1
|
Feng T, Ma Z, Pan C, Yu P. Pentoxifylline decreases the activity of the nucleotide-binding oligomerization domain-like receptor protein 3 pathway: potential role for preventing arteriovenous fistula stenosis. J Vasc Access 2024; 25:566-575. [PMID: 36203351 DOI: 10.1177/11297298221124730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE This study aimed to determine the effect of pentoxifylline (PTX) on the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome pathway and its role in preventing arteriovenous fistula (AVF) failure. METHODS Vein samples were collected from AVF failure patients and from patients who underwent surgical AVF as a control. The expressions of CD34 and NLRP3 in AVF tissues were detected by immunohistochemistry and Western blotting. Arteriovenous fistula rat models were established by the end-to-end anastomosis of the common carotid artery and external jugular vein. The AVF models were divided into the following groups: AVF, AVF + PTX, AVF + uraemia and AVF + uraemia + PTX. Six weeks after surgery, the AVF tissues in each group were collected to detect the expressions of CD34, NLRP3, caspase-1 and interleukin (IL)-1β by immunohistochemistry, Western blotting and real-time polymerase chain reaction. RESULTS The expressions of NLRP3 and CD34 in human AVF failure tissues were significantly higher than those in normal veins (p < 0.001), indicating that NLRP3 was upregulated in patients with AVF failure. In our animal study, the veins in the AVF + uraemia group exhibited heavy hyperplasia, and the boundary between the media and the adventitia was not clear. However, PTX alleviated this hyperplasia. Compared with the AVF models, the AVF + uraemia models had much higher expressions of NLRP3, caspase-1, IL-1β and CD34 (p < 0.001). However, PTX had the opposite effect against uraemia on the NLRP3 inflammasome pathway at both the gene and protein levels. CONCLUSIONS Our findings provide new insights that show that PTX can decrease the activity of the NLRP3 inflammasome pathway in AVF models. Pentoxifylline has the potential as a drug for preventing intimal hyperplasia and AVF failure.
Collapse
Affiliation(s)
- Tao Feng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zejun Ma
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Congqing Pan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Li Y, Hu K, Li Y, Lu C, Guo Y, Wang W. The rodent models of arteriovenous fistula. Front Cardiovasc Med 2024; 11:1293568. [PMID: 38304139 PMCID: PMC10830807 DOI: 10.3389/fcvm.2024.1293568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Arteriovenous fistulas (AVFs) have long been used as dialysis access in patients with end-stage renal disease; however, their maturation and long-term patency still fall short of clinical needs. Rodent models are irreplaceable to facilitate the study of mechanisms and provide reliable insights into clinical problems. The ideal rodent AVF model recapitulates the major features and pathology of human disease as closely as possible, and pre-induction of the uremic milieu is an important addition to AVF failure studies. Herein, we review different surgical methods used so far to create AVF in rodents, including surgical suturing, needle puncture, and the cuff technique. We also summarize commonly used evaluations after AVF placement. The aim was to provide recent advances and ideas for better selection and induction of rodent AVF models. At the same time, further improvements in the models and a deeper understanding of AVF failure mechanisms are expected.
Collapse
Affiliation(s)
- Yuxuan Li
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Hu
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Li
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjun Lu
- Department of General Vascular Surgery, Wuhan No.1 Hospital & Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Yi Guo
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weici Wang
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Zhao S, Cang H, Liu Y, Huang Y, Zhang S. Integrated analysis of bulk RNA-seq and single-cell RNA-seq reveals the function of pyrocytosis in the pathogenesis of abdominal aortic aneurysm. Aging (Albany NY) 2023; 15:15287-15323. [PMID: 38112597 PMCID: PMC10781497 DOI: 10.18632/aging.205350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
Pyrocytosis is involved in the development of abdominal aortic aneurysm (AAA), we explored the pyrocytosis-related hub genes in AAA and conducted a diagnostic model based on the pyrocytosis-related genes score (PRGs). A total of 2 bulk RNA-seq (GSE57691 and GSE47472) datasets and pyrocytosis-related genes were integrated to obtain 24 pyrocytosis-related different expression genes (DEGs). The LASSO Cox regression analysis was conducted to filter out 7 genes and further establish the nomogram signature based on the PRGs that exhibited a good diagnosis value. Weighted gene co-expression network analysis (WGCNA) established 14 gene modules and further identified 6 hub genes which were involved in the regulatory process of pyrocytosis in AAA. At the single cell level, we further identified 3 immune cells were highly associated with the pyrocytosis process in AAA. Finally, the cell-cell communication demonstrated that fibroblasts and endothelial cells and myeloid cells maintained close communications. Here, we identified the dysfunctional expressed pyrocytosis-related genes and immune cells in AAA, which provide a comprehensive understanding of the pathogenesis of AAA.
Collapse
Affiliation(s)
- Shiqi Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Hai Cang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Ying Liu
- Department of Anesthesiology, Heilongjiang Provincial Hospital, Harbin 150036, Heilongjiang, China
| | - Yanjie Huang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Song Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| |
Collapse
|
4
|
Ho LC, Chen YH, Wu TY, Kao LZ, Hung SY, Liou HH, Chen PC, Tsai PJ, Lin HK, Lee YC, Wang HH, Tsai YS. Phosphate burden induces vascular calcification through a NLRP3-caspase-1-mediated pyroptotic pathway. Life Sci 2023; 332:122123. [PMID: 37742736 DOI: 10.1016/j.lfs.2023.122123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
AIMS The aim of this study is to clarify the role of NLRP3 inflammasome in phosphate burden-induced vascular smooth muscle cell (VSMC) calcification. MAIN METHODS VSMC calcification was induced using a high concentration of inorganic phosphate. After pharmacological inhibition or genetic silencing of the NLRP3 inflammasome, pyroptosis, or potassium efflux, the cells were examined by RT-qPCR, immunofluorescence, and western blotting to identify the NLRP3-mediated pathway for VSMC calcification. KEY FINDINGS Calcified VSMCs with α-smooth muscle actin (α-SMA) disarray presented features of pyroptosis, including caspase-1 maturation, cleaved gasdermin D (GSDMD), and a high supernatant level of lactate dehydrogenase A. Pharmacological inhibitions of caspase-1 and pyroptosis attenuated VSMC calcification, whereas interleukin-1β receptor antagonism did not. Unlike canonical NLRP3 activation, osteogenic VSMCs did not upregulate NLRP3 expression. However, NLRP3 genetic silencing or inhibitions, which targets different domains of the NLRP3 protein, could ameliorate VSMC calcification by aborting caspase-1 and GSDMD activation. Furthermore, potassium efflux through the inward-rectifier potassium channel, and not through the P2X7 receptor, triggered NLRP3 inflammasome activation and VSMC calcification. SIGNIFICANCE In the present study, we identified a potassium efflux-triggered NLRP3-caspase-1-mediated pyroptotic pathway for VSMC calcification that is unique and different from the canonical NLRP3 inflammasome activation. Therefore, targeting this pathway may serve as a novel therapeutic strategy for vascular calcification.
Collapse
Affiliation(s)
- Li-Chun Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Division of General Medicine, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.
| | - Yu-Hsin Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yun Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Zhen Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Yuan Hung
- Division of Nephrology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hung-Hsiang Liou
- Division of Nephrology, Department of Internal Medicine, Hsin-Jen Hospital, New Taipei City, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Yi-Che Lee
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Hsi-Hao Wang
- Division of Nephrology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA; Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
5
|
Laboyrie SL, de Vries MR, Bijkerk R, Rotmans JI. Building a Scaffold for Arteriovenous Fistula Maturation: Unravelling the Role of the Extracellular Matrix. Int J Mol Sci 2023; 24:10825. [PMID: 37446003 DOI: 10.3390/ijms241310825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Vascular access is the lifeline for patients receiving haemodialysis as kidney replacement therapy. As a surgically created arteriovenous fistula (AVF) provides a high-flow conduit suitable for cannulation, it remains the vascular access of choice. In order to use an AVF successfully, the luminal diameter and the vessel wall of the venous outflow tract have to increase. This process is referred to as AVF maturation. AVF non-maturation is an important limitation of AVFs that contributes to their poor primary patency rates. To date, there is no clear overview of the overall role of the extracellular matrix (ECM) in AVF maturation. The ECM is essential for vascular functioning, as it provides structural and mechanical strength and communicates with vascular cells to regulate their differentiation and proliferation. Thus, the ECM is involved in multiple processes that regulate AVF maturation, and it is essential to study its anatomy and vascular response to AVF surgery to define therapeutic targets to improve AVF maturation. In this review, we discuss the composition of both the arterial and venous ECM and its incorporation in the three vessel layers: the tunica intima, media, and adventitia. Furthermore, we examine the effect of chronic kidney failure on the vasculature, the timing of ECM remodelling post-AVF surgery, and current ECM interventions to improve AVF maturation. Lastly, the suitability of ECM interventions as a therapeutic target for AVF maturation will be discussed.
Collapse
Affiliation(s)
- Suzanne L Laboyrie
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Vascular Surgery, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
6
|
Ding X, Du Y, Sun B, Liu L, Le S, Wu C, Chen J, Chen X, Chen S, Xia J. MicroRNA let-7a mediates posttranscriptional inhibition of Nr4A1 and exacerbates cardiac allograft rejection. Cell Signal 2023:110783. [PMID: 37356602 DOI: 10.1016/j.cellsig.2023.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Acute allograft rejection remains a major obstacle after heart transplantation, and CD4+ T cells play a crucial role in allograft rejection. Upregulation of Nr4A1 could regulate CD4+ T-cell function and alleviate allograft rejection. However, the regulatory mechanism of Nr4A1 in allograft rejection remains elusive. METHODS BCLb/c mouse hearts were transplanted into WT C57BL/6 mice, and dynamic detection of the changes in Nr4A1 expression revealed that Nr4A1 was regulated posttranscriptionally after heart transplantation. Potential upstream miRNAs of Nr4A1 were screened, and the transfection of cells with these miRNA mimics/inhibitors and dual-luciferase reporter experiments were performed to clarify the regulatory mechanism of miRNAs on Nr4A1 expression. The miRNA agomiR/antagomiR was applied in vivo to validate the role of the corresponding miRNA in heart transplantation. Finally, Nr4A1 knockout mice and an adoptive T-cell cotransfer model were used to confirm the specific effects of miRNA. RESULTS The expression of Nr4A1 protein (rather than mRNA) exhibited a trend of initially increasing and then decreasing rapidly, and this phenomenon could not be reversed by lysosomal or proteasomal inhibitors. The miRNA let-7a directly binds to the Nr4A1 3'UTR and posttranscriptionally regulates Nr4A1 expression. The let-7a antagomiR prolonged allograft survival and regulated CD4+ T-cell function by upregulating Nr4A1 protein expression in CD4+ T cells. CONCLUSIONS This study confirmed that let-7a is a potential target for interfering with Nr4A1 expression in CD4+ T cells and preventing the pathological progression of cardiac allograft rejection.
Collapse
Affiliation(s)
- Xiangchao Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Sun
- Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Liang Liu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sheng Le
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chuangyan Wu
- Departments of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuling Chen
- Departments of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province and Central Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Zou Y, Chen Z, Zhang X, Yu J, Xu H, Cui J, Li Y, Niu Y, Zhou C, Xia J, Wu J. Targeting PCSK9 Ameliorates Graft Vascular Disease in Mice by Inhibiting NLRP3 Inflammasome Activation in Vascular Smooth Muscle Cells. Front Immunol 2022; 13:894789. [PMID: 35720337 PMCID: PMC9204514 DOI: 10.3389/fimmu.2022.894789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Graft vascular disease (GVD), which limits the long-term survival of patients after solid-organ transplantation, is associated with both immune responses and nonimmune factors, including dyslipidemia. Recent studies have shown that inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), a U.S. Federal Drug Administration-approved treatment for hyperlipidemia, reduces cardiovascular events, regulates inflammatory responses, and enhances the efficacy of immune checkpoint therapy in cancer treatment through a cholesterol-independent mechanism. However, whether targeting PCSK9 is a potential therapeutic strategy for GVD remains unknown. Methods Serum samples and grafts were harvested from male mice undergoing abdominal aortic transplantation. The pathological alterations in the aortic grafts were detected by hematoxylin and eosin staining, Verhoeff’s Van Gieson staining, and Masson staining. Inflammatory cell infiltration and proinflammatory cytokine expression in the aortic grafts were detected by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The regulatory effects of PCSK9 on vascular smooth muscle cell (VSMC) migration and proliferation were examined by transwell, EdU, and western blot assays. The effect of Evolocumab, a PCSK9 inhibitor, on GVD in humanized PCSK9 mice was also evaluated. Results PCSK9 was upregulated in the serum, grafts, and liver of mice in the allograft group subjected to abdominal aortic transplantation. Pcsk9 knockout significantly reduced vascular stenosis, the intimal hyperplasia area and collagen deposition. Pcsk9 depletion also inhibited macrophage recruitment and the mRNA expression of proinflammatory cytokines in aortic grafts. Furthermore, Pcsk9 knockout suppressed the migration and proliferation of VSMCs, which was related to the inhibition of NLRP3 inflammasome activation. Meanwhile, Evolocumab significantly ameliorated GVD in humanized PCSK9 mice. Conclusion PCSK9 is upregulated in a mouse model of GVD, and Pcsk9 knockout reduces vascular occlusion, suggesting that PCSK9 may be a promising target for the treatment of GVD.
Collapse
Affiliation(s)
- Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Ding X, Le S, Wang K, Su Y, Chen S, Wu C, Chen J, Chen S, Zhang A, Xia J. Cytosporone B (Csn-B), an NR4A1 agonist, attenuates acute cardiac allograft rejection by inducing differential apoptosis of CD4+T cells. Int Immunopharmacol 2022; 104:108521. [PMID: 35026656 DOI: 10.1016/j.intimp.2022.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
CD4+T cell-mediated acute rejection remains a major factor that affects the early survival of transplanted organs post-transplantation. Here, we reveal that nuclear receptor subfamily 4 Group A member 1 (Nr4A1) was upregulated during cardiac allograft rejection and that the increased Nr4A1 was primarily localized in intragraft-infiltrating CD4+T cells. Nr4A1 acts as a transcription factor with an important role in CD4+T cell apoptosis, differentiation and T cell dysfunction, which indicates that Nr4A1 may play a critical role in transplant rejection. Cytosporone B (Csn-B) is a naturally occurring agonist of Nr4A1, and the role of Csn-B in the physiological process of cardiac rejection is poorly defined. This study constructed an acute rejection model of abdominal heterotopic cardiac transplantation in mice and investigated whether Csn-B could attenuate acute transplant rejection by modulating the CD4+T lymphocyte response. The results showed that Csn-B prolonged murine cardiac allograft survival and reduced inflammation in allografts. Subsequently, it was confirmed that Csn-B functions by inducing non-Treg apoptosis and promoting Treg cell differentiation. Finally, we also confirmed that Csn-B attenuates acute rejection by directly targeting Nr4A1 in CD4+T cells. Our data suggest that Csn-B is a promising novel therapeutic approach for acute cardiac allograft rejection.
Collapse
Affiliation(s)
- Xiangchao Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunshu Su
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province and Central Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuangyan Wu
- Departments of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuling Chen
- Departments of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Anchen Zhang
- Department of Cardiovascular Medicine, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Aranda-Rivera AK, Srivastava A, Cruz-Gregorio A, Pedraza-Chaverri J, Mulay SR, Scholze A. Involvement of Inflammasome Components in Kidney Disease. Antioxidants (Basel) 2022; 11:246. [PMID: 35204131 PMCID: PMC8868482 DOI: 10.3390/antiox11020246] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammasomes are multiprotein complexes with an important role in the innate immune response. Canonical activation of inflammasomes results in caspase-1 activation and maturation of cytokines interleukin-1β and -18. These cytokines can elicit their effects through receptor activation, both locally within a certain tissue and systemically. Animal models of kidney diseases have shown inflammasome involvement in inflammation, pyroptosis and fibrosis. In particular, the inflammasome component nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) and related canonical mechanisms have been investigated. However, it has become increasingly clear that other inflammasome components are also of importance in kidney disease. Moreover, it is becoming obvious that the range of molecular interaction partners of inflammasome components in kidney diseases is wide. This review provides insights into these current areas of research, with special emphasis on the interaction of inflammasome components and redox signalling, endoplasmic reticulum stress, and mitochondrial function. We present our findings separately for acute kidney injury and chronic kidney disease. As we strictly divided the results into preclinical and clinical data, this review enables comparison of results from those complementary research specialities. However, it also reveals that knowledge gaps exist, especially in clinical acute kidney injury inflammasome research. Furthermore, patient comorbidities and treatments seem important drivers of inflammasome component alterations in human kidney disease.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Anjali Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; (A.S.); (S.R.M.)
| | - Alfredo Cruz-Gregorio
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Shrikant R. Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; (A.S.); (S.R.M.)
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
10
|
Sterile inflammation in the pathogenesis of maturation failure of arteriovenous fistula. J Mol Med (Berl) 2021; 99:729-741. [PMID: 33666676 DOI: 10.1007/s00109-021-02056-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/19/2020] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
Chronic kidney disease is a widespread terminal illness that afflicts millions of people across the world. Hemodialysis is the predominant therapeutic management strategy for kidney failure and involves the external filtration of metabolic waste within the circulation. This process requires an arteriovenous fistula (AVF) for vascular access. However, AVF maturation failures are significant obstacles in establishing long-term vascular access for hemodialysis. Appropriate stimulation, activation, and proliferation of smooth muscle cells, proper endothelial cell orientation, adequate structural changes in the ECM, and the release of anti-inflammatory markers are associated with maturation. AVFs often fail to mature due to inadequate tissue repair and remodeling, leading to neointimal hyperplasia lesions. The transdifferentiation of myofibroblasts and sterile inflammation are possibly involved in AVF maturation failures; however, limited data is available in this regard. The present article critically reviews the interplay of various damage-associated molecular patterns (DAMPs) and the downstream sterile inflammatory signaling with a focus on the NLRP3 inflammasome. Improved knowledge concerning AVF maturation pathways can be unveiled by investigating the novel DAMPs and the mediators of sterile inflammation in vascular remodeling that would open improved therapeutic opportunities in the management of AVF maturation failures and its associated complications.
Collapse
|
11
|
The roles of NLRP3 inflammasome-mediated signaling pathways in hyperuricemic nephropathy. Mol Cell Biochem 2021; 476:1377-1386. [PMID: 33389490 DOI: 10.1007/s11010-020-03997-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Hyperuricemic nephropathy (HN) is a common clinical complication of hyperuricemia. High-serum uric acid can trigger renal inflammation. The inflammasome family has several members and shows a significant effect on inflammatory responses. NLRP3 (NOD-, LRR-, and pyrin domain-containing 3) senses the stimuli signal of excessive uric acid and then it recruits apoptosis-related specular protein (ASC) as well as aspartic acid-specific cysteine protease (caspase)-1 precursor to form NLRP3 inflammasome. NLRP3 inflammasome is activated in acute kidney injury (AKI), chronic kidney diseases (CKD), diabetic nephropathy (DN), and HN. This review focuses on important role for the involvement of NLRP3 inflammasome and associated signaling pathways in the pathogenesis of hyperuricemia-induced renal injury and the potential therapeutic implications. Additionally, several inhibitors targeting NLRP3 inflammasome are under development, most of them for experiment. Therefore, researches into NLRP3 inflammasome modulators may provide novel therapies for HN.
Collapse
|
12
|
Huang Y, Wang S, Ding X, Wu C, Chen J, Hu Z, Du X, Wang G. Inhibition of S-adenosyl-L-homocysteine hydrolase alleviates alloimmune response by down-regulating CD4 + T-cell activation in a mouse heart transplantation model. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1582. [PMID: 33437781 PMCID: PMC7791210 DOI: 10.21037/atm-20-2899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Transmethylation reactions play an important role on lymphocyte activation and function. S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitors prevent the feedback of transmethylation reactions by S-adenosyl-L-homocysteine (SAH) accumulation, a competitive antagonist of S-adenosylmethionine (SAM)-dependent methyltransferases. However, the role of SAH in solid organ transplantation is currently unclear. Methods A murine model of cardiac transplantation (BALB/C to C57B/6) was established to assess allograft survival, histology, and T cell infiltration. The reversible SAHH inhibitor, DZ2002, and irreversible SAHH inhibitor, adenosine dialdehyde (AdOx), were used to assess their immunosuppressive effects in murine cardiac transplantation, compared with mice with DMSO. Results Both SAHH inhibitors prolonged the survival of cardiac allografts and alleviated alloimmune response. Notably, AdOx and DZ2002 both eliminated frequencies of Th1 and Th17 in CD4+ T cells in cardiac transplantation, and reduced the frequency of active CD4+ T cell (CD44+ CD62L−). The irreversible SAHH inhibitor facilitated the differentiation of regulatory T cells (Tregs) and increased Bim expression. Furthermore, both SAHH inhibitors alleviated infiltration of CD4+ T cells in cardiac allografts. Conclusions The SAHH inhibitors (AdOx and DZ2002) alleviates allograft rejection in cardiac transplantation by inhibition of CD4+ T alloimmune response. SAHH inhibitors, especially DZ2002, is a promising complementary therapeutic agent in organ transplantation.
Collapse
Affiliation(s)
- Yajun Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sufei Wang
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangchao Ding
- Department of Thoracic Surgery, Hubei Provincial People's Hospital, Wuhan University, Wuhan, China
| | - Chuangyan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuling Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinling Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohua Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Ding X, Chen J, Wu C, Wang G, Zhou C, Chen S, Wang K, Zhang A, Ye P, Wu J, Chen S, Zhang H, Xu K, Wang S, Xia J. Nucleotide-Binding Oligomerization Domain-Like Receptor Protein 3 Deficiency in Vascular Smooth Muscle Cells Prevents Arteriovenous Fistula Failure Despite Chronic Kidney Disease. J Am Heart Assoc 2020; 8:e011211. [PMID: 30587058 PMCID: PMC6405733 DOI: 10.1161/jaha.118.011211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background The arteriovenous fistula (AVF) is the preferred hemodialysis access for patients with chronic kidney disease. Chronic kidney disease can increase neointima formation, which greatly contributes to AVF failure by an unknown mechanism. Our study aimed to determine the role of nucleotide‐binding oligomerization domain‐like receptor protein 3 (NLRP3) in neointima formation induced by experimental AVFs in the presence of chronic kidney disease. Methods and Results From our findings, NLRP3 was upregulated in the intimal lesions of AVFs in both uremic mice and patients. Smooth muscle–specific knockout NLRP3 mice exhibited markedly decreased neointima formation in the outflow vein of AVFs. Compared with primary vascular smooth muscle cells isolated from control mice, those isolated from smooth muscle–specific knockout NLRP3 mice showed compromised proliferation, migration, phenotypic switching, and a weakened ability to activate mononuclear macrophages. To identify how NLRP3 functions, several small‐molecule inhibitors were used. The results showed that NLRP3 regulates smooth muscle cell proliferation and migration through Smad2/3 phosphorylation rather than through caspase‐1/interleukin‐1 signaling. Unexpectedly, the selective NLRP3‐inflammasome inhibitor MCC950 also repressed Smad2/3 phosphorylation and relieved chronic kidney disease–promoted AVF failure independent of macrophages. Conclusions Our findings suggest that NLRP3 in vascular smooth muscle cells may play a crucial role in uremia‐associated AVF failure and may be a promising therapeutic target for the treatment of AVF failure.
Collapse
Affiliation(s)
- Xiangchao Ding
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jiuling Chen
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Chuangyan Wu
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,2 Department of Thoracic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Guohua Wang
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Cheng Zhou
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shanshan Chen
- 3 Key Laboratory for Molecular Diagnosis of Hubei Province Central Hospital of Wuhan Tongji Medical College Huazhong University of Science and Technology Wuhan China.,4 Central Laboratory Central Hospital of Wuhan Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ke Wang
- 6 Department of Respiratory and Critical Care Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Anchen Zhang
- 5 Department of Cardiovascular Medicine Central Hospital of Wuhan Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ping Ye
- 5 Department of Cardiovascular Medicine Central Hospital of Wuhan Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jie Wu
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shanshan Chen
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Hao Zhang
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Kaiying Xu
- 2 Department of Thoracic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Sihua Wang
- 2 Department of Thoracic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jiahong Xia
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|