1
|
Vogl B, Sularz A, Ahn S, Gadhave R, Lilly S, Thourani V, Lindman B, Alkhouli M, Hatoum H. Analysis of Energy and Pressure in the Sinus with Different Blood Pressures after Bioprosthetic Aortic Valve Replacement. Ann Biomed Eng 2024; 52:3228-3239. [PMID: 39103737 DOI: 10.1007/s10439-024-03587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE To investigate the effect of changing systolic and diastolic blood pressures (SBP and DBP, respectively) on sinus flow and valvular and epicardial coronary flow dynamics after TAVR and SAVR. METHODS SAPIEN 3 and Magna valves were deployed in an idealized aortic root model as part of a pulse duplicating left heart flow loop simulator. Different combinations of SBP and DBP were applied to the test setup and the resulting change in total coronary flow from baseline (120/60 mmHg), effective orifice area (EOA), and left ventricular (LV) workload, with each combination, was assessed. In addition, particle image velocimetry was used to assess the Laplacian of pressure (∇ 2 P ) in the sinus, coronary and main flow velocities, the energy dissipation rate (EDR) in the sinus and the LV workload. RESULTS This study shows that under an elevated SBP, there is an increase in the total coronary flow, EOA, LV workload, peak velocities downstream of the valve,∇ 2 P , and EDR. With an elevated DBP, there was an increase in the total coronary flow and∇ 2 P . However, EOA and LV workload decreased with an increase in DBP, and EDR increased with a decrease in DBP. CONCLUSIONS Blood pressure alters the hemodynamics in the sinus and downstream flow following aortic valve replacement, potentially influencing outcomes in some patients.
Collapse
Affiliation(s)
- Brennan Vogl
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Agata Sularz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sunyoung Ahn
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Rajat Gadhave
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Scott Lilly
- Department of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Vinod Thourani
- Department of Cardiovascular Surgery, Piedmont Heart Institute, Marcus Valve Center, Atlanta, GA, USA
| | - Brian Lindman
- Division of Cardiovascular Medicine, Structural Heart and Valve Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohamad Alkhouli
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hoda Hatoum
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA.
- Health Research Institute, Center of Biocomputing and Digital Health and Institute of Computing and Cybersystems, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
2
|
Arnold L, Haas NA, Jakob A, Fischer J, Massberg S, Deseive S, Oberhoffer FS. Transcatheter aortic valve implantation and its impact on endothelial function in patients with aortic stenosis. Microvasc Res 2024; 157:104735. [PMID: 39218034 DOI: 10.1016/j.mvr.2024.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Vascular function is impaired in patients with aortic valve stenosis (AS). The impact of transcatheter aortic valve implantation (TAVI) on endothelial function is inconclusive so far. Therefore, we sought to assess the short-term influence of TAVI on endothelial dysfunction in patients with AS. We recruited 47 patients (76.6 % male, 80.04 years old) with AS scheduled for TAVI. Endothelial function was assessed by fingertip reactive hyperemia peripheral arterial tonometry (RH-PAT). Measurements were conducted one day before and three days after TAVI. Patients were grouped according to RH-PAT change after TAVI. Overall, RH-PAT measurements did not significantly improve after TAVI (Reactive Hyperemia Index: 1.5 vs 1.6, p = 0.883; logarithm of the Reactive Hyperemia Index: 0.44 vs. 0.49, p = 0.523). Interestingly, patients with no RH-PAT improvement after TAVI displayed a more severe AS and had lower blood pressure after TAVI. This might be due to a more disturbed blood flow in patients with a smaller aortic valve area and higher peak aortic valve velocity. The relationship between AS severity, endothelial dysfunction and TAVI has to be investigated in future research that apply longitudinal study designs.
Collapse
Affiliation(s)
- Leonie Arnold
- Division of Pediatric Cardiology and Intensive Care, University Hospital, LMU Munich, Munich, Germany.
| | - Nikolaus Alexander Haas
- Division of Pediatric Cardiology and Intensive Care, University Hospital, LMU Munich, Munich, Germany
| | - André Jakob
- Division of Pediatric Cardiology and Intensive Care, University Hospital, LMU Munich, Munich, Germany
| | - Julius Fischer
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Simon Deseive
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | | |
Collapse
|
3
|
Vogl BJ, Chavez-Ponce A, Wentworth A, Erie E, Yadav P, Thourani VH, Dasi LP, Lindman B, Alkhouli M, Hatoum H. Differential Impact of Blood Pressure Control Targets on Epicardial Coronary Flow After Transcatheter Aortic Valve Replacement. STRUCTURAL HEART : THE JOURNAL OF THE HEART TEAM 2024; 8:100230. [PMID: 38283570 PMCID: PMC10818148 DOI: 10.1016/j.shj.2023.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 09/27/2023] [Indexed: 01/30/2024]
Abstract
Background The cause for the association between increased cardiovascular mortality rates and lower blood pressure (BP) after aortic valve replacement (AVR) is unclear. This study aims to assess how the epicardial coronary flow (ECF) after AVR varies as BP levels are changed in the presence of a right coronary lesion. Methods The hemodynamics of a 3D printed aortic root model with a SAPIEN 3 26 deployed were evaluated in an in vitro left heart simulator under a range of varying systolic blood pressure (SBP) and diastolic blood pressure (DBP). ECF and the flow ratio index were calculated. Flow index value <0.8 was considered a threshold for ischemia. Results As SBP decreased, the average ECF decreased below the physiological coronary minimum at 120 mmHg. As DBP decreased, the average ECF was still maintained above the physiological minimum. The flow ratio index was >0.9 for SBP ≥130 mmHg. However, at an SBP of 120 mmHg, the flow ratio was 0.63 (p ≤ 0.0055). With decreasing DBP, no BP condition yielded a flow ratio index that was less than 0.91. Conclusions Reducing BP to the current recommended levels assigned for the general population after AVR in the presence of coronary artery disease may require reconsideration of levels and treatment priority. Additional studies are needed to fully understand the changes in ECF dynamics after AVR in the presence and absence of coronary artery disease.
Collapse
Affiliation(s)
- Brennan J. Vogl
- Biomedical Engineering Department, Michigan Technological University, Houghton, Michigan, USA
| | | | - Adam Wentworth
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric Erie
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Pradeep Yadav
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, Georgia, USA
| | - Vinod H. Thourani
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, Georgia, USA
| | - Lakshmi Prasad Dasi
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brian Lindman
- Division of Cardiovascular Medicine, Structural Heart and Valve Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mohamad Alkhouli
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Hoda Hatoum
- Biomedical Engineering Department, Michigan Technological University, Houghton, Michigan, USA
- Health Research Institute, Center of Biocomputing and Digital Health and Institute of Computing and Cybersystems, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
4
|
Garber L, Khodaei S, Maftoon N, Keshavarz-Motamed Z. Impact of TAVR on coronary artery hemodynamics using clinical measurements and image-based patient-specific in silico modeling. Sci Rep 2023; 13:8948. [PMID: 37268642 PMCID: PMC10238523 DOI: 10.1038/s41598-023-31987-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/21/2023] [Indexed: 06/04/2023] Open
Abstract
In recent years, transcatheter aortic valve replacement (TAVR) has become the leading method for treating aortic stenosis. While the procedure has improved dramatically in the past decade, there are still uncertainties about the impact of TAVR on coronary blood flow. Recent research has indicated that negative coronary events after TAVR may be partially driven by impaired coronary blood flow dynamics. Furthermore, the current technologies to rapidly obtain non-invasive coronary blood flow data are relatively limited. Herein, we present a lumped parameter computational model to simulate coronary blood flow in the main arteries as well as a series of cardiovascular hemodynamic metrics. The model was designed to only use a few inputs parameters from echocardiography, computed tomography and a sphygmomanometer. The novel computational model was then validated and applied to 19 patients undergoing TAVR to examine the impact of the procedure on coronary blood flow in the left anterior descending (LAD) artery, left circumflex (LCX) artery and right coronary artery (RCA) and various global hemodynamics metrics. Based on our findings, the changes in coronary blood flow after TAVR varied and were subject specific (37% had increased flow in all three coronary arteries, 32% had decreased flow in all coronary arteries, and 31% had both increased and decreased flow in different coronary arteries). Additionally, valvular pressure gradient, left ventricle (LV) workload and maximum LV pressure decreased by 61.5%, 4.5% and 13.0% respectively, while mean arterial pressure and cardiac output increased by 6.9% and 9.9% after TAVR. By applying this proof-of-concept computational model, a series of hemodynamic metrics were generated non-invasively which can help to better understand the individual relationships between TAVR and mean and peak coronary flow rates. In the future, tools such as these may play a vital role by providing clinicians with rapid insight into various cardiac and coronary metrics, rendering the planning for TAVR and other cardiovascular procedures more personalized.
Collapse
Affiliation(s)
- Louis Garber
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Seyedvahid Khodaei
- Department of Mechanical Engineering (Mail to JHE-310), McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Nima Maftoon
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Zahra Keshavarz-Motamed
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.
- Department of Mechanical Engineering (Mail to JHE-310), McMaster University, Hamilton, ON, L8S 4L7, Canada.
- School of Computational Science and Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
5
|
Affiliation(s)
- Julian Yeoh
- King's College Hospital National Health Service Foundation TrustLondonUnited Kingdom
| | - Philip MacCarthy
- King's College Hospital National Health Service Foundation TrustLondonUnited Kingdom
| |
Collapse
|