1
|
Revaiah PC, Miyashita K, Tsai TY, Bajaj R, Kotoku N, Tobe A, Muramatsu T, Tanabe K, Kozuma K, Ozaki Y, Garg S, Tu S, Dijkstra J, Bourantas CV, Onuma Y, Serruys PW. Segmental post-percutaneous coronary intervention physiological gradients using ultrasonic or optical flow ratio: insights from ASET JAPAN study. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2025; 3:qyaf017. [PMID: 39974274 PMCID: PMC11837184 DOI: 10.1093/ehjimp/qyaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Aims Segmental pressure gradients post-percutaneous coronary intervention (PCI) can detect residual disease and optimization targets. Ultrasonic flow ratio (UFR) or optical flow ratio (OFR) offer simultaneous physiological and morphological assessment using a single imaging catheter. This study evaluated the utility of UFR and OFR in identifying residual disease post-PCI. Methods and results The study include patients from the Acetyl Salicylic Elimination Trial JAPAN Pilot study with complete intravascular imaging pullback data, where UFR or OFR was obtained post-PCI. Anatomical focal lesions distal and proximal to the stent were analysed in segments ≥5 mm long. UFR or OFR virtual pullback curves assessed intra-stent pressure gradients, defining physiological focal or diffuse by segmental pressure drops ≥0.05 over lengths <10 or ≥10 mm, respectively. The median post-PCI UFR/OFR was 0.93 (0.88-0.96) with 35.4% (69/195) vessels having a UFR/OFR < 0.91. There were significantly more focal lesions, both anatomical and physiological, proximal and distal to the stent in vessels with UFR/OFR < 0.91 compared with those ≥0.91. Agreement between anatomical and physiological focal lesions was moderate proximally (kappa = 0.553, P < 0.001) and fair distally (kappa = 0.219, P = 0.002). The in-stent gradient poorly predicted significant stent under-expansion. However, the virtual fractional flow reserve gradient performed well in detecting proximal or distal focal disease (area under the curve = 0.835 and 0.877, respectively). Conclusion UFR/OFR effectively identifies sub-optimal vessel physiology post-PCI and locates precise anatomical issues, validated by intravascular imaging. Trial registration The ASET JAPAN ClinicalTrials.gov reference: NCT05117866.
Collapse
Affiliation(s)
- Pruthvi C Revaiah
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Kotaro Miyashita
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Tsung-Ying Tsai
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Retesh Bajaj
- Department of Cardiology, Barts Heart Center, Barts Health NHS Trust, London, UK
| | - Nozomi Kotoku
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Akihiro Tobe
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Takashi Muramatsu
- Department of Cardiology, Fujita Health University Hospital, Toyoake, Japan
| | - Kengo Tanabe
- Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan
| | - Ken Kozuma
- Department of Cardiology, Teikyo University Hospital, Tokyo, Japan
| | - Yukio Ozaki
- Department of Cardiology, Fujita Health University Okazaki Medical Center, Okazaki, Japan
| | - Scot Garg
- Department of Cardiology, Royal Blackburn Hospital, Blackburn, UK
| | - Shengxian Tu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jouke Dijkstra
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Center, Barts Health NHS Trust, London, UK
- Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yoshinobu Onuma
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Patrick W Serruys
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
2
|
Groenland FTW, Neleman T, Ziedses des Plantes AC, Scoccia A, Kardys I, den Dekker WK, Wilschut JM, Diletti R, Van Mieghem NM, Daemen J. Fractional Flow Reserve Directed Percutaneous Coronary Intervention Optimization Using High-Definition Intravascular Ultrasound in Non-ST-Segment Elevation Acute Coronary Syndrome Versus Chronic Coronary Syndrome. Catheter Cardiovasc Interv 2024. [PMID: 39722557 DOI: 10.1002/ccd.31357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/11/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Intravascular ultrasound (IVUS)-guided optimization of suboptimal fractional flow reserve (FFR) following percutaneous coronary intervention (PCI) results in a significant increase in both post-PCI FFR and minimal lumen and stent areas (MLA and MSA, respectively). However, the impact of clinical presentation with non-ST-segment elevation acute coronary syndrome (NSTE-ACS) versus chronic coronary syndrome (CCS) on the efficacy of PCI optimization remains unknown. METHODS This was a prespecified subgroup analysis of the FFR REACT trial comparing IVUS-guided PCI optimization versus no further treatment in 291 patients with a post-PCI FFR < 0.90. Post-PCI physiology and pre optimization IVUS findings were compared between patients presenting with NSTE-ACS versus CCS, as well as optimization strategy, final FFR and IVUS findings. RESULTS Out of 291 patients, 130 (44.7%) presented with NSTE-ACS. Median post-PCI FFR was similar in patients with NSTE-ACS and CCS (0.85 for both, p = 0.55). Pre optimization IVUS findings did not differ significantly between both groups and subsequent optimization strategy was comparable (p = 0.71). In both NSTE-ACS and CCS, optimization resulted in a significant increase (p < 0.01 for all) of similar magnitude in median FFR (0.02 vs. 0.03, p = 0.80), MLA (0.37 vs. 0.50 mm2, p = 0.46) and MSA (0.29 vs. 0.32 mm2, p = 0.61), respectively. The clinical impact of IVUS-guided optimization on 2-year target vessel failure showed no signs of heterogeneity based on clinical presentation (interaction p = 0.36). CONCLUSIONS In patients undergoing FFR-directed IVUS-guided optimization, post-PCI FFR, pre optimization IVUS findings and optimization strategy did not differ significantly between patients presenting with either NSTE-ACS or CCS, with comparable improvements in FFR, MLA and MSA.
Collapse
Affiliation(s)
- Frederik T W Groenland
- Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tara Neleman
- Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Alessandra Scoccia
- Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Isabella Kardys
- Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wijnand K den Dekker
- Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen M Wilