptus wood smoke (ES; 964 μg/m3 for 1 h), a key wildland fire air pollution source, on mild sleep loss in the form of gentle handling in rats. Blood pressure (BP) radiotelemetry and echocardiography were evaluated along with assessments of lung and systemic inflammation, cardiac and hypothalamic gene expression, and heart rate variability (HRV), a measure of cardiac autonomic tone. Results and Discussion GH alone disrupted sleep, as evidenced by active period-like locomotor activity, and increases in BP, heart rate (HR), and hypothalamic expression of the circadian gene Per2. A single bout of sleep disruption and ES, but neither alone, increased HR and BP as rats transitioned into their active period, a period aligned with a critical early morning window for stroke risk in humans. These responses were immediately preceded by reduced HRV, indicating increased cardiac sympathetic tone. In addition, only sleep disrupted rats exposed to ES had increased HR and BP during the final sleep disruption period. These rats also had increased cardiac output and cardiac expression of genes related to adrenergic function, and regulation of vasoconstriction and systemic blood pressure one day after final ES exposure. There was little evidence of lung or systemic inflammation, except for increases in serum LDL cholesterol and alanine aminotransferase. These results suggest that inhaled air pollution increases sleep perturbation-related cardiovascular risk, potentially in part by increased sympathetic activity.
Collapse
Affiliation(s)
- W. Kyle Martin
- Curriculum in Toxicology and Environmental Medicine, UNC, Chapel Hill, NC, United States
| | - M. C. Schladweiler
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - W. Oshiro
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - J. Smoot
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - A. Fisher
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - W. Williams
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. Valdez
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - C. N. Miller
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - T. W. Jackson
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - D. Freeborn
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - Y. H. Kim
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - D. Davies
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. Ian Gilmour
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - U. Kodavanti
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - P. Kodavanti
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. S. Hazari
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - A. K. Farraj
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| |
Collapse
|
22
|
Zambrano MA, Alcaide P. Immune Cells in Cardiac Injury Repair and Remodeling. Curr Cardiol Rep 2023; 25:315-323. [PMID: 36961658 PMCID: PMC10852991 DOI: 10.1007/s11886-023-01854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE OF REVIEW Immune cells are emerging as central cellular components of the heart which communicate with cardiac resident cells during homeostasis, cardiac injury, and remodeling. These findings are contributing to the development and continuous expansion of the new field of cardio-immunology. We review the most recent literature on this topic and discuss ongoing and future efforts to advance this field forward. RECENT FINDINGS Cell-fate mapping, strategy depleting, and reconstituting immune cells in pre-clinical models of cardiac disease, combined with the investigation of the human heart at the single cell level, are contributing immensely to our understanding of the complex intercellular communication between immune and non-immune cells in the heart. While the acute immune response is necessary to initiate inflammation and tissue repair post injury, it becomes detrimental when sustained over time and contributes to adverse cardiac remodeling and pathology. Understanding the specific functions of immune cells in the context of the cardiac environment will provide new opportunities for immunomodulation to induce or tune down inflammation as needed in heart disease.
Collapse
Affiliation(s)
- Maria Antonia Zambrano
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, M&V 701, 02111, Boston, MA, USA
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, M&V 701, 02111, Boston, MA, USA.
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
23
|
Sun Z, Lou Y, Hu X, Song F, Zheng X, Hu Y, Ding H, Zhang Y, Huang P. Single-cell sequencing analysis fibrosis provides insights into the pathobiological cell types and cytokines of radiation-induced pulmonary fibrosis. BMC Pulm Med 2023; 23:149. [PMID: 37118713 PMCID: PMC10148423 DOI: 10.1186/s12890-023-02424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Radiotherapy is an essential treatment for chest cancer. Radiation-induced pulmonary fibrosis (RIPF) is an almost irreversible interstitial lung disease; however, its pathogenesis remains unclear. METHODS We analyzed specific changes in cell populations and potential markers by using single-cell sequencing datasets from the Sequence Read Archive database, PERFORMED from control (0 Gy) and thoracic irradiated (20 Gy) mouse lungs at day 150 post-radiation. We performed IHC and ELISA on lung tissue and cells to validate the potential marker cytokines identified by the analysis on rat thoracic irradiated molds (30 Gy). RESULTS Single-cell sequencing analysis showed changes in abundance across cell types and at the single-cell level, with B and T cells showing the most significant changes in abundance. And four cytokines, CCL5, ICAM1, PF4, and TNF, were significantly upregulated in lung tissues of RIPF rats and cell supernatants after ionizing radiation. CONCLUSION Cytokines CCL5, ICAM1, PF4, and TNF may play essential roles in radiation pulmonary fibrosis. They are potential targets for the treatment of radiation pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhiyong Sun
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yutao Lou
- College of pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaoping Hu
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Feifeng Song
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaowei Zheng
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Hu
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haiying Ding
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Yang X, Cheng K, Wang LY, Jiang JG. The role of endothelial cell in cardiac hypertrophy: Focusing on angiogenesis and intercellular crosstalk. Biomed Pharmacother 2023; 163:114799. [PMID: 37121147 DOI: 10.1016/j.biopha.2023.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Cardiac hypertrophy is characterized by cardiac structural remodeling, fibrosis, microvascular rarefaction, and chronic inflammation. The heart is structurally organized by different cell types, including cardiomyocytes, fibroblasts, endothelial cells, and immune cells. These cells highly interact with each other by a number of paracrine or autocrine factors. Cell-cell communication is indispensable for cardiac development, but also plays a vital role in regulating cardiac response to damage. Although cardiomyocytes and fibroblasts are deemed as key regulators of hypertrophic stimulation, other cells, including endothelial cells, also exert important effects on cardiac hypertrophy. More particularly, endothelial cells are the most abundant cells in the heart, which make up the basic structure of blood vessels and are widespread around other cells in the heart, implicating the great and inbuilt advantage of intercellular crosstalk. Cardiac microvascular plexuses are essential for transport of liquids, nutrients, molecules and cells within the heart. Meanwhile, endothelial cell-mediated paracrine signals have multiple positive or negative influences on cardiac hypertrophy. However, a comprehensive discussion of these influences and consequences is required. This review aims to summarize the basic function of endothelial cells in angiogenesis, with an emphasis on angiogenic molecules under hypertrophic conditions. The secondary objective of the research is to fully discuss the key molecules involved in the intercellular crosstalk and the endothelial cell-mediated protective or detrimental effects on other cardiac cells. This review provides a more comprehensive understanding of the overall role of endothelial cells in cardiac hypertrophy and guides the therapeutic approaches and drug development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xing Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China
| | - Kun Cheng
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Lu-Yun Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| | - Jian-Gang Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| |
Collapse
|
25
|
González-Herrera F, Anfossi R, Catalán M, Gutiérrez-Figueroa R, Maya JD, Díaz-Araya G, Vivar R. Lipoxin A4 prevents high glucose-induced inflammatory response in cardiac fibroblast through FOXO1 inhibition. Cell Signal 2023; 106:110657. [PMID: 36933776 DOI: 10.1016/j.cellsig.2023.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Cardiac cells respond to various pathophysiological stimuli, synthesizing inflammatory molecules that allow tissue repair and proper functioning of the heart; however, perpetuation of the inflammatory response can lead to cardiac fibrosis and heart dysfunction. High concentration of glucose (HG) induces an inflammatory and fibrotic response in the heart. Cardiac fibroblasts (CFs) are resident cells of the heart that respond to deleterious stimuli, increasing the synthesis and secretion of both fibrotic and proinflammatory molecules. The molecular mechanisms that regulate inflammation in CFs are unknown, thus, it is important to find new targets that allow improving treatments for HG-induced cardiac dysfunction. NFκB is the master regulator of inflammation, while FoxO1 is a new participant in the inflammatory response, including inflammation induced by HG; however, its role in the inflammatory response of CFs is unknown. The inflammation resolution is essential for an effective tissue repair and recovery of the organ function. Lipoxin A4 (LXA4) is an anti-inflammatory agent with cytoprotective effects, while its cardioprotective effects have not been fully studied. Thus, in this study, we analyze the role of p65/NFκB, and FoxO1 in CFs inflammation induced by HG, evaluating the anti-inflammatory properties of LXA4. Our results demonstrated that HG induces the inflammatory response in CFs, using an in vitro and ex vivo model, while FoxO1 inhibition and silencing prevented HG effects. Additionally, LXA4 inhibited the activation of FoxO1 and p65/NFκB, and inflammation of CFs induced by HG. Therefore, our results suggest that FoxO1 and LXA4 could be novel drug targets for the treatment of HG-induced inflammatory and fibrotic disorders in the heart.
Collapse
Affiliation(s)
- Fabiola González-Herrera
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renatto Anfossi
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mabel Catalán
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renata Gutiérrez-Figueroa
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Diego Maya
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Guillermo Díaz-Araya
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Raúl Vivar
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
26
|
Dieterlen MT, Klaeske K, Spampinato R, Marin-Cuartas M, Wiesner K, Morningstar J, Norris RA, Melnitchouk S, Levine RA, van Kampen A, Borger MA. Histopathological insights into mitral valve prolapse-induced fibrosis. Front Cardiovasc Med 2023; 10:1057986. [PMID: 36960475 PMCID: PMC10028262 DOI: 10.3389/fcvm.2023.1057986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Mitral valve prolapse (MVP) is a cardiac valve disease that not only affects the mitral valve (MV), provoking mitral regurgitation, but also leads to maladaptive structural changes in the heart. Such structural changes include the formation of left ventricular (LV) regionalized fibrosis, especially affecting the papillary muscles and inferobasal LV wall. The occurrence of regional fibrosis in MVP patients is hypothesized to be a consequence of increased mechanical stress on the papillary muscles and surrounding myocardium during systole and altered mitral annular motion. These mechanisms appear to induce fibrosis in valve-linked regions, independent of volume-overload remodeling effects of mitral regurgitation. In clinical practice, quantification of myocardial fibrosis is performed with cardiovascular magnetic resonance (CMR) imaging, even though CMR has sensitivity limitations in detecting myocardial fibrosis, especially in detecting interstitial fibrosis. Regional LV fibrosis is clinically relevant because even in the absence of mitral regurgitation, it has been associated with ventricular arrhythmias and sudden cardiac death in MVP patients. Myocardial fibrosis may also be associated with LV dysfunction following MV surgery. The current article provides an overview of current histopathological studies investigating LV fibrosis and remodeling in MVP patients. In addition, we elucidate the ability of histopathological studies to quantify fibrotic remodeling in MVP and gain deeper understanding of the pathophysiological processes. Furthermore, molecular changes such as alterations in collagen expression in MVP patients are reviewed.
Collapse
Affiliation(s)
- Maja-Theresa Dieterlen
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Kristin Klaeske
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Ricardo Spampinato
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Mateo Marin-Cuartas
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Karoline Wiesner
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Jordan Morningstar
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Serguei Melnitchouk
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert A. Levine
- Cardiac Ultrasound Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Antonia van Kampen
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael A. Borger
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| |
Collapse
|
27
|
Du L, Sun X, Gong H, Wang T, Jiang L, Huang C, Xu X, Li Z, Xu H, Ma L, Li W, Chen T, Xu Q. Single cell and lineage tracing studies reveal the impact of CD34 + cells on myocardial fibrosis during heart failure. Stem Cell Res Ther 2023; 14:33. [PMID: 36805782 PMCID: PMC9942332 DOI: 10.1186/s13287-023-03256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND CD34+ cells have been used to treat the patients with heart failure, but the outcome is variable. It is of great significance to scrutinize the fate and the mechanism of CD34+ cell differentiation in vivo during heart failure and explore its intervention strategy. METHODS We performed single-cell RNA sequencing (scRNA-seq) of the total non-cardiomyocytes and enriched Cd34-tdTomato+ lineage cells in the murine (male Cd34-CreERT2; Rosa26-tdTomato mice) pressure overload model (transverse aortic constriction, TAC), and total non-cardiomyocytes from human adult hearts. Then, in order to determine the origin of CD34+ cell that plays a role in myocardial fibrosis, bone marrow transplantation model was performed. Furthermore, to further clarify the role of CD34 + cells in myocardial remodeling in response to TAC injury, we generated Cd34-CreERT2; Rosa26-eGFP-DTA (Cre/DTA) mice. RESULTS By analyzing the transcriptomes of 59,505 single cells from the mouse heart and 22,537 single cells from the human heart, we illustrated the dynamics of cell landscape during the progression of heart hypertrophy, including CD34+ cells, fibroblasts, endothelial and immune cells. By combining genetic lineage tracing and bone marrow transplantation models, we demonstrated that non-bone-marrow-derived CD34+ cells give rise to fibroblasts and endothelial cells, while bone-marrow-derived CD34+ cell turned into immune cells only in response to pressure overload. Interestingly, partial depletion of CD34+ cells alleviated the severity of myocardial fibrosis with a significant improvement of cardiac function in Cd34-CreERT2; Rosa26-eGFP-DTA model. Similar changes of non-cardiomyocyte composition and cellular heterogeneity of heart failure were also observed in human patient with heart failure. Furthermore, immunostaining showed a double labeling of CD34 and fibroblast markers in human heart tissue. Mechanistically, our single-cell pseudotime analysis of scRNA-seq data and in vitro cell culture study revealed that Wnt-β-catenin and TGFβ1/Smad pathways are critical in regulating CD34+ cell differentiation toward fibroblasts. CONCLUSIONS Our study provides a cellular landscape of CD34+ cell-derived cells in the hypertrophy heart of human and animal models, indicating that non-bone-marrow-derived CD34+ cells differentiating into fibroblasts largely account for cardiac fibrosis. These findings may provide novel insights for the pathogenesis of cardiac fibrosis and have further potential therapeutic implications for the heart failure.
Collapse
Affiliation(s)
- Luping Du
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Xiaotong Sun
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Hui Gong
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Ting Wang
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Liujun Jiang
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Chengchen Huang
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Xiaodong Xu
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Zhoubin Li
- grid.13402.340000 0004 1759 700XDepartment of Lung Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Hongfei Xu
- grid.13402.340000 0004 1759 700XDepartment of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Liang Ma
- grid.13402.340000 0004 1759 700XDepartment of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Weidong Li
- Department of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Ting Chen
- Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China. .,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China.
| | - Qingbo Xu
- Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
28
|
Han B, Zhang X, Wang L, Yuan W. Dysbiosis of Gut Microbiota Contributes to Uremic Cardiomyopathy via Induction of IFNγ-Producing CD4 + T Cells Expansion. Microbiol Spectr 2023; 11:e0310122. [PMID: 36788674 PMCID: PMC9927280 DOI: 10.1128/spectrum.03101-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Uremic cardiomyopathy (UCM) correlates with chronic kidney disease (CKD)-induced morbidity and mortality. Gut microbiota has been involved in the pathogenesis of certain cardiovascular disease, but the role of gut microbiota in the pathogenesis of UCM remains unknown. Here, we performed a case-control study to compare the gut microbiota of patients with CKD and healthy controls by 16S rRNA (rRNA) gene sequencing. To test the causative relationship between gut microbiota and UCM, we performed fecal microbiota transplantation (FMT) in 5/6th nephrectomy model of CKD. We found that opportunistic pathogens, particularly Klebsiella pneumoniae (K. pneumoniae), are markedly enriched in patients with CKD. FMT from CKD patients aggravated diastolic dysfunction in the mouse model. The diastolic dysfunction was associated with microbiome-dependent increases in heart-infiltrating IFNγ+ CD4+ T cells. Monocolonization with K. pneumoniae increased cardiac IFNγ+ CD4+ T cells infiltration and promoted UCM development of the mouse model. A probiotic Bifidobacterium animalis decreased the relative abundance of K. pneumoniae, reduced levels of cardiac IFNγ+ CD4+ T cells and ameliorated the severity of diastolic dysfunction in the mice. Thus, the aberrant gut microbiota in CKD patients, especially K. pneumoniae, contributed to UCM pathogenesis through the induction of heart-infiltrating IFNγ+ CD4+ T cells expansion, proposing that a Gut Microbiota-Gut-Kidney-Heart axis could play a critical role in elucidating the etiology of UCM, and suggesting that modulation of the gut bacteria may serve as a promising target for the amelioration of UCM. IMPORTANCE Uremic cardiomyopathy (UCM) correlates tightly with increased mortality in patients with chronic kidney disease (CKD), yet the pathogenesis of UCM remains incompletely understood, limiting therapeutic approaches. Our study proposed that a Gut Microbiota-Gut-Kidney-Heart axis could play a critical role in understanding etiology of UCM. There is a major need in future clinical trials of patients with CKD to explore if modulation of gut microbiota by fecal microbiota transplantation (FMT), probiotics or antibiotics can alleviate cardiac dysfunction, reduce mortality, and improve life quality.
Collapse
Affiliation(s)
- Bin Han
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqian Zhang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Wang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Sanders E, Alcaide P. Red light-green light: T-cell trafficking in cardiac and vascular inflammation. Am J Physiol Cell Physiol 2023; 324:C58-C66. [PMID: 36409175 PMCID: PMC9762958 DOI: 10.1152/ajpcell.00421.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
Extravasation of T cells from the bloodstream into inflamed tissues requires interactions between T cells and vascular endothelial cells, a necessary step that allows T cells to exert their effector function during the immune response to pathogens and to sterile insults. This cellular cross talk involves adhesion molecules on both the vascular endothelium and the T cells themselves that function as receptor-ligand pairs to slow down circulating T cells. These will eventually extravasate into sites of inflammation when they receive the correct chemokine signals. Accumulation of T cells within the vascular wall can lead to vessel thickening and vascular disease, whereas T-cell extravasation into the myocardium often leads to cardiac chronic inflammation and adverse cardiac remodeling, hallmarks of heart failure. On the flip side, T-cell trafficking is required for pathogen clearance and to promote tissue repair after injury resulting from cardiac ischemia. Thus, a better understanding of the central players mediating these interactions may help develop novel therapeutics to modulate vascular and cardiac inflammation. Here, we review the most recent literature on pathways that regulate T-cell transendothelial migration, the last step leading to T-cell infiltration into tissues and organs in the context of vascular and cardiac inflammation. We discuss new potential avenues to therapeutically modulate these pathways to enhance or prevent immune cell infiltration in cardiovascular disease.
Collapse
Affiliation(s)
- Erin Sanders
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
- Cell, Molecular, and Developmental Biology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
- Cell, Molecular, and Developmental Biology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
30
|
The Primary Alteration of Ventricular Myocardium Conduction: The Significant Determinant of Left Bundle Branch Block Pattern. Cardiol Res Pract 2022; 2022:3438603. [PMID: 36589707 PMCID: PMC9800102 DOI: 10.1155/2022/3438603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Intraventricular conduction disturbances (IVCD) are currently generally accepted as ECG diagnostic categories. They are characterized by defined QRS complex patterns that reflect the abnormalities in the intraventricular sequence of activation that can be caused by pathology in the His-Purkinje conduction system (HP) or ventricular myocardium. However, the current understanding of the IVCD's underlying mechanism is mostly attributed to HP structural or functional alterations. The involvement of the working ventricular myocardium is only marginally mentioned or not considered. This opinion paper is focused on the alterations of the ventricular working myocardium leading to the most frequent IVCD pattern-the left bundle branch block pattern (LBBB). Recognizing the underlying mechanisms of the LBBB patterns and the involvement of the ventricular working myocardium is of utmost clinical importance, considering a patient's prognosis and indication for cardiac resynchronization therapy.
Collapse
|
31
|
Immune Checkpoint and Other Receptor-Ligand Pairs Modulating Macrophages in Cancer: Present and Prospects. Cancers (Basel) 2022; 14:cancers14235963. [PMID: 36497444 PMCID: PMC9736575 DOI: 10.3390/cancers14235963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy, especially immune checkpoint blocking, has become the primary anti-tumor treatment in recent years. However, the current immune checkpoint inhibitor (ICI) therapy is far from satisfactory. Macrophages are a key component of anti-tumor immunity as they are a common immune cell subset in tumor tissues and act as a link between innate and adaptive immunity. Hence, understanding the regulation of macrophage activation in tumor tissues by receptor-ligand interaction will provide promising macrophage-targeting strategies to complement current adaptive immunity-based immunotherapy and traditional anti-tumor treatment. This review aims to offer a systematic summary of the current advances in number, structure, expression, biological function, and interplay of immune checkpoint and other receptor-ligand between macrophages and tumor cells.
Collapse
|
32
|
Zhang X, Kan X, Shen J, Li J. Increased long non-coding RNA NORAD reflects serious cardiovascular stenosis, aggravated inflammation status, and higher lipid level in coronary heart disease. J Clin Lab Anal 2022; 36:e24717. [PMID: 36319574 PMCID: PMC9701832 DOI: 10.1002/jcla.24717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/03/2025] Open
Abstract
OBJECTIVE Long non-coding RNA activated by DNA damage (lnc-NORAD) modulates inflammation, lipid level, and atherosclerosis in various cardiovascular diseases. This study intended to investigate the dysregulated expression of lnc-NORAD, and its linkage with clinical characteristics, inflammatory cytokines, and accumulating major adverse cardiovascular events (MACE) in coronary heart disease (CHD) patients. METHODS Totally, 160 CHD patients, 30 disease controls (DCs), and 30 healthy controls (HCs) were included. The reverse transcription-quantitative polymerase chain reaction was used to detect lnc-NORAD expression in peripheral blood mononuclear cell samples from all participants. Enzyme-linked immunosorbent assay was applied to detect proinflammatory cytokines and adhesion molecules in CHD patients. Then, MACE was recorded during a median follow-up of 12 (range: 1.0-27.0) months. RESULTS Lnc-NORAD was highest in CHD patients, followed by DCs, and lowest in HCs (p < 0.001). In CHD patients, lnc-NORAD was positively linked with Gensini score (p = 0.001). Meanwhile, lnc-NORAD was positively linked to C-reactive protein (p = 0.023), tumor necrosis factor-alpha (p = 0.016), interleukin (IL)-6 (p = 0.003), IL-8 (P = 0.018), and IL-17A (p = 0.029). No relation of lnc-NORAD with vascular cell adhesion molecule-1 (p = 0.094) and intercellular adhesion molecule-1 (p = 0.060) was found. Furthermore, lnc-NORAD was positively related to total cholesterol (p = 0.014) and low-density lipoprotein cholesterol (p = 0.004), whereas lnc-NORAD was not linked to triglyceride (p = 0.103) and high-density lipoprotein cholesterol (p = 0.533). However, lnc-NORAD (high vs. low), and its higher quartiles were both not linked to accumulating MACE rate (p > 0.05). CONCLUSION Increased lnc-NORAD is linked with aggravated stenosis degree, inflammation status, and blood lipid in CHD patients. However, further validation is required.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- General PracticeTianjin Fifth Central HospitalTianjinChina
| | - Xuetong Kan
- Clinical LaboratoryTianjin Fifth Central HospitalTianjinChina
| | - Jingjing Shen
- Department of Cardiovascular MedicineTianjin Fifth Central HospitalTianjinChina
| | - Jian Li
- Department of Rheumatology and ImmunologyTianjin Fifth Central HospitalTianjinChina
| |
Collapse
|
33
|
Fan S, Hu Y, You Y, Xue W, Chai R, Zhang X, Shou X, Shi J. Role of resveratrol in inhibiting pathological cardiac remodeling. Front Pharmacol 2022; 13:924473. [PMID: 36120366 PMCID: PMC9475218 DOI: 10.3389/fphar.2022.924473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
Cardiovascular disease is a group of diseases with high mortality in clinic, including hypertension, coronary heart disease, cardiomyopathy, heart valve disease, heart failure, to name a few. In the development of cardiovascular diseases, pathological cardiac remodeling is the most common cardiac pathological change, which often becomes a domino to accelerate the deterioration of the disease. Therefore, inhibiting pathological cardiac remodeling may delay the occurrence and development of cardiovascular diseases and provide patients with greater long-term benefits. Resveratrol is a non-flavonoid polyphenol compound. It mainly exists in grapes, berries, peanuts and red wine, and has cardiovascular protective effects, such as anti-oxidation, inhibiting inflammatory reaction, antithrombotic, dilating blood vessels, inhibiting apoptosis and delaying atherosclerosis. At present, the research of resveratrol has made rich progress. This review aims to summarize the possible mechanism of resveratrol against pathological cardiac remodeling, in order to provide some help for the in-depth exploration of the mechanism of inhibiting pathological cardiac remodeling and the development and research of drug targets.
Collapse
Affiliation(s)
- Shaowei Fan
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Yuanhui Hu
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- *Correspondence: Yuanhui Hu,
| | - Yaping You
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Wenjing Xue
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Ruoning Chai
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xuesong Zhang
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xintian Shou
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
34
|
Yu J, Liu Y, Peng W, Xu Z. Serum VCAM-1 and ICAM-1 measurement assists for MACE risk estimation in ST-segment elevation myocardial infarction patients. J Clin Lab Anal 2022; 36:e24685. [PMID: 36045604 PMCID: PMC9550957 DOI: 10.1002/jcla.24685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background Vascular cell adhesion molecule‐1 (VCAM‐1) and intercellular adhesion molecule‐1 (ICAM‐1) modulate atherosclerosis by promoting leukocyte infiltration, neutrophil recruitment, endothelial cell proliferation, etc., which may directly or indirectly facilitate the occurrence of major adverse cardiac events (MACE). This study intended to investigate the value of VCAM‐1 and ICAM‐1 for predicting MACE in ST‐segment elevation myocardial infarction (STEMI) patients. Methods Totally, 373 STEMI patients receiving the percutaneous coronary intervention and 50 health controls (HCs) were included. Serum VCAM‐1 and ICAM‐1 were detected by ELISA. Meanwhile, MACE was recorded during a median follow‐up of 18 (range: 1–46) months in STEMI patients. Results Vascular cell adhesion molecule‐1 and ICAM‐1 were raised in STEMI patients compared with HCs (both p < 0.001). VCAM‐1 (p = 0.002) and ICAM‐1 (p = 0.012) high were linked with raised accumulating MACE rate in STEMI patients. Notably, VCAM‐1 high (hazard ratio [HR] = 2.339, p = 0.031), age ≥ 65 years (HR = 2.019, p = 0.039), history of diabetes mellitus (DM) (HR = 2.395, p = 0.011), C‐reactive protein (CRP) ≥ 5 mg/L (HR = 2.550, p = 0.012), multivessel disease (HR = 2.561, p = 0.007) independently predicted MACE risk in STEMI patients. Furthermore, a nomogram‐based prediction model combining these factors was established, exhibiting an acceptable value for estimating 1, 2, and 3‐year MACE risk, with AUC of 0.764, 0.716, and 0.778, respectively, in STEMI patients. Conclusion This study confirms the value of VCAM‐1 and ICAM‐1 measurement in predicting MACE risk in STEMI patients. Moreover, VCAM‐1 plus other traditional prognostic factors (such as age, history of DM, CRP, and multivessel disease) cloud further improve the predictive accuracy of MACE risk in STEMI patients.
Collapse
Affiliation(s)
- Jiancai Yu
- Tianjin Medical University, Tianjin, China.,Department of Cardiology, Cangzhou Central Hospital of Tianjin Medical University, Cangzhou, China
| | | | | | - Zesheng Xu
- Tianjin Medical University, Tianjin, China.,Department of Cardiology, Cangzhou Central Hospital of Tianjin Medical University, Cangzhou, China
| |
Collapse
|
35
|
Ngwenyama N, Kaur K, Bugg D, Theall B, Aronovitz M, Berland R, Panagiotidou S, Genco C, Perrin MA, Davis J, Alcaide P. Antigen presentation by cardiac fibroblasts promotes cardiac dysfunction. NATURE CARDIOVASCULAR RESEARCH 2022; 1:761-774. [PMID: 36092510 PMCID: PMC9451034 DOI: 10.1038/s44161-022-00116-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022]
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality. Studies in animal models and patients with HF revealed a prominent role for CD4+ T cell immune responses in the pathogenesis of HF and highlighted an active crosstalk between cardiac fibroblasts and IFNγ producing CD4+ T cells that results in profibrotic myofibroblast transformation. Whether cardiac fibroblasts concomitantly modulate pathogenic cardiac CD4+ T cell immune responses is unknown. Here we show report that murine cardiac fibroblasts express major histocompatibility complex type II (MHCII) in two different experimental models of cardiac inflammation. We demonstrate that cardiac fibroblasts take up and process antigens for presentation to CD4+ T cells via MHCII induced by IFNγ. Conditional deletion of MhcII in cardiac fibroblasts ameliorates cardiac remodelling and dysfunction induced by cardiac pressure overload. Collectively, we demonstrate that cardiac fibroblasts function as antigen presenting cells (APCs) and contribute to cardiac fibrosis and dysfunction through IFNγ induced MHCII.
