1
|
Mathur M, Malinowski M, Jazwiec T, Timek TA, Rausch MK. Leaflet remodeling reduces tricuspid valve function in a computational model. J Mech Behav Biomed Mater 2024; 152:106453. [PMID: 38335648 PMCID: PMC11048730 DOI: 10.1016/j.jmbbm.2024.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Tricuspid valve leaflets have historically been considered "passive flaps". However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contribute to valvular dysfunction. To test this, we simulated the impact of remodeling-induced changes on valve mechanics in a reverse-engineered computer model of the human tricuspid valve. To this end, we combined right-heart pressures and tricuspid annular dynamics recorded in an ex vivo beating heart, with subject-matched in vitro measurements of valve geometry and material properties, to build a subject-specific finite element model. Next, we modified the annular geometry and boundary conditions to mimic changes seen in patients with pulmonary hypertension. In this model, we then increased leaflet thickness and stiffness and reduced the stretch at which leaflets stiffen, which we call "transition-λ." Subsequently, we quantified mean leaflet stresses, leaflet systolic angles, and coaptation area as measures of valve function. We found that leaflet stresses, leaflet systolic angle, and coaptation area are sensitive to independent changes in stiffness, thickness, and transition-λ. When combining thickening, stiffening, and changes in transition-λ, we found that anterior and posterior leaflet stresses decreased by 26% and 28%, respectively. Furthermore, systolic angles increased by 43%, and coaptation area decreased by 66%; thereby impeding valve function. While only a computational study, we provide the first evidence that remodeling-induced leaflet thickening and stiffening may contribute to valvular dysfunction. Targeted suppression of such changes in diseased valves could restore normal valve mechanics and promote leaflet coaptation.
Collapse
Affiliation(s)
- Mrudang Mathur
- Department of Mechanical Engineering, University of Texas at Austin, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America
| | - Marcin Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, 221 Michigan Street NE Suite 300, Grand Rapids, 49503, MI, United States of America; Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland
| | - Tomasz Jazwiec
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Tomasz A Timek
- Division of Cardiothoracic Surgery, Spectrum Health, 221 Michigan Street NE Suite 300, Grand Rapids, 49503, MI, United States of America
| | - Manuel K Rausch
- Department of Mechanical Engineering, University of Texas at Austin, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America; Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, 2617 Wichita Street, Austin, 78712, TX, United States of America; Department of Biomedical Engineering, University of Texas at Austin, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America; Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, 201 E 24th Street, Austin, 78712, TX, United States of America.
| |
Collapse
|
2
|
Gaidulis G, Padala M. Computational Modeling of the Subject-Specific Effects of Annuloplasty Ring Sizing on the Mitral Valve to Repair Functional Mitral Regurgitation. Ann Biomed Eng 2023; 51:1984-2000. [PMID: 37344691 PMCID: PMC10826925 DOI: 10.1007/s10439-023-03219-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/21/2023] [Indexed: 06/23/2023]
Abstract
Surgical repair of functional mitral regurgitation (FMR) that occurs in nearly 60% of heart failure (HF) patients is currently performed with undersizing mitral annuloplasty (UMA), which lacks short- and long-term durability. Heterogeneity in valve geometry makes tailoring this repair to each patient challenging, and predictive models that can help with planning this surgery are lacking. In this study, we present a 3D echo-derived computational model, to enable subject-specific, pre-surgical planning of the repair. Three computational models of the mitral valve were created from 3D echo data obtained in three pigs with HF and FMR. An annuloplasty ring model in seven sizes was created, each ring was deployed, and post-repair valve closure was simulated. The results indicate that large annuloplasty rings (> 32 mm) were not effective in eliminating regurgitant gaps nor in restoring leaflet coaptation or reducing leaflet stresses and chordal tension. Smaller rings (≤ 32 mm) restored better systolic valve closure in all investigated cases,but excessive valve tethering and restricted motion of the leaflets were still present. This computational study demonstrates that for effective correction of FMR, the extent of annular reduction differs between subjects, and overly reducing the annulus has deleterious effects on the valve.
Collapse
Affiliation(s)
- Gediminas Gaidulis
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, Atlanta, USA
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, USA
| | - Muralidhar Padala
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, Atlanta, USA.
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, USA.
| |
Collapse
|
3
|
Moye SC, Kidambi S, Lee JY, Cowles TH, Gilligan-Steinberg SD, Bryan AY, Wilkerson R, Woo YJ, Ma MR. Ex Vivo Modeling of Atrioventricular Valve Mechanics in Single Ventricle Physiology. Ann Biomed Eng 2023; 51:1738-1746. [PMID: 36966247 PMCID: PMC11460979 DOI: 10.1007/s10439-023-03178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/23/2023] [Indexed: 03/27/2023]
Abstract
Single ventricle physiology (SVP) is used to describe any congenital heart lesion that is unable to support independent pulmonary and systemic circulations. Current treatment strategies rely on a series of palliation surgeries that culminate in the Fontan physiology, which relies on the single functioning ventricle to provide systemic circulation while passively routing venous return through the pulmonary circulation. Despite significant reductions in early mortality, the presence of atrioventricular valve (AVV) regurgitation is a key predictor of heart failure in these patients. We sought to evaluate the biomechanical changes associated with the AVV in SVP physiologies. Left and right ventricles were sutured onto patient-derived 3D-printed mounts and mounted into an ex vivo systemic heart simulator capable of reproducing Norwood, Glenn, Fontan and Late Fontan physiologies. We found that the tricuspid anterior leaflet experienced elevated maximum force, average force, and maximum yank compared to the posterior and septal leaflets. Between physiologies, maximum yank was greatest in the Norwood physiology relative to the Glenn, Fontan, and Late Fontan physiologies. These contrasting trends suggest that long- and short-term mechanics of AVV failure in single ventricle differ and that AVV interventions should account for asymmetries in force profiles between leaflets and physiologies.
Collapse
Affiliation(s)
- Stephen C Moye
- Department of Cardiothoracic Surgery, Stanford University, 870 Quarry Rd, Stanford, CA, 94304, USA
| | - Sumanth Kidambi
- Department of Cardiothoracic Surgery, Stanford University, 870 Quarry Rd, Stanford, CA, 94304, USA
| | - James Y Lee
- Department of Cardiothoracic Surgery, Stanford University, 870 Quarry Rd, Stanford, CA, 94304, USA
| | - Teaghan H Cowles
- Department of Cardiothoracic Surgery, Stanford University, 870 Quarry Rd, Stanford, CA, 94304, USA
| | | | - Amelia Y Bryan
- Department of Cardiothoracic Surgery, Stanford University, 870 Quarry Rd, Stanford, CA, 94304, USA
| | - Rob Wilkerson
- Department of Cardiothoracic Surgery, Stanford University, 870 Quarry Rd, Stanford, CA, 94304, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, 870 Quarry Rd, Stanford, CA, 94304, USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
| | - Michael R Ma
- Department of Cardiothoracic Surgery, Stanford University, 870 Quarry Rd, Stanford, CA, 94304, USA.
- Falk Cardiovascular Research Center, 870 Quarry Road Extension, Palo Alto, CA, 94304, USA.
| |
Collapse
|
4
|
Gaidulis G, Suresh KS, Xu D, Padala M. Patient-Specific Three-Dimensional Ultrasound Derived Computational Modeling of the Mitral Valve. Ann Biomed Eng 2022; 50:847-859. [PMID: 35380321 PMCID: PMC10826907 DOI: 10.1007/s10439-022-02960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/27/2022] [Indexed: 11/01/2022]
Abstract
Several new techniques to repair the mitral valve affected by functional mitral regurgitation are in development. However, due to the heterogeneity of valve lesions between patients, predicting the outcomes of novel treatment approaches is challenging. We present a patient-specific, 3D ultrasound-derived computational model of the mitral valve for procedure planning, that faithfully mimics the pathological valve dynamics. 3D ultrasound images were obtained in three pigs induced with heart failure and which developed functional mitral regurgitation. For each case, images were segmented, and finite element model of mitral valve was constructed. Annular and papillary muscle dynamics were extracted and imposed as kinematic boundary conditions, and the chordae were pre-strained to induce valve tethering. Valve closure was simulated by applying physiologic transvalvular pressure on the leaflets. Agreement between simulation results and truth datasets was confirmed, with accurate location of regurgitation jets and coaptation defects. Inclusion of kinematic patient-specific boundary conditions was necessary to achieve these results, whereas use of idealized boundary conditions deviated from the truth dataset. Due to the impact of boundary conditions on the model, the effect of repair strategies on valve closure varied as well, indicating that our approach of using patient-specific boundary conditions for mitral valve modeling is valid.
Collapse
Affiliation(s)
- Gediminas Gaidulis
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, 380B Northyards Blvd NW, Atlanta, GA, 30313, USA
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirthana Sreerangathama Suresh
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, 380B Northyards Blvd NW, Atlanta, GA, 30313, USA
| | - Dongyang Xu
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, 380B Northyards Blvd NW, Atlanta, GA, 30313, USA
| | - Muralidhar Padala
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, 380B Northyards Blvd NW, Atlanta, GA, 30313, USA.
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Zhan-Moodie S, Xu D, Suresh KS, He Q, Onohara D, Kalra K, Guyton RA, Sarin EL, Padala M. Papillary muscle approximation reduces systolic tethering forces and improves mitral valve closure in the repair of functional mitral regurgitation. JTCVS OPEN 2021; 7:91-104. [PMID: 35299626 PMCID: PMC8924981 DOI: 10.1016/j.xjon.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background Undersizing mitral annuloplasty (UMA) to repair functional mitral regurgitation (FMR) lacks durability, as it forces leaflet coaptation without relieving the subleaflet tethering forces. In this biomechanical study, we demonstrate that papillary muscle approximation (PMA) before UMA can drastically relieve tethering forces and improve valve function, without the need for significant annular downsizing. Methods An ex vivo model of FMR was used, in which pig mitral valves were geometrically perturbed to induce FMR, and the repairs were performed. Nine pig mitral valves were studied in the following sequence: normal (baseline), FMR, true-sized annuloplasty to 30 mm (true-sized ring [TSR]), and undersized annuloplasty to 26 mm (down-sized ring [DSR]), along with concomitant PMA at both ring sizes. Mitral regurgitation, valve kinematics, and chordal forces were measured and compared among the groups. Results FMR geometry induced a mean regurgitant fraction of 16.31 ± 7.33% compared with 0% at baseline. TSR reduced the regurgitant fraction to 6.05 ± 5.63%, whereas DSR reduced it to 5.06 ± 6.76%. The addition of PMA before the use of these rings reduced the mean regurgitant fraction to 3.87 ± 6.79% with the TSR (TSR + PMA) and 3.71 ± 6.25% with the DSR (DSR + PMA). Mean peak anterior and posterior marginal chordal forces were elevated to 0.09 ± 0.1 N and 0.12 ± 0.1 N, respectively, with FMR and were not reduced by annuloplasty of either sizes. The addition of PMA significantly reduced these forces to 0.23 ± 0.02 N and 0.51 ± 0.04 N. Conclusions This biomechanical study demonstrates that PMA relieves tethering forces, and concomitantly with annuloplasty it mobilizes the leaflets to achieve physiological valve closure. Such a result could be achieved without the need for extensive annular downsizing.
Collapse
|
6
|
Park MH, Zhu Y, Imbrie-Moore AM, Wang H, Marin-Cuartas M, Paulsen MJ, Woo YJ. Heart Valve Biomechanics: The Frontiers of Modeling Modalities and the Expansive Capabilities of Ex Vivo Heart Simulation. Front Cardiovasc Med 2021; 8:673689. [PMID: 34307492 PMCID: PMC8295480 DOI: 10.3389/fcvm.2021.673689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
The field of heart valve biomechanics is a rapidly expanding, highly clinically relevant area of research. While most valvular pathologies are rooted in biomechanical changes, the technologies for studying these pathologies and identifying treatments have largely been limited. Nonetheless, significant advancements are underway to better understand the biomechanics of heart valves, pathologies, and interventional therapeutics, and these advancements have largely been driven by crucial in silico, ex vivo, and in vivo modeling technologies. These modalities represent cutting-edge abilities for generating novel insights regarding native, disease, and repair physiologies, and each has unique advantages and limitations for advancing study in this field. In particular, novel ex vivo modeling technologies represent an especially promising class of translatable research that leverages the advantages from both in silico and in vivo modeling to provide deep quantitative and qualitative insights on valvular biomechanics. The frontiers of this work are being discovered by innovative research groups that have used creative, interdisciplinary approaches toward recapitulating in vivo physiology, changing the landscape of clinical understanding and practice for cardiovascular surgery and medicine.
Collapse
Affiliation(s)
- Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Mateo Marin-Cuartas
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The review summarizes the key parameters that can aid in determining the optimal treatment of ischemic mitral regurgitation (IMR). RECENT FINDINGS Left ventricular (LV) and mitral valve (MV) parameters are important for surgical planning and risk stratification in IMR. Although LV dimensions is one of the main parameters used in the guidelines, volumes more accurately depict LV remodelling. Furthermore, wall motion abnormalities and wall motion score index can also be useful for surgical planning in treatment of IMR. Viability is best measured with cardiac magnetic resonance, but it is not feasible in certain centres. In contrast, measurement of strain with echocardiography is an emerging and feasible tool for estimating viability. MV leaflet tethering and pattern measured with echocardiography are also useful for MV surgery. Anterior leaflet excursion angle can identify patients in whom undersized ring annuloplasty is potentially unsuitable. SUMMARY Treatment of IMR relies on accurate parameters that can determine the optimal surgical approach. In some patients, lack of viable myocardium suggests inadequacy of revascularization and thus, an adjunctive left ventricular reconstruction may be necessary. Degree and pattern of MV leaflet tethering can indicate whether ring annuloplasty, which is the most common repair technique, is sufficient or an adjunctive sub-valvular intervention is beneficial.
Collapse
|
8
|
Castillero E, Howsmon DP, Rego BV, Keeney SJ, Driesbaugh KH, Kawashima T, Xue (薛应騛) Y, Camillo C, George I, Gorman RC, Gorman JH, Sacks MS, Levy RJ, Ferrari G. Altered Responsiveness to TGFβ and BMP and Increased CD45+ Cell Presence in Mitral Valves Are Unique Features of Ischemic Mitral Regurgitation. Arterioscler Thromb Vasc Biol 2021; 41:2049-2062. [PMID: 33827255 DOI: 10.1161/atvbaha.121.316111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Estibaliz Castillero
- Department of Surgery, Columbia University Irving Medical Center, New York, NY (E.C., Y.X., C.C., I.G., G.F.)
| | - Daniel P Howsmon
- Department of Biomedical Engineering, James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin (D.P.H., B.V.R., M.S.S.)
| | - Bruno V Rego
- Department of Biomedical Engineering, James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin (D.P.H., B.V.R., M.S.S.)
| | - Samuel J Keeney
- Department of Pediatrics, Children's Hospital of Philadelphia, PA (S.J.K., K.H.D., R.J.L.)
| | - Kathryn H Driesbaugh
- Department of Pediatrics, Children's Hospital of Philadelphia, PA (S.J.K., K.H.D., R.J.L.)
| | - Takayuki Kawashima
- Gorman Cardiovascular Research Group, Department of Surgery, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.K., R.C.G., J.H.G.)
| | - Yingfei Xue (薛应騛)
- Department of Surgery, Columbia University Irving Medical Center, New York, NY (E.C., Y.X., C.C., I.G., G.F.)
| | - Chiara Camillo
- Department of Surgery, Columbia University Irving Medical Center, New York, NY (E.C., Y.X., C.C., I.G., G.F.)
| | - Isaac George
- Department of Surgery, Columbia University Irving Medical Center, New York, NY (E.C., Y.X., C.C., I.G., G.F.)
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.K., R.C.G., J.H.G.)
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.K., R.C.G., J.H.G.)
| | - Michael S Sacks
- Department of Biomedical Engineering, James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin (D.P.H., B.V.R., M.S.S.)
| | - Robert J Levy
- Department of Pediatrics, Children's Hospital of Philadelphia, PA (S.J.K., K.H.D., R.J.L.)
| | - Giovanni Ferrari
- Department of Surgery, Columbia University Irving Medical Center, New York, NY (E.C., Y.X., C.C., I.G., G.F.)
| |
Collapse
|
9
|
Dhamija A, Roberts HG. Commentary: Primum non nocere. J Thorac Cardiovasc Surg 2021; 164:e368-e369. [PMID: 33840469 DOI: 10.1016/j.jtcvs.2021.02.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Ankit Dhamija
- Department of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown, WVa
| | - Harold G Roberts
- Department of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown, WVa.
| |
Collapse
|
10
|
Malinowski M, Jazwiec T, Ferguson H, Bush J, Rausch MK, Timek TA. Tricuspid leaflet kinematics after annular size reduction in ovine functional tricuspid regurgitation. J Thorac Cardiovasc Surg 2021; 164:e353-e366. [PMID: 33685738 DOI: 10.1016/j.jtcvs.2021.01.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Tricuspid annular size reduction with annuloplasty rings represents the foundation of surgical repair of functional tricuspid regurgitation. However, the precise effect of annular size reduction on leaflet motion and geometry remains unknown. METHODS Ten sheep underwent surgical implantation of a pacemaker with an epicardial lead and were paced 200-240 beats/min to achieve biventricular dysfunction and functional tricuspid regurgitation. Subsequently, sonomicrometry crystals were implanted on the right ventricle, the tricuspid annulus, and on the belly of anterior, posterior, and septal tricuspid leaflets. Double-layer polypropylene suture was placed around the tricuspid annulus and externalized to a tourniquet. Simultaneous echocardiographic, hemodynamic, and sonomicrometry data were acquired with functional tricuspid regurgitation and during 5 consecutive annular reduction steps. Annular area, tenting height, and volume, together with each leaflet strain, radial length, and angles, were calculated from crystal coordinates. RESULTS Rapid pacing reduced both left ventricle and right ventricle function and induced functional tricuspid regurgitation (0-3+) in all animals (from 0 ± 0 to 2.4 ± 0.7, P = .002), whereas tricuspid annulus diameter increased from 2.6 ± 0.3 cm to 3.3 ± 0.3 cm (P = .001). Tricuspid annular size reduction 1 to 5 resulted in 16% ± 7%, 37% ± 11%, 55% ± 11%, 66% ± 10%, and 76% ± 8% tricuspid annulus area reduction, respectively, and successively decreased tricuspid regurgitation. Tricuspid annular size reduction 2 to 5 induced anterior and posterior leaflet restricted motion and lower diastolic motion velocities. Tricuspid annular size reduction 5 perturbed septal leaflet range of motion but preserved its angle velocities. Tricuspid annular size reduction 3-5 generated compressive strains in all leaflets. CONCLUSIONS Tricuspid annular area reduction of 55% perturbed anterior and posterior leaflet motion while maintaining normal septal leaflet movement. More extreme reduction triggered profound changes in anterior and posterior leaflet motion, suggesting that aggressive undersizing impairs leaflet kinematics.
Collapse
Affiliation(s)
- Marcin Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, Mich; Department of Cardiac Surgery, Medical University of Silesia School of Medicine in Katowice, Katowice, Poland
| | - Tomasz Jazwiec
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, Mich; Department of Cardiac, Vascular, and Endovascular Surgery and Transplantology, Medical University of Silesia School of Medicine in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Haley Ferguson
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, Mich
| | - Jared Bush
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, Mich
| | - Manuel K Rausch
- Departments of Aerospace Engineering and Engineering Mechanics and Biomedical Engineering, Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Tex
| | - Tomasz A Timek
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, Mich.
| |
Collapse
|
11
|
Meador WD, Mathur M, Sugerman GP, Malinowski M, Jazwiec T, Wang X, Lacerda CM, Timek TA, Rausch MK. The tricuspid valve also maladapts as shown in sheep with biventricular heart failure. eLife 2020; 9:63855. [PMID: 33320094 PMCID: PMC7738185 DOI: 10.7554/elife.63855] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 11/28/2022] Open
Abstract
Over 1.6 million Americans suffer from significant tricuspid valve leakage. In most cases this leakage is designated as secondary. Thus, valve dysfunction is assumed to be due to valve-extrinsic factors. We challenge this paradigm and hypothesize that the tricuspid valve maladapts in those patients rendering the valve at least partially culpable for its dysfunction. As a first step in testing this hypothesis, we set out to demonstrate that the tricuspid valve maladapts in disease. To this end, we induced biventricular heart failure in sheep that developed tricuspid valve leakage. In the anterior leaflets of those animals, we investigated maladaptation on multiple scales. We demonstrated alterations on the protein and cell-level, leading to tissue growth, thickening, and stiffening. These data provide a new perspective on a poorly understood, yet highly prevalent disease. Our findings may motivate novel therapy options for many currently untreated patients with leaky tricuspid valves.
Collapse
Affiliation(s)
- William D Meador
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, United States
| | - Mrudang Mathur
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, United States
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, United States
| | - Marcin Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, United States.,Department of Cardiac Surgery, Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland
| | - Tomasz Jazwiec
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, United States.,Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Xinmei Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, United States
| | - Carla Mr Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, United States
| | - Tomasz A Timek
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, United States
| | - Manuel K Rausch
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, United States.,Department of Mechanical Engineering, The University of Texas at Austin, Austin, United States.,Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, United States
| |
Collapse
|
12
|
Mathur M, Meador WD, Jazwiec T, Malinowski M, Timek TA, Rausch MK. Tricuspid Valve Annuloplasty Alters Leaflet Mechanics. Ann Biomed Eng 2020; 48:2911-2923. [PMID: 32761558 PMCID: PMC8000450 DOI: 10.1007/s10439-020-02586-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Tricuspid valve regurgitation is associated with significant morbidity and mortality. Its most common treatment option, tricuspid valve annuloplasty, is not optimally effective in the long-term. Toward identifying the causes for annuloplasty's ineffectiveness, we have previously investigated the technique's impact on the tricuspid annulus and the right ventricular epicardium. In our current work, we are extending our analysis to the anterior tricuspid valve leaflet. To this end, we adopted our previous strategy of performing DeVega suture annuloplasty as an experimental methodology that allows us to externally control the degree of cinching during annuloplasty. Thus, in ten sheep we successively cinched the annulus and quantified changes to leaflet motion, dynamics, and strain in the beating heart by combining sonomicrometry with our well-established mechanical framework. We found that successive cinching of the valve enforced earlier coaptation and thus reduced leaflet range of motion. Additionally, leaflet angular velocity during opening and closing decreased. Finally, we found that leaflet strains were also reduced. Specifically, radial and areal strains decreased as a function of annular cinching. Our findings are critical as they suggest that suture annuloplasty alters the mechanics of the tricuspid valve leaflets which may disrupt their resident cells' mechanobiological equilibrium. Long-term, such disruption may stimulate tissue maladaptation which could contribute to annuloplasty's sub-optimal effectiveness. Additionally, our data suggest that the extent to which annuloplasty alters leaflet mechanics can be controlled via degree of cinching. Hence, our data may provide direct surgical guidelines.
Collapse
Affiliation(s)
- Mrudang Mathur
- Department of Mechanical Engineering, University of Texas at Austin, 204 E Dean Keeton Street, Austin, TX, 78712, USA
| | - William D Meador
- Department of Biomedical Engineering, University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX, 78712, USA
| | - Tomasz Jazwiec
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Silesian Centre for Heart Diseases, Medical University of Silesia in Katowice, Zabrze, Poland
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, 49503, USA
| | - Marcin Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, 49503, USA
- Department of Cardiac Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz A Timek
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, 49503, USA
| | - Manuel K Rausch
- Departments of Aerospace Engineering & Engineering Mechanics, Biomedical Engineering, University of Texas at Austin, 2617 Wichita Street, Austin, TX, 78712, USA.
| |
Collapse
|
13
|
Calafiore AM, Totaro A, Testa N, Sacra C, Castellano G, Guarracini S, Di Marco M, Prapas S, Gaudino M, Lorusso R, Paparella D, Di Mauro M. The secret life of the mitral valve. J Card Surg 2020; 36:247-259. [PMID: 33135267 DOI: 10.1111/jocs.15151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023]
Abstract
In secondary mitral regurgitation, the concept that the mitral valve (MV) is an innocent bystander, has been challenged by many studies in the last decades. The MV is a living structure with intrinsic plasticity that reacts to changes in stretch or in mechanical stress activating biohumoral mechanisms that have, as purpose, the adaptation of the valve to the new environment. If the adaptation is balanced, the leaflets increase both surface and length and the chordae tendineae lengthen: the result is a valve with different characteristics, but able to avoid or to limit the regurgitation. However, if the adaptation is unbalanced, the leaflets and the chords do not change their size, but become stiffer and rigid, with moderate or severe regurgitation. These changes are mediated mainly by a cytokine, the transforming growth factor-β (TGF-β), which is able to promote the changes that the MV needs to adapt to a new hemodynamic environment. In general, mild TGF-β activation facilitates leaflet growth, excessive TGF-β activation, as after myocardial infarction, results in profibrotic changes in the leaflets, with increased thickness and stiffness. The MV is then a plastic organism, that reacts to the external stimuli, trying to maintain its physiologic integrity. This review has the goal to unveil the secret life of the MV, to understand which stimuli can trigger its plasticity, and to explain why the equation "large heart = moderate/severe mitral regurgitation" and "small heart = no/mild mitral regurgitation" does not work into the clinical practice.
Collapse
Affiliation(s)
| | - Antonio Totaro
- Department of Cardiovascular Sciences, Gemelli Molise, Campobasso, Italy
| | - Nicola Testa
- Department of Cardiovascular Sciences, Gemelli Molise, Campobasso, Italy
| | - Cosimo Sacra
- Department of Cardiovascular Sciences, Gemelli Molise, Campobasso, Italy
| | - Gaetano Castellano
- Division of Anesthesia and Intensive Care, Gemelli Molise, Campobasso, Italy
| | | | - Massimo Di Marco
- Department of Cardiology, "Santo Spirito" Hospital, Pescara, Italy
| | - Sotirios Prapas
- Department of Cardiac Surgery, Henry Durant Hospital, Athens, Greece
| | - Mario Gaudino
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York City, New York, USA
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Unit, Heart and Vascular Centre, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Domenico Paparella
- Department of Emergency and Organ Transplants, Santa Maria Hospital, GVM Care & Research, Aldo Moro University of Bari, Bari, Italy
| | - Michele Di Mauro
- Department of Cardiology, "Pierangeli" Hospital, Pescara, Italy.,Cardio-Thoracic Surgery Unit, Heart and Vascular Centre, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| |
Collapse
|
14
|
Lindsey BD, Jing B, Kim S, Collins GC, Padala M. 3-D Intravascular Characterization of Blood Flow Velocity Fields with a Forward-Viewing 2-D Array. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2560-2571. [PMID: 32616428 PMCID: PMC7429285 DOI: 10.1016/j.ultrasmedbio.2020.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/06/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Risk stratification in coronary artery disease is an ongoing challenge for which few tools are available for quantifying physiology within coronary arteries. Recently, anatomy-driven computational fluid dynamic modeling has enabled the mapping of local flow dynamics in coronary stenoses, with derived parameters such as WSS exhibiting a strong capability for predicting adverse clinical events on a patient-specific basis. As cardiac catheterization is common in patients with coronary artery disease, minimally invasive technologies capable of identifying pathologic flow in situ in real time could have a significant impact on clinical decision- making. As a step toward in vivo quantification of slow flow near the arterial wall, proof-of-concept for 3-D intravascular imaging of blood flow dynamics is provided using a 118-element forward-viewing ring array transducer and a research ultrasound system. Blood flow velocity components are estimated in the direction of primary flow using an unfocused wave Doppler approach, and in the lateral and elevation directions, using a transverse oscillation approach. This intravascular 3-D vector velocity system is illustrated by acquiring real-time 3-D data sets in phantom experiments and in vivo in the femoral artery of a pig. The effect of the catheter on blood flow dynamics is also experimentally assessed in flow phantoms with both straight and stenotic vessels. Results indicate that 3-D flow dynamics can be measured using a small form factor device and that a hollow catheter design may provide minimal disturbance to flow measurements in a stenosis (peak velocity: 54.97 ± 2.13 cm/s without catheter vs. 51.37 ± 1.08 cm/s with hollow catheter, 6.5% error). In the future, such technologies could enable estimation of 3-D flow dynamics near the wall in patients already undergoing catheterization.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Electrical and Computer Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Saeyoung Kim
- Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA; Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Graham C Collins
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Muralidhar Padala
- Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA; Division of Cardiothoracic Surgery, Joseph P. Whitehead Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, Atlanta, GA, USA
| |
Collapse
|
15
|
Howsmon DP, Rego BV, Castillero E, Ayoub S, Khalighi AH, Gorman RC, Gorman JH, Ferrari G, Sacks MS. Mitral valve leaflet response to ischaemic mitral regurgitation: from gene expression to tissue remodelling. J R Soc Interface 2020; 17:20200098. [PMID: 32370692 PMCID: PMC7276554 DOI: 10.1098/rsif.2020.0098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Ischaemic mitral regurgitation (IMR), a frequent complication following myocardial infarction (MI), leads to higher mortality and poor clinical prognosis if untreated. Accumulating evidence suggests that mitral valve (MV) leaflets actively remodel post MI, and this remodelling increases both the severity of IMR and the occurrence of MV repair failures. However, the mechanisms of extracellular matrix maintenance and modulation by MV interstitial cells (MVICs) and their impact on MV leaflet tissue integrity and repair failure remain largely unknown. Herein, we sought to elucidate the multiscale behaviour of IMR-induced MV remodelling using an established ovine model. Leaflet tissue at eight weeks post MI exhibited significant permanent plastic radial deformation, eliminating mechanical anisotropy, accompanied by altered leaflet composition. Interestingly, no changes in effective collagen fibre modulus were observed, with MVICs slightly rounder, at eight weeks post MI. RNA sequencing indicated that YAP-induced genes were elevated at four weeks post MI, indicating elevated mechanotransduction. Genes related to extracellular matrix organization were downregulated at four weeks post MI when IMR occurred. Transcriptomic changes returned to baseline by eight weeks post MI. This multiscale study suggests that IMR induces plastic deformation of the MV with no functional damage to the collagen fibres, providing crucial information for computational simulations of the MV in IMR.
Collapse
Affiliation(s)
- Daniel P. Howsmon
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Bruno V. Rego
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Estibaliz Castillero
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Salma Ayoub
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amir H. Khalighi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Robert C. Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H. Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Ferrari
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael S. Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
16
|
Meador WD, Mathur M, Sugerman GP, Jazwiec T, Malinowski M, Bersi MR, Timek TA, Rausch MK. A detailed mechanical and microstructural analysis of ovine tricuspid valve leaflets. Acta Biomater 2020; 102:100-113. [PMID: 31760220 PMCID: PMC7325866 DOI: 10.1016/j.actbio.2019.11.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022]
Abstract
The tricuspid valve ensures unidirectional blood flow from the right atrium to the right ventricle. The three tricuspid leaflets operate within a dynamic stress environment of shear, bending, tensile, and compressive forces, which is cyclically repeated nearly three billion times in a lifetime. Ostensibly, the microstructural and mechanical properties of the tricuspid leaflets have mechanobiologically evolved to optimally support their function under those forces. Yet, how the tricuspid leaflet microstructure determines its mechanical properties and whether this relationship differs between the three leaflets is unknown. Here we perform a microstructural and mechanical analysis in matched ovine tricuspid leaflet samples. We found that the microstructure and mechanical properties vary among the three tricuspid leaflets in sheep. Specifically, we found that tricuspid leaflet composition, collagen orientation, and valve cell nuclear morphology are spatially heterogeneous and vary across leaflet type. Furthermore, under biaxial tension, the leaflets' mechanical behaviors exhibited unequal degrees of mechanical anisotropy. Most importantly, we found that the septal leaflet was stiffer in the radial direction and not the circumferential direction as with the other two leaflets. The differences we observed in leaflet microstructure coincide with the varying biaxial mechanics among leaflets. Our results demonstrate the structure-function relationship for each leaflet in the tricuspid valve. We anticipate our results to be vital toward developing more accurate, leaflet-specific tricuspid valve computational models. Furthermore, our results may be clinically important, informing differential surgical treatments of the tricuspid valve leaflets. Finally, the identified structure-function relationships may provide insight into the homeostatic and remodeling potential of valvular cells in altered mechanical environments, such as in diseased or repaired tricuspid valves. STATEMENT OF SIGNIFICANCE: Our work is significant as we investigated the structure-function relationship of ovine tricuspid valve leaflets. This is important as tricuspid valves fail frequently and our current approach to repairing them is suboptimal. Specifically, we related the distribution of structural and cellular elements, such as collagen, glycosaminoglycans, and cell nuclei, to each leaflet's mechanical properties. We found that leaflets have different structures and that their mechanics differ. This may, in the future, inform leaflet-specific treatment strategies and help optimize surgical outcomes.
Collapse
Affiliation(s)
- William D Meador
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78705, USA
| | - Mrudang Mathur
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78705, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78705, USA
| | - Tomasz Jazwiec
- Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI 49503, USA; Department of Cardiac, Vascular, and Endovascular Surgery and Transplantology, Medical University of Silesia School of Medicine in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Marcin Malinowski
- Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI 49503, USA; Department of Cardiac Surgery, Medical University of Silesia School of Medicine in Katowice, Katowice, Poland
| | - Matthew R Bersi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Tomasz A Timek
- Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI 49503, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78705, USA; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78705, USA; Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78705, USA.
| |
Collapse
|
17
|
Sielicka A, Sarin EL, Shi W, Sulejmani F, Corporan D, Kalra K, Thourani VH, Sun W, Guyton RA, Padala M. Pathological Remodeling of Mitral Valve Leaflets from Unphysiologic Leaflet Mechanics after Undersized Mitral Annuloplasty to Repair Ischemic Mitral Regurgitation. J Am Heart Assoc 2018; 7:e009777. [PMID: 30571381 PMCID: PMC6404183 DOI: 10.1161/jaha.118.009777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/03/2018] [Indexed: 01/24/2023]
Abstract
Background Undersized ring annuloplasty is a commonly used surgical repair for ischemic mitral regurgitation, in which annular downsizing corrects regurgitation, but alters valve geometry and elevates tissue stresses. In this study, we investigated if unphysiological leaflet kinematics after annuloplasty might cause pathogenic biological remodeling of the mitral valve leaflets, and if preserving physiologic leaflet kinematics with a better technique can moderate such adverse remodeling. Methods and Results Twenty-nine swine were induced with ischemic mitral regurgitation, and survivors were assigned to groups: 7 underwent annuloplasty, 12 underwent annuloplasty with papillary-muscle approximation, 6 underwent papillary-muscle approximation, and 3 were sham controls. Pre-and post-surgery leaflet kinematics were measured, and valve tissue was explanted after 3 months to assess biological changes. Anterior leaflet excursion was unchanged across groups, but persistent tethering was observed with annuloplasty. Posterior leaflet was vertically immobile after annuloplasty, better mobile with the combined approach, and substantially ( P=0.0028) mobile after papillary-muscle approximation. Procollagen-1 was higher in leaflets from annuloplasty compared with the other groups. Heat shock protein-47 and lysyl oxidase were higher in groups receiving annuloplasty compared with sham. α- SMA was elevated in leaflets from animals receiving an annuloplasty, indicating activation of quiescent valve interstitial cells, paralleled by elevated transforming growth factor-β expression. Conclusions This is the first study to demonstrate that surgical valve repairs that impose unphysiological leaflet mechanics have a deleterious, pathological impact on valve biology. Surgeons may need to consider restoring physiologic leaflet stresses as well as valve competence, while also exploring pharmacological methods to inhibit the abnormal signaling cascades.
Collapse
Affiliation(s)
- Alicja Sielicka
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
| | - Eric L. Sarin
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
- Department of Cardiothoracic SurgeryInova Heart and Vascular InstituteFairfaxVA
| | - Weiwei Shi
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
| | - Fatiesa Sulejmani
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGA
| | - Daniella Corporan
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
| | - Kanika Kalra
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
| | - Vinod H. Thourani
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
- Department of Cardiac SurgeryMedStar Heart and Vascular Institute and Georgetown UniversityWashingtonDC
| | - Wei Sun
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGA
| | - Robert A. Guyton
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
- Division of Cardiothoracic SurgeryJoseph P. Whitehead Department of SurgeryEmory University School of MedicineAtlantaGA
| | - Muralidhar Padala
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
- Division of Cardiothoracic SurgeryJoseph P. Whitehead Department of SurgeryEmory University School of MedicineAtlantaGA
| |
Collapse
|