1
|
Yang J, Gao P, Li Q, Wang T, Guo S, Zhang J, Zhang T, Wu G, Guo Y, Wang Z, Tian Y. Arterial Adventitial Vasa Vasorum Density Reflects The Progression Of Unstable Plaques: A Retrospective Clinical Study. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:712-721. [PMID: 38365464 DOI: 10.1016/j.ultrasmedbio.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Arterial adventitial vasa vasorum (AVV) plays an important role in the occurrence and development of atherosclerotic (AS) disease. AS is a systemic disease, and plaque is not only a local vascular event, but also occurs at multiple sites throughout the vascular bed. Currently, effective anti-AVV therapies are lacking. Therefore, we posed the following scientific questions: "does human carotid adventitial vasa vasorum density reflect plaque neovascularization and intimal-media hyperplasia in carotid?"; and "is it possible to reduce human AVV density by sonodynamic therapy (SDT)?" METHODS A retrospective study was conducted on 160 patients with carotid atherosclerosis. Duplex ultrasound scanning (DUS), contrast-enhanced ultrasound (CEUS), coronary angiography, and coronary CT angiography (CTA) were used for diagnosis and screening. Pearson correlation tests and Receiver operating characteristic (ROC) curve were used to analyze the relationships between AVV hyperplasia, vasa vasorum (VV) hyperplasia and the intima-media thickness (IMT). SDT was developed for the treatment of arterial AVV hyperplasia and AS plaques. RESULTS The presence of local AVV in carotid unstable plaques correlated with the echogenic properties of the carotid plaque and the extent of plaque progression; Furthermore local AVV hyperplasia in patients with carotid atherosclerotic plaques was associated with acute coronary syndrome (ACS) events; Local AVV hyperplasia in patients with carotid atherosclerotic plaques was associated with coronary artery stenosis. Notably, SDT reduced local AVV hyperplasia and shrank the plaques in human femoral and carotid atherosclerotic lesions. CONCLUSIONS The presence of AVV in human carotid arteries reflects the severity of carotid and coronary artery AS. Further, SDT can reduce the hyperplasia of local AVV in human femoral and carotid plaques.
Collapse
Affiliation(s)
- Jiemei Yang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China; Cardiac Ultrasound Division, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Penghao Gao
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Qiannan Li
- Department of General Practice, the Second Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Tengyu Wang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Shuyuan Guo
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Jingyu Zhang
- Department of Geriatrics, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Tianyi Zhang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Guodong Wu
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Yuanyuan Guo
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China; Cardiac Ultrasound Division, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Zeng Wang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Ye Tian
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China.
| |
Collapse
|
2
|
Russu E, Arbanasi EM, Chirila TV, Muresan AV. Therapeutic strategies based on non-ionizing radiation to prevent venous neointimal hyperplasia: the relevance for stenosed arteriovenous fistula, and the role of vascular compliance. Front Cardiovasc Med 2024; 11:1356671. [PMID: 38374996 PMCID: PMC10875031 DOI: 10.3389/fcvm.2024.1356671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
We have reviewed the development and current status of therapies based on exposure to non-ionizing radiation (with a photon energy less than 10 eV) aimed at suppressing the venous neointimal hyperplasia, and consequentially at avoiding stenosis in arteriovenous grafts. Due to the drawbacks associated with the medical use of ionizing radiation, prominently the radiation-induced cardiovascular disease, the availability of procedures using non-ionizing radiation is becoming a noteworthy objective for the current research. Further, the focus of the review was the use of such procedures for improving the vascular access function and assuring the clinical success of arteriovenous fistulae in hemodialysis patients. Following a brief discussion of the physical principles underlying radiotherapy, the current methods based on non-ionizing radiation, either in use or under development, were described in detail. There are currently five such techniques, including photodynamic therapy (PDT), far-infrared therapy, photochemical tissue passivation (PTP), Alucent vascular scaffolding, and adventitial photocrosslinking. The last three are contingent on the mechanical stiffening achievable by the exogenous photochemical crosslinking of tissular collagen, a process that leads to the decrease of venous compliance. As there are conflicting opinions on the role of compliance mismatch between arterial and venous conduits in a graft, this aspect was also considered in our review.
Collapse
Affiliation(s)
- Eliza Russu
- Clinic of Vascular Surgery, Mures County Emergency Hospital, Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
| | - Emil-Marian Arbanasi
- Clinic of Vascular Surgery, Mures County Emergency Hospital, Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
- Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
| | - Traian V. Chirila
- Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
- Queensland Eye Institute, Woolloongabba, QLD, Australia
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Institute of Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia
| | - Adrian V. Muresan
- Clinic of Vascular Surgery, Mures County Emergency Hospital, Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
| |
Collapse
|
3
|
Anderson B, Blair D, Huff K, Wisniewski J, Warner KS, Kauser K. Photochemical Modification of the Extracellular Matrix to Alter the Vascular Remodeling Process. J Funct Biomater 2023; 14:566. [PMID: 38132820 PMCID: PMC10744111 DOI: 10.3390/jfb14120566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Therapeutic interventions for vascular diseases aim at achieving long-term patency by controlling vascular remodeling. The extracellular matrix (ECM) of the vessel wall plays a crucial role in regulating this process. This study introduces a novel photochemical treatment known as Natural Vascular Scaffolding, utilizing a 4-amino substituted 1,8-naphthimide (10-8-10 Dimer) and 450 nm light. This treatment induces structural changes in the ECM by forming covalent bonds between amino acids in ECM fibers without harming vascular cell survival, as evidenced by our results. To further investigate the mechanism of this treatment, porcine carotid artery segments were exposed to 10-8-10 Dimer and light activation. Subsequent experiments subjected these segments to enzymatic degradation through elastase or collagenase treatment and were analyzed using digital image analysis software (MIPAR) after histological processing. The results demonstrated significant preservation of collagen and elastin structures in the photochemically treated vascular wall, compared to controls. This suggests that photochemical treatment can effectively modulate vascular remodeling by enhancing the resistance of the ECM scaffold to degradation. This approach shows promise in scenarios where vascular segments experience significant hemodynamic fluctuations as it reinforces vascular wall integrity and preserves lumen patency. This can be valuable in treating veins prior to fistula creation and grafting or managing arterial aneurysm expansion.
Collapse
Affiliation(s)
- Blake Anderson
- Biology Department, Alucent Biomedical Inc., Salt Lake City, UT 84108, USA;
| | - Dylan Blair
- Engineering Department, Alucent Biomedical Inc., Salt Lake City, UT 84108, USA; (D.B.); (K.H.)
| | - Kenji Huff
- Engineering Department, Alucent Biomedical Inc., Salt Lake City, UT 84108, USA; (D.B.); (K.H.)
| | - John Wisniewski
- Pharmaceutical Development, Alucent Biomedical Inc., Salt Lake City, UT 84108, USA; (J.W.); (K.S.W.)
| | - Kevin S. Warner
- Pharmaceutical Development, Alucent Biomedical Inc., Salt Lake City, UT 84108, USA; (J.W.); (K.S.W.)
| | - Katalin Kauser
- Biology Department, Alucent Biomedical Inc., Salt Lake City, UT 84108, USA;
| |
Collapse
|
4
|
Chen Y, Bao M, Liu JT, Bao H, Zhang SM, Lou Y, Qi YX. Defective autophagy triggered by arterial cyclic stretch promotes neointimal hyperplasia in vein grafts via the p62/nrf2/slc7a11 signaling pathway. J Mol Cell Cardiol 2022; 173:101-114. [PMID: 36308866 DOI: 10.1016/j.yjmcc.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022]
Abstract
Autophagy is an adaptation mechanism to keep cellular homeostasis, and its deregulation is implicated in various cardiovascular diseases. After vein grafting, hemodynamic factors play crucial roles in neointimal hyperplasia, but the mechanisms are poorly understood. Here, we investigated the impacts of arterial cyclic stretch on autophagy of venous smooth muscle cells (SMCs) and its role in neointima formation after vein grafting. Rat jugular vein graft were generated via the 'cuff' technique. Autophagic flux in venous SMCs is impaired in 3-day, 1-week and 2-week grafted veins. 10%-1.25 Hz cyclic stretch (arterial stretch) loaded with FX5000 stretch system on venous SMCs blocks cellular autophagic flux in vitro and shows no significant impact on activity of mTORC1 and AMPK. Microtubule depolymerization but not lysosome dysfunction nor autophagosome/amphisome-lysosomal membrane fusion blockade is involved in the impairment of autophagic flux. Microtubule stabilization, induced by paclitaxel treatment and external stents intervention respectively, restores venous SMC autophagy and ameliorates neointimal hyperplasia in vivo. Moreover, autophagy impairment causes accumulation of the cargo receptor p62, which sequesters keap1 to p62 aggregates and results in the stabilization and nuclear translocation of nrf2 to modulate its target antioxidative gene SLC7A11. p62 silencing abrogates the increases of nrf2 and slc7a11 protein expression, glutathione level and venous SMC proliferation triggered by arterial cyclic stretch in vitro, and further hinders nrf2 nuclear translocation, reduces neointimal thickness after vein grafting in vivo. p62 (T349A) mutation also inhibited venous SMC proliferation and alleviated neointimal formation in vivo. These findings suggest that stabilization of microtubules to rescue autophagic flux or direct silencing of p62 are potential therapeutic strategies for neointimal hyperplasia.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji-Ting Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shou-Min Zhang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Lou
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Fashina O, Abbasciano RG, McQueen LW, Ladak S, George SJ, Suleiman S, Punjabi PP, Angelini GD, Zakkar M. Large animal model of vein grafts intimal hyperplasia: A systematic review. Perfusion 2022:2676591221091200. [PMID: 35624557 DOI: 10.1177/02676591221091200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coronary artery bypass grafting remains the treatment of choice for a large cohort of patients with significant coronary disease. Despite the increased use of arterial grafts, the long saphenous vein remains the most commonly used conduit. Long-term graft patency continues to be the Achilles heel of saphenous vein grafts. This is due to the development of intimal hyperplasia, a chronic inflammatory disease that results in the narrowing and occlusion of a significant number of vein grafts. Research models for intimal hyperplasia are essential for a better understanding of pathophysiological processes of this condition. Large animal models resemble human anatomical structures and have been used as a surrogate to study disease development and prevention over the years. In this paper, we systematically review all published studies that utilized large animal models of vein graft disease with a focus on the type of model and any therapeutic intervention, specifically the use of external stents/mesh.
Collapse
Affiliation(s)
- Oluwatomini Fashina
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Riccardo G Abbasciano
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Liam W McQueen
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Shameem Ladak
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Sarah J George
- Bristol Heart Institute and Translational Biomedical Research Centre, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Sadeeh Suleiman
- Bristol Heart Institute and Translational Biomedical Research Centre, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Prakash P Punjabi
- Department of Cardiovascular Sciences, Imperial College, Hammersmith Hospital, London, UK
| | - Gianni D Angelini
- Bristol Heart Institute and Translational Biomedical Research Centre, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Mustafa Zakkar
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
| |
Collapse
|
6
|
Goldstein RL, McCormack MC, Mallidi S, Runyan G, Randolph MA, Austen WG, Redmond RW. Photochemical Tissue Passivation of Arteriovenous Grafts Prevents Long-Term Development of Intimal Hyperplasia in a Swine Model. J Surg Res 2020; 253:280-287. [PMID: 32402853 DOI: 10.1016/j.jss.2020.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/27/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The autologous vein remains the standard conduit for lower extremity and coronary artery bypass grafting despite a 30%-50% 5-y failure rate, primarily attributable to intimal hyperplasia (IH) that develops in the midterm period (3-24 mo) of graft maturation. Our group discovered that externally strengthening vein grafts by cross-linking the adventitial collagen with photochemical tissue passivation (PTP) mitigates IH in an arteriovenous model at 4 wk. We now investigate whether this effect is retained in the midterm period follow-up. METHODS Six Hanford miniature pigs received bilateral carotid artery interposition vein grafts. In each animal, the external surface of one graft was treated with PTP before grafting, whereas the opposite side served as the untreated control. The grafts were harvested after 3 mo. Ultrasound evaluation of all vein grafts was performed at the time of grafting and harvest. The grafts were also evaluated histomorphometrically and immunohistologically for markers of IH. RESULTS All vein grafts were patent at 3 mo except one graft in the PTP-treated group because of early technical failure. The control vein grafts had significantly greater IH than PTP-treated grafts at 3 mo, as evidenced by the intimal area (2.6 ± 1.0 mm2versus 1.4 ± 1.5 mm2, respectively, P = 0.045) and medial area (5.1 ± 1.9 mm2versus 2.7 ± 2.4 mm2, respectively, P = 0.048). The control grafts had an increased presence and proliferation of mural myofibroblasts with greater smooth muscle actin and proliferating cell nuclear antigen staining. CONCLUSIONS PTP treatment to the external surface of the vein grafts decreases IH at 3 mo after arteriovenous grafting and may prevent future graft failure.
Collapse
Affiliation(s)
- Rachel L Goldstein
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts; Plastic Surgery Research Laboratory, Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael C McCormack
- Plastic Surgery Research Laboratory, Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Gem Runyan
- Plastic Surgery Research Laboratory, Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark A Randolph
- Plastic Surgery Research Laboratory, Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - William G Austen
- Plastic Surgery Research Laboratory, Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert W Redmond
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
7
|
Zhang J, Shi J, Ma H, Liu L, He L, Qin C, Zhang D, Guo Y, Gong R. The placental growth factor attenuates intimal hyperplasia in vein grafts by improving endothelial dysfunction. Eur J Pharmacol 2019; 868:172856. [PMID: 31836533 DOI: 10.1016/j.ejphar.2019.172856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023]
Abstract
Saphenous vein grafts (SVG) patency is limited by intimal hyperplasia (IH) caused by endothelial dysfunction. This study aimed to explore the effect of placental growth factor (PlGF) on the endothelial function of SVG. In rat models of external jugular vein-carotid artery graft treated with PlGF or saline hydrogel, PlGF inhibited vein graft IH (day 28: 12.0 ± 1.9 vs. 61.7 ± 13.1 μm, P < 0.001), promoted microvessel proliferation (day 14: 33.3% 3+ vs. 50.0% 2+, P = 0.03), and increased nitric oxide (NO) production (P < 0.05 on days 1/3/5) and NO synthase (NOS) expression by immunohistochemistry. In human umbilical vein endothelial cells (HUVECs) cultured under hypoxia and treated or not with PlGF, PlGF restored the survival (50 ng/ml PlGF, 48 h: 91.7 ± 0.6% vs. 84.9 ± 0.5%, P < 0.01), migration (by Matrigel assay), and tube formation ability (junctions, tubules, and tubule total length; all P < 0.01) of HUVECs after hypoxia. PlGF increased NO production through increased eNOS expression (P < 0.05), without changes in iNOS expression. The mRNA expression of eNOS decreased after the addition of the PI3K inhibitor LY294002 (P < 0.05). PlGF promoted the protein expression of eNOS by up-regulating AKT, and the AKT and eNOS protein levels were decreased after adding LY294002 (all P < 0.05). In conclusion, PlGF is a candidate for the inhibition of IH in SVG after coronary artery bypass graft. The effects of PlGF are mediated by the upregulation of the eNOS mRNA and protein through the PI3K/AKT signaling pathway. PlGF promotes the secretion of NO by endothelial cells and thereby reduces the occurrence and development of IH.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Jun Shi
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Hao Ma
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Lulu Liu
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Li He
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Chaoyi Qin
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Dengshen Zhang
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yingqiang Guo
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Renrong Gong
- Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
8
|
Adventitial Collagen Crosslink Reduces Intimal Hyperplasia in a Rabbit Arteriovenous Graft Model. J Surg Res 2019; 246:550-559. [PMID: 31668608 DOI: 10.1016/j.jss.2019.09.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/19/2019] [Accepted: 09/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Intimal hyperplasia (IH) is the initial lesion of vein graft failure after coronary artery bypass grafting. The weak venous wall is likely one of the primary reasons for IH after exposure to the arterial environment. We investigate whether adventitial collagen cross-link by glutaraldehyde (GA) reinforces the venous wall and then reduces IH. MATERIALS AND METHODS Adventitial collagen cross-link by 0.3% GA was performed on the rabbit jugular veins. The degree of cross-link was accessed by tensile test. The jugular vein with or without cross-link was implanted into the carotid artery of rabbit. Vein dilatation at the immediate anastomosis and pathological remodeling of vein graft after 4 wk was assessed. RESULTS Tensile test indicated that the mechanical property of 3-min cross-linked veins more closely resembled that of the carotid artery. In rabbit arteriovenous graft models, 3-min adventitial collagen cross-link limited overdistension (diameter: 3.24 mm versus 4.65 mm, P < 0.01) at the immediate anastomosis and reduced IH (intima thickness: 78.83 μm versus 140.19 μm, P < 0.01) of vein grafts 4 wk after implantation in the cross-link group as compared with the graft group (without cross-link). Compared with the cross-link group, the expression of proliferating cell nuclear antigen and vascular cell adhesion molecule-1 increased significantly at both the mRNA and protein levels within the graft group (P < 0.01), but the expression of smooth muscle-22α decreased significantly (P < 0.01). CONCLUSIONS Adventitial collagen cross-link by GA increased the vessel stiffness and remarkably reduced IH in a rabbit arteriovenous graft model.
Collapse
|
9
|
Redmond RW, Kochevar IE. Medical Applications of Rose Bengal‐ and Riboflavin‐Photosensitized Protein Crosslinking. Photochem Photobiol 2019; 95:1097-1115. [DOI: 10.1111/php.13126] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/27/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Robert W. Redmond
- Wellman Center for Photomedicine Massachusetts General Hospital Harvard Medical School Boston MA
| | - Irene E. Kochevar
- Wellman Center for Photomedicine Massachusetts General Hospital Harvard Medical School Boston MA
| |
Collapse
|
10
|
Goldstein RL, Tsui JM, Runyan G, Randolph MA, McCormack MC, Mihm MC, Redmond RW, Austen WG. Photochemical Tissue Passivation Prevents Contracture of Full Thickness Wounds in Mice. Lasers Surg Med 2019; 51:910-919. [DOI: 10.1002/lsm.23128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Rachel L. Goldstein
- Division of Plastic and Recontructive Surgery, Department of Surgery, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| | - Jane M. Tsui
- Division of Plastic and Recontructive Surgery, Department of Surgery, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| | - Gem Runyan
- Division of Plastic and Recontructive Surgery, Department of Surgery, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| | - Mark A. Randolph
- Division of Plastic and Recontructive Surgery, Department of Surgery, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
- Wellman Center for Photomedicine, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| | - Michael C. McCormack
- Division of Plastic and Recontructive Surgery, Department of Surgery, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| | - Martin C. Mihm
- Department of Dermatology, Harvard Medical SchoolBrigham and Women's Hospital 75 Francis St Boston Massachusetts 02115
| | - Robert W. Redmond
- Wellman Center for Photomedicine, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| | - William G. Austen
- Division of Plastic and Recontructive Surgery, Department of Surgery, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| |
Collapse
|
11
|
Tianshu-Chu, Congrong-Gao, Zhiwei-Zhao, Fei-Ling, Ayu-Sun, Yuanbiao-Zheng, Jing-Cao, Ge J. Rapamycin Combined with α-Cyanoacrylate Contributes to Inhibiting Intimal Hyperplasia in Rat Models. Arq Bras Cardiol 2018; 112:3-10. [PMID: 30570064 PMCID: PMC6317635 DOI: 10.5935/abc.20180247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/23/2018] [Indexed: 11/30/2022] Open
Abstract
Background Vein graft restenosis has an adverse impact on bridge vessel circulation and
patient prognosis after coronary artery bypass grafting. Objectives We used the extravascular supporter α-cyanoacrylate (α-CA), the
local application rapamycin/sirolimus (RPM), and a combination of the two
(α-CA-RPM) in rat models of autogenous vein graft to stimulate vein
graft change. The aim of our study was to observe the effect of α-CA,
RPM, and α-CA-RPM on vein hyperplasia. Methods Fifty healthy Sprague Dawley (SD) rats were randomized into the following 5
groups: sham, control, α-CA, RPM, and α-CA-RPM. Operating
procedure as subsequently described was used to build models of grafted rat
jugular vein on carotid artery on one side. The level of endothelin-1 (ET-1)
was determined by enzyme-linked immunosorbent assay (ELISA). Grafted veins
were observed via naked eye 4 weeks later; fresh veins were observed via
microscope and image-processing software in hematoxylin-eosin (HE) staining
and immunohistochemistry after having been fixed and stored” (i.e. First
they were fixed and stored, and second they were observed); α-Smooth
Muscle Actin (αSMA) and von Willebrand factor (vWF) were measured
with reverse transcription-polymerase chain reaction (RT-PCR). Comparisons
were made with single-factor analysis of variance and Fisher’s least
significant difference test, with p < 0.05 considered significant. Results We found that intimal thickness of the α-CA, RPM, and α-CA-RPM
groups was lower than that of the control group (p < 0.01), and the
thickness of the α-CA-RPM group was notably lower than that of the
α-CA and RPM groups (p < 0.05). Conclusion RPM combined with α-CA contributes to inhibiting intimal hyperplasia
in rat models and is more effective for vascular patency than individual use
of either α-CA or RPM.