Collapse
Affiliation(s)
| | - Kuljeet Kaur
- Department of Immunology, Tufts University, Boston, MA, USA
| | - Darrian Bugg
- Departments of Lab Medicine-Pathology & Bioengineering, University of Washington, Seattle, WA, USA
| | - Brandon Theall
- Department of Immunology, Tufts University, Boston, MA, USA
| | - Mark Aronovitz
- Department of Immunology, Tufts University, Boston, MA, USA
| | - Robert Berland
- Department of Immunology, Tufts University, Boston, MA, USA
| | - Smaro Panagiotidou
- Developmental, Molecular and Chemical Biology, Tufts University, Boston, MA, USA
| | - Caroline Genco
- Department of Immunology, Tufts University, Boston, MA, USA
| | - Mercio A. Perrin
- Developmental, Molecular and Chemical Biology, Tufts University, Boston, MA, USA
| | - Jennifer Davis
- Departments of Lab Medicine-Pathology & Bioengineering, University of Washington, Seattle, WA, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University, Boston, MA, USA
| |
Collapse
|
36
|
Cornuault L, Rouault P, Duplàa C, Couffinhal T, Renault MA. Endothelial Dysfunction in Heart Failure With Preserved Ejection Fraction: What are the Experimental Proofs? Front Physiol 2022; 13:906272. [PMID: 35874523 PMCID: PMC9304560 DOI: 10.3389/fphys.2022.906272] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.
Collapse
|
37
|
Theall B, Alcaide P. The heart under pressure: immune cells in fibrotic remodeling. CURRENT OPINION IN PHYSIOLOGY 2022; 25:100484. [PMID: 35224321 PMCID: PMC8881013 DOI: 10.1016/j.cophys.2022.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The complex syndrome of heart failure (HF) is characterized by increased left ventricular pressures. Cardiomyocytes increase in size, cardiac fibroblasts transform and make extracellular matrix, and leukocytes infiltrate the cardiac tissue and alter cardiomyocyte and cardiac fibroblast function. Here we review recent advances in our understanding of the cellular composition of the heart during homeostasis and in response to cardiac pressure overload, with an emphasis on immune cell communication with cardiac fibroblasts and its consequences in cardiac remodeling.
Collapse
Affiliation(s)
- Brandon Theall
- Department of Immunology, Tufts University School of Medicine, Boston, MA,Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA,Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| |
Collapse
|
38
|
Kuzheleva EA, Fedyunina VA, Garganeeva AA. [Patterns of immunological reactions in the pathogenesis of chronic heart failure: review]. KARDIOLOGIIA 2021; 61:94-104. [PMID: 35057726 DOI: 10.18087/cardio.2021.12.n1598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/01/2021] [Indexed: 06/14/2023]
Abstract
The immune system is essential for maintaining the homeostasis. At present, there is convincing evidence for participation of the immune system in the pathogenesis of cardiovascular pathology, including the final step of cardiovascular continuum, heart failure. Objective difficulties in understanding subtle processes of loss of the normal cardiac structure and function are based on the diversity of pathogenetic factors of development and progression of chronic heart failure (CHF) and the involvement of most organs and body systems. Russian and international scientists actively study issues of immune homeostasis, including the efficacy of current immune therapy. At the same time, available reports are largely uncompiled and reflect isolated parts of the immunopathogenesis of cardiovascular diseases. This review focuses on comprehensive elucidation of major patterns of immune processes in the CHF pathogenesis to form an integral view of the problem under study.
Collapse
Affiliation(s)
- E A Kuzheleva
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V A Fedyunina
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A A Garganeeva
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
39
|
Kaur K, Velázquez FE, Anastasiou M, Ngwenyama N, Smolgovsky S, Aronovitz M, Alcaide P. Sialomucin CD43 Plays a Deleterious Role in the Development of Experimental Heart Failure Induced by Pressure Overload by Modulating Cardiac Inflammation and Fibrosis. Front Physiol 2021; 12:780854. [PMID: 34925069 PMCID: PMC8678270 DOI: 10.3389/fphys.2021.780854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Sialomucin CD43 is a transmembrane protein differentially expressed in leukocytes that include innate and adaptive immune cells. Among a variety of cellular processes, CD43 participates in T cell adhesion to vascular endothelial cells and contributes to the progression of experimental autoimmunity. Sequential infiltration of myeloid cells and T cells in the heart is a hallmark of cardiac inflammation and heart failure (HF). Here, we report that CD43-/- mice have improved survival to HF induced by transverse aortic constriction (TAC). This enhanced survival is associated with improved systolic function, decreased cardiac fibrosis, and significantly reduced T cell cardiac infiltration in response to TAC compared to control wild-type (WT) mice. Lack of CD43 did not alter the number of myeloid cells in the heart, but resulted in decreased cardiac CXCL10 expression, a chemoattractant for T cells, and in a monocyte shift to anti-inflammatory macrophages in vitro. Collectively, these findings unveil a novel role for CD43 in adverse cardiac remodeling in pressure overload induced HF through modulation of cardiac T cell inflammation.
Collapse
Affiliation(s)
- Kuljeet Kaur
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Francisco E. Velázquez
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Marina Anastasiou
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States,Department of Internal Medicine, University of Crete Medical School, Crete, Greece
| | - Njabulo Ngwenyama
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Sasha Smolgovsky
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Mark Aronovitz
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Pilar Alcaide
- The Department of Immunology, Tufts University School of Medicine, Boston, MA, United States,Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, MA, United States,*Correspondence: Pilar Alcaide,
| |
Collapse
|
40
|
Nawrocka-Millward S, Biegus J, Hurkacz M, Guzik M, Rosiek-Biegus M, Jankowska EA, Ponikowski P, Zymliński R. Differences in the Biomarker Profile of De Novo Acute Heart Failure versus Decompensation of Chronic Heart Failure. Biomolecules 2021; 11:1701. [PMID: 34827701 PMCID: PMC8615401 DOI: 10.3390/biom11111701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
The perception of acute heart failure (AHF) as a single entity is increasingly outdated, as distinct patient profiles can be discerned. Key heart failure (HF) studies have previously highlighted the difference in both the course and prognosis of de novo AHF and acute decompensated chronic HF (ADHF). Accordingly, distinct AHF profiles with differing underlying pathophysiologies of disease progression can be shown. We compared a range of selected biomarkers in order to better describe the profile of de novo AHF and ADHF, including the inter alia-serum lactate, bilirubin, matrix metallopeptidase 9 (MMP-9), follistatin, intercellular adhesion molecule 1 (ICAM-1), lipocalin and galectin-3. The study comprised 248 AHF patients (de novo = 104), who were followed up for one year. The biomarker data of the de novo AHF and ADHF profiles was then compared in order to link biomarkers to their prognosis. Our study demonstrated that, although there are similarities between each patient profile, key biomarker differences do exist-predominantly in terms of NTproBNP, serum lactate, bilirubin, ICAM-1, follistatin, ferritin and sTfR (soluble transferrin receptor). ADHF tended to have compromised organ function and higher risks of both one-year mortality and composite endpoint (one-year mortality or rehospitalization for heart failure) hazard ratios (HR) (95% CI): 3.4 (1.8-6.3) and 2.8 (1.6-4.6), respectively, both p < 0.0001. Among the biomarkers of interest: sTfR HR (95% CI): 1.4 (1.04-1.8), NGAL(log) (neutrophil gelatinase-associated lipocalin) HR (95% CI): 2.0 (1.3-3.1) and GDF-15(log) (growth/differentiation factor-15) HR (95% CI): 4.0 (1.2-13.0) significantly impacted the one-year survival, all p < 0.05.
Collapse
Affiliation(s)
- Sylwia Nawrocka-Millward
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland; (M.G.); (E.A.J.); (P.P.); (R.Z.)
| | - Jan Biegus
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland; (M.G.); (E.A.J.); (P.P.); (R.Z.)
- Institute of Heart Diseases, Medical University, 50-556 Wroclaw, Poland
| | - Magdalena Hurkacz
- Department of Clinical Pharmacology, Medical University, 50-556 Wroclaw, Poland;
| | - Mateusz Guzik
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland; (M.G.); (E.A.J.); (P.P.); (R.Z.)
| | - Marta Rosiek-Biegus
- Department of Internal Medicine, Pneumology and Allergology, Medical University, 50-369 Wroclaw, Poland;
| | - Ewa Anita Jankowska
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland; (M.G.); (E.A.J.); (P.P.); (R.Z.)
- Institute of Heart Diseases, Medical University, 50-556 Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland; (M.G.); (E.A.J.); (P.P.); (R.Z.)
- Institute of Heart Diseases, Medical University, 50-556 Wroclaw, Poland
| | - Robert Zymliński
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland; (M.G.); (E.A.J.); (P.P.); (R.Z.)
- Institute of Heart Diseases, Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
41
|
Singh M, Thakur M, Mishra M, Yadav M, Vibhuti R, Menon AM, Nagda G, Dwivedi VP, Dakal TC, Yadav V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol Lett 2021; 240:123-136. [PMID: 34715236 DOI: 10.1016/j.imlet.2021.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Intracellular adhesion molecule 1 (ICAM-1) is one of the most extensively studied inducible cell adhesion molecules which is responsible for several immune functions like T cell activation, extravasation, inflammation, etc. The molecule is constitutively expressed over the cell surface and is regulated up / down in response to inflammatory mediators like cellular stress, proinflammatory cytokines, viral infection. These stimuli modulate the expression of ICAM-1 primarily through regulating the ICAM-1 gene transcription. On account of the presence of various binding sites for NF-κB, AP-1, SP-1, and many other transcription factors, the architecture of the ICAM-1 promoter become complex. Transcription factors in union with other transcription factors, coactivators, and suppressors promote their assembly in a stereospecific manner on ICAM-1 promoter which mediates ICAM-1 regulation in response to different stimuli. Along with transcriptional regulation, epigenetic modifications also play a pivotal role in controlling ICAM-1 expression on different cell types. In this review, we summarize the regulation of ICAM-1 expression both at the transcriptional as well as post-transcriptional level with an emphasis on transcription factors and signaling pathways involved.
Collapse
Affiliation(s)
- Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067 India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Rajkamal Vibhuti
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Athira M Menon
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Girima Nagda
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan-313001 India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi-110067 India
| | - Tikam Chand Dakal
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| |
Collapse
|
42
|
Zelko IN, Dassanayaka S, Malovichko MV, Howard CM, Garrett LF, Uchida S, Brittian KR, Conklin DJ, Jones SP, Srivastava S. Chronic Benzene Exposure Aggravates Pressure Overload-Induced Cardiac Dysfunction. Toxicol Sci 2021; 185:64-76. [PMID: 34718823 DOI: 10.1093/toxsci/kfab125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Benzene is a ubiquitous environmental pollutant abundant in household products, petrochemicals and cigarette smoke. Benzene is a well-known carcinogen in humans and experimental animals; however, little is known about the cardiovascular toxicity of benzene. Recent population-based studies indicate that benzene exposure is associated with an increased risk for heart failure. Nonetheless, it is unclear whether benzene exposure is sufficient to induce and/or exacerbate heart failure. We examined the effects of benzene (50 ppm, 6 h/day, 5 days/week, 6 weeks) or HEPA-filtered air exposure on transverse aortic constriction (TAC)-induced pressure overload in male C57BL/6J mice. Our data show that benzene exposure had no effect on cardiac function in the Sham group; however, it significantly compromised cardiac function as depicted by a significant decrease in fractional shortening and ejection fraction, as compared with TAC/Air-exposed mice. RNA-seq analysis of the cardiac tissue from the TAC/benzene-exposed mice showed a significant increase in several genes associated with adhesion molecules, cell-cell adhesion, inflammation, and stress response. In particular, neutrophils were implicated in our unbiased analyses. Indeed, immunofluorescence studies showed that TAC/benzene exposure promotes infiltration of CD11b+/S100A8+/myeloperoxidase+-positive neutrophils in the hearts by 3-fold. In vitro, the benzene metabolites, hydroquinone and catechol, induced the expression of P-selectin in cardiac microvascular endothelial cells by 5-fold and increased the adhesion of neutrophils to these endothelial cells by 1.5-2.0-fold. Benzene metabolite-induced adhesion of neutrophils to the endothelial cells was attenuated by anti-P-selectin antibody. Together, these data suggest that benzene exacerbates heart failure by promoting endothelial activation and neutrophil recruitment.
Collapse
Affiliation(s)
- Igor N Zelko
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sujith Dassanayaka
- Diabetes and Obesity Center.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Marina V Malovichko
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Caitlin M Howard
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Lauren F Garrett
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen SV, Denmark
| | - Kenneth R Brittian
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Daniel J Conklin
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Steven P Jones
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sanjay Srivastava
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| |
Collapse
|
43
|
Jiang W, Xiong Y, Li X, Yang Y. Cardiac Fibrosis: Cellular Effectors, Molecular Pathways, and Exosomal Roles. Front Cardiovasc Med 2021; 8:715258. [PMID: 34485413 PMCID: PMC8415273 DOI: 10.3389/fcvm.2021.715258] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibrosis, a common pathophysiologic process in most heart diseases, refers to an excess of extracellular matrix (ECM) deposition by cardiac fibroblasts (CFs), which can lead to cardiac dysfunction and heart failure subsequently. Not only CFs but also several other cell types including macrophages and endothelial cells participate in the process of cardiac fibrosis via different molecular pathways. Exosomes, ranging in 30-150 nm of size, have been confirmed to play an essential role in cellular communications by their bioactive contents, which are currently a hot area to explore pathobiology and therapeutic strategy in multiple pathophysiologic processes including cardiac fibrosis. Cardioprotective factors such as RNAs and proteins packaged in exosomes make them an excellent cell-free system to improve cardiac function without significant immune response. Emerging evidence indicates that targeting selective molecules in cell-derived exosomes could be appealing therapeutic treatments in cardiac fibrosis. In this review, we summarize the current understandings of cellular effectors, molecular pathways, and exosomal roles in cardiac fibrosis.