Collapse
Affiliation(s)
| | | | | | - Fei-Ling
- Anhui Medical University, Hefei - China
| | - Ayu-Sun
- Anhui Medical University, Hefei - China
| | | | - Jing-Cao
- Anhui Medical University, Hefei - China
| | | |
Collapse
|
12
|
|
13
|
Liu RH, Ong CS, Fukunishi T, Ong K, Hibino N. Review of Vascular Graft Studies in Large Animal Models. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:133-143. [PMID: 28978267 DOI: 10.1089/ten.teb.2017.0350] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As the incidence of cardiovascular disease continues to climb worldwide, there is a corresponding increase in demand for surgical interventions involving vascular grafts. The current gold standard for vascular grafts is autologous vessels, an option often excluded due to disease circumstances. As a result, many patients must resort to prosthetic options. While widely available, prosthetic grafts have been demonstrated to have inferior patency rates compared with autologous grafts due to inflammation and thrombosis. In an attempt to overcome these limitations, many different materials for constructing vascular grafts, from modified synthetic nondegradable polymers to biodegradable polymers, have been explored, many of which have entered the translational stage of research. This article reviews these materials in the context of large animal models, providing an outlook on the preclinical potential of novel biomaterials as well as the future direction of vascular graft research.
Collapse
Affiliation(s)
- Rui Han Liu
- 1 Division of Cardiac Surgery, The Johns Hopkins Hospital , Baltimore, Maryland
| | - Chin Siang Ong
- 1 Division of Cardiac Surgery, The Johns Hopkins Hospital , Baltimore, Maryland
| | - Takuma Fukunishi
- 1 Division of Cardiac Surgery, The Johns Hopkins Hospital , Baltimore, Maryland
| | - Kingsfield Ong
- 2 Department of Cardiac, Thoracic and Vascular Surgery, National University Health System , Singapore, Singapore
| | - Narutoshi Hibino
- 1 Division of Cardiac Surgery, The Johns Hopkins Hospital , Baltimore, Maryland
| |
Collapse
|
14
|
Alarcon EI, Poblete H, Roh H, Couture JF, Comer J, Kochevar IE. Rose Bengal Binding to Collagen and Tissue Photobonding. ACS OMEGA 2017; 2:6646-6657. [PMID: 31457260 PMCID: PMC6644953 DOI: 10.1021/acsomega.7b00675] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/11/2017] [Indexed: 05/19/2023]
Abstract
We investigated two critical aspects of rose Bengal (RB) photosensitized protein cross-linking that may underlie recently developed medical applications. Our studies focused on the binding of RB to collagen by physical interaction and the effect of this binding and certain amino acids on RB photochemistry. Molecular dynamics simulations and free-energy calculation techniques, complemented with isothermal titration calorimetry, provided insight into the binding between RB and a collagen-like peptide (CLP) at the atomic level. Electrostatic interactions dominated, which is consistent with the finding that RB bound equally well to triple helical and single chain collagen. The binding free energy ranged from -5.7 to -3 kcal/mol and was strongest near the positively charged amino groups at the N-terminus and on lysine side chains. At high RB concentration, a maximum of 16 ± 3 bound dye molecules per peptide was found, which is consistent with spectroscopic evidence for aggregated RB bound to collagen or the CLP. Within a tissue-mimetic collagen matrix, RB photobleached rapidly, probably due to electron transfer to certain protein amino acids, as was demonstrated in solutions of free RB and arginine. In the presence of arginine and low oxygen concentrations, a product absorbing at 510 nm formed, presumably due to dehalogenation after electron transfer to RB. In the collagen matrix without arginine, the dye generated singlet oxygen as well as the 510 nm product. These results provide the first evidence of the effects of a tissue-like environment on the photochemical mechanisms of rose Bengal.
Collapse
Affiliation(s)
- Emilio I. Alarcon
- Division
of Cardiac Surgery, University of Ottawa
Heart Institute, 40 Ruskin
Street, K1Y 4W7 Ottawa, ON, Canada
- Department
of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, K1H 8M5 Ottawa, ON, Canada
| | - Horacio Poblete
- Center
for Bioinformatics and Molecular Simulation, Universidad de Talca, 2 Norte 685, Casilla 721, Talca 3460000, Chile
- Institute
of Computational Comparative Medicine, Nanotechnology Innovation Center
of Kansas State, and Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66503, United States
| | - HeeGwang Roh
- Wellman
Center for Photomedicine, Massachusetts
General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, United States
| | - Jean-François Couture
- Department
of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, K1H 8M5 Ottawa, ON, Canada
| | - Jeffrey Comer
- Institute
of Computational Comparative Medicine, Nanotechnology Innovation Center
of Kansas State, and Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66503, United States
| | - Irene E. Kochevar
- Wellman
Center for Photomedicine, Massachusetts
General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, United States
| |
Collapse
|