Collapse
Affiliation(s)
- Wenyang Jiang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuyan Xiong
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaosong Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Electrophysiological engineering of heart-derived cells with calcium-dependent potassium channels improves cell therapy efficacy for cardioprotection. Nat Commun 2021; 12:4963. [PMID: 34400625 PMCID: PMC8368210 DOI: 10.1038/s41467-021-25180-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
We have shown that calcium-activated potassium (KCa)-channels regulate fundamental progenitor-cell functions, including proliferation, but their contribution to cell-therapy effectiveness is unknown. Here, we test the participation of KCa-channels in human heart explant-derived cell (EDC) physiology and therapeutic potential. TRAM34-sensitive KCa3.1-channels, encoded by the KCNN4 gene, are exclusively expressed in therapeutically bioactive EDC subfractions and maintain a strongly polarized resting potential; whereas therapeutically inert EDCs lack KCa3.1 channels and exhibit depolarized resting potentials. Somatic gene transfer of KCNN4 results in membrane hyperpolarization and increases intracellular [Ca2+], which boosts cell-proliferation and the production of pro-healing cytokines/nanoparticles. Intramyocardial injection of EDCs after KCNN4-gene overexpression markedly increases the salutary effects of EDCs on cardiac function, viable myocardium and peri-infarct neovascularization in a well-established murine model of ischemic cardiomyopathy. Thus, electrophysiological engineering provides a potentially valuable strategy to improve the therapeutic value of progenitor cells for cardioprotection and possibly other indications. Strategies to improve the function of damaged hearts with progenitor cells have stalled. Here, the authors show that gene transfer of a calcium-dependent potassium channel enhances the functional properties and ability of explant-derived cells to improve heart function after a heart attack.
Collapse
|
45
|
Methatham T, Tomida S, Kimura N, Imai Y, Aizawa K. Inhibition of the canonical Wnt signaling pathway by a β-catenin/CBP inhibitor prevents heart failure by ameliorating cardiac hypertrophy and fibrosis. Sci Rep 2021; 11:14886. [PMID: 34290289 PMCID: PMC8295328 DOI: 10.1038/s41598-021-94169-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
In heart failure (HF) caused by hypertension, the myocyte size increases, and the cardiac wall thickens. A low-molecular-weight compound called ICG001 impedes β-catenin-mediated gene transcription, thereby protecting both the heart and kidney. However, the HF-preventive mechanisms of ICG001 remain unclear. Hence, we investigated how ICG001 can prevent cardiac hypertrophy and fibrosis induced by transverse aortic constriction (TAC). Four weeks after TAC, ICG001 attenuated cardiac hypertrophy and fibrosis in the left ventricular wall. The TAC mice treated with ICG001 showed a decrease in the following: mRNA expression of brain natriuretic peptide (Bnp), Klf5, fibronectin, β-MHC, and β-catenin, number of cells expressing the macrophage marker CD68 shown in immunohistochemistry, and macrophage accumulation shown in flow cytometry. Moreover, ICG001 may mediate the substrates in the glycolysis pathway and the distinct alteration of oxidative stress during cardiac hypertrophy and HF. In conclusion, ICG001 is a potential drug that may prevent cardiac hypertrophy and fibrosis by regulating KLF5, immune activation, and the Wnt/β-catenin signaling pathway and inhibiting the inflammatory response involving macrophages.
Collapse
Affiliation(s)
- Thanachai Methatham
- grid.410804.90000000123090000Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498 Japan
| | - Shota Tomida
- grid.410804.90000000123090000Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498 Japan
| | - Natsuka Kimura
- grid.410804.90000000123090000Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498 Japan
| | - Yasushi Imai
- grid.410804.90000000123090000Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498 Japan
| | - Kenichi Aizawa
- grid.410804.90000000123090000Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498 Japan
| |
Collapse
|
46
|
Pan Y, Shao C, Zhang L, He Y, Yang J, Fu W, Yang J, Wan H. The effect of Guanxin Shutong capsule on alleviating the myocardial fibrosis in heart failure rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114169. [PMID: 33932513 DOI: 10.1016/j.jep.2021.114169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guanxin Shutong (GXST) capsule is a renowned traditional Chinese medicine widely used for the treatment of cardiovascular diseases in the clinic. However, no pharmacological experimental studies of GXST has been reported on the treatment of pressure overload-induced heart failure. This study aimed to investigate the effects of GXST capsule on ameliorating myocardial fibrosis conditions in pressure overload-induced heart failure rats. MATERIAL AND METHODS Rats were randomly divided into 6 groups: Normal group, Model group, GXST-treated group at a dose of 0.5 g/kg, 1 g/kg, 2 g/kg, respectively, and digoxin positive control group at a dose of 1 mg/kg. After 4 weeks of administration, cardiac function was evaluated by echocardiography. Cardiac injury and fibrotic conditions were evaluated by H&E staining, Masson staining, and Sirius Red staining. Myocardial fibrosis was evaluated by immunohistochemistry staining and Western blot. RESULTS GXST significantly inhibited cardiac fibrosis, reduced the excessive deposition of collagen, and finally improved cardiac function. GXST reversed ventricular remodeling might be through the TGF-β/Smad3 pathway. CONCLUSION GXST capsule demonstrated a strong anti-fibrosis effect in heart failure rats by inhibiting the TGF-β/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Yuming Pan
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Chongyu Shao
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ling Zhang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jintao Yang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Wei Fu
- Department of Cardiac-Cerebral Diseases, Yinchuan Cardiac-Cerebral Treatment Internet Hospital, Yinchuan, China.
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
47
|
Menon DP, Qi G, Kim SK, Moss ME, Penumatsa KC, Warburton RR, Toksoz D, Wilson J, Hill NS, Jaffe IZ, Preston IR. Vascular cell-specific roles of mineralocorticoid receptors in pulmonary hypertension. Pulm Circ 2021; 11:20458940211025240. [PMID: 34211700 PMCID: PMC8216367 DOI: 10.1177/20458940211025240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Abnormalities that characterize pulmonary arterial hypertension include impairment in the structure and function of pulmonary vascular endothelial and smooth muscle cells. Aldosterone levels are elevated in human pulmonary arterial hypertension and in experimental pulmonary hypertension, while inhibition of the aldosterone-binding mineralocorticoid receptor attenuates pulmonary hypertension in multiple animal models. We explored the role of mineralocorticoid receptor in endothelial and smooth muscle cells in using cell-specific mineralocorticoid receptor knockout mice exposed to sugen/hypoxia-induced pulmonary hypertension. Treatment with the mineralocorticoid receptor inhibitor spironolactone significantly reduced right ventricular systolic pressure. However, this is not reproduced by selective mineralocorticoid receptor deletion in smooth muscle cells or endothelial cells. Similarly, spironolactone attenuated the increase in right ventricular cardiomyocyte area independent of vascular mineralocorticoid receptor with no effect on right ventricular weight or interstitial fibrosis. Right ventricular perivascular fibrosis was significantly decreased by spironolactone and this was reproduced by specific deletion of mineralocorticoid receptor from endothelial cells. Endothelial cell-mineralocorticoid receptor deletion attenuated the sugen/hypoxia-induced increase in the leukocyte-adhesion molecule, E-selectin, and collagen IIIA1 in the right ventricle. Spironolactone also significantly reduced pulmonary arteriolar muscularization, independent of endothelial cell-mineralocorticoid receptor or smooth muscle cell-mineralocorticoid receptor. Finally, the degree of pulmonary perivascular inflammation was attenuated by mineralocorticoid receptor antagonism and was fully reproduced by smooth muscle cell-specific mineralocorticoid receptor deletion. These studies demonstrate that in the sugen/hypoxia pulmonary hypertension model, systemic-mineralocorticoid receptor blockade significantly attenuates the disease and that mineralocorticoid receptor has cell-specific effects, with endothelial cell-mineralocorticoid receptor contributing to right ventricular perivascular fibrosis and smooth muscle cell-mineralocorticoid receptor participating in pulmonary vascular inflammation. As mineralocorticoid receptor antagonists are being investigated to treat pulmonary arterial hypertension, these findings support novel mechanisms and potential mineralocorticoid receptor targets that mediate therapeutic benefits in patients.
Collapse
Affiliation(s)
- Divya P. Menon
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Guanming Qi
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Seung K. Kim
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Department of Sports Science, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - M. Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Krishna C. Penumatsa
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Rod R. Warburton
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Deniz Toksoz
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Jamie Wilson
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Nicholas S. Hill
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Ioana R. Preston
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
48
|
Insight into the Pro-inflammatory and Profibrotic Role of Macrophage in Heart Failure With Preserved Ejection Fraction. J Cardiovasc Pharmacol 2021; 76:276-285. [PMID: 32501838 DOI: 10.1097/fjc.0000000000000858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prevalence of heart failure (HF) with preserved ejection fraction (HFpEF) is higher than that of HF with reduced/midrange ejection fraction (HFrEF/HFmrEF). However, no evidence-based guidelines for managing HFpEF have been generated. The current body of knowledge indicates that fibrosis and inflammation are important components of the cardiac remodeling process in HFpEF. In addition, macrophages potentially play an important role in pro-inflammatory and profibrotic processes in HFpEF patients, whereas HFpEF comorbidities could be a driving force for systemic microvascular inflammation and endothelial dysfunction. Under such circumstances, macrophages reportedly contribute to inflammation and fibrosis through 3 phases namely, inflammation, repair, and resolution. Signal transduction pathway-targeted therapies using animal experiments have generated important discoveries and breakthroughs for understanding the underlying mechanisms of HFpEF. However, only a handful of studies have reported promising results using human trials. Further investigations are therefore needed to elucidate the exact mechanisms underlying HFpEF and immune-pathogenesis of cardiac fibrosis.
Collapse
|
49
|
Gavini MP, Mahmood A, Belenchia AM, Beauparlant P, Kumar SA, Ardhanari S, DeMarco VG, Pulakat L. Suppression of Inflammatory Cardiac Cytokine Network in Rats with Untreated Obesity and Pre-Diabetes by AT2 Receptor Agonist NP-6A4. Front Pharmacol 2021; 12:693167. [PMID: 34220518 PMCID: PMC8253363 DOI: 10.3389/fphar.2021.693167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity affects over 42% of the United States population and exacerbates heart disease, the leading cause of death in men and women. Obesity also increases pro-inflammatory cytokines that cause chronic tissue damage to vital organs. The standard-of-care does not sufficiently attenuate these inflammatory sequelae. Angiotensin II receptor AT2R is an anti-inflammatory and cardiovascular protective molecule; however, AT2R agonists are not used in the clinic to treat heart disease. NP-6A4 is a new AT2R peptide agonist with an FDA orphan drug designation for pediatric cardiomyopathy. NP-6A4 increases AT2R expression (mRNA and protein) and nitric oxide generation in human cardiovascular cells. AT2R-antagonist PD123319 and AT2RSiRNA suppress NP-6A4-effects indicating that NP-6A4 acts through AT2R. To determine whether NP-6A4 would mitigate cardiac damage from chronic inflammation induced by untreated obesity, we investigated the effects of 2-weeks NP-6A4 treatment (1.8 mg/kg delivered subcutaneously) on cardiac pathology of male Zucker obese (ZO) rats that display obesity, pre-diabetes and cardiac dysfunction. NP-6A4 attenuated cardiac diastolic and systolic dysfunction, cardiac fibrosis and cardiomyocyte hypertrophy, but increased myocardial capillary density. NP-6A4 treatment suppressed tubulointerstitial injury marker urinary β-NAG, and liver injury marker alkaline phosphatase in serum. These protective effects of NP-6A4 occurred in the presence of obesity, hyperinsulinemia, hyperglycemia, and hyperlipidemia, and without modulating blood pressure. NP-6A4 increased expression of AT2R (consistent with human cells) and cardioprotective erythropoietin (EPO) and Notch1 in ZO rat heart, but suppressed nineteen inflammatory cytokines. Cardiac miRNA profiling and in silico analysis showed that NP-6A4 activated a unique miRNA network that may regulate expression of AT2R, EPO, Notch1 and inflammatory cytokines, and mitigate cardiac pathology. Seventeen pro-inflammatory and pro-fibrotic cytokines that increase during lethal cytokine storms caused by infections such as COVID-19 were among the cytokines suppressed by NP-6A4 treatment in ZO rat heart. Thus, NP-6A4 activates a novel anti-inflammatory network comprised of 21 proteins in the heart that was not reported previously. Since NP-6A4's unique mode of action suppresses pro-inflammatory cytokine network and attenuates myocardial damage, it can be an ideal adjuvant drug with other anti-glycemic, anti-hypertensive, standard-of-care drugs to protect the heart tissues from pro-inflammatory and pro-fibrotic cytokine attack induced by obesity.
Collapse
Affiliation(s)
| | - Abuzar Mahmood
- Dalton Cardiovascular Research Center, Columbia, MO, United States.,Department of Medicine, Boston, MA, United States.,Harry S. Truman Memorial VA Hospital, Columbia, MO, United States
| | - Anthony M Belenchia
- Dalton Cardiovascular Research Center, Columbia, MO, United States.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Paige Beauparlant
- Dalton Cardiovascular Research Center, Columbia, MO, United States.,Department of Medicine, Boston, MA, United States.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | | | | | - Vincent G DeMarco
- Dalton Cardiovascular Research Center, Columbia, MO, United States.,Department of Medicine, Boston, MA, United States.,Harry S. Truman Memorial VA Hospital, Columbia, MO, United States
| | - Lakshmi Pulakat
- Dalton Cardiovascular Research Center, Columbia, MO, United States.,Department of Medicine, Boston, MA, United States.,Harry S. Truman Memorial VA Hospital, Columbia, MO, United States.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.,Tufts Medical Center and Department of Medicine, Molecular Cardiology Research Institute, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
50
|
Sansonetti M, De Windt LJ. Non-coding RNAs in cardiac inflammation: key drivers in the pathophysiology of heart failure. Cardiovasc Res 2021; 118:2058-2073. [PMID: 34097013 DOI: 10.1093/cvr/cvab192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure is among the most progressive diseases and a leading cause of morbidity. Despite several advances in cardiovascular therapies, pharmacological treatments are limited to relieve symptoms without curing cardiac injury. Multiple observations point to the involvement of immune cells as key drivers in the pathophysiology of heart failure. In particular, there is a growing recognition that heart failure is related to a prolonged and insufficiently repressed inflammatory response leading to molecular, cellular, and functional cardiac alterations. Over the last decades, non-coding RNAs are recognized as prominent mediators of the cardiac inflammation, affecting the function of several immune cells. In the current review, we explore the contribution of the diverse immune cells in the progression of heart failure, revealing mechanistic functions for non-coding RNAs in cardiac immune cells as a new and exciting field of investigation.
Collapse
Affiliation(s)
- Marida Sansonetti
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| | - Leon J De Windt
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| |
Collapse
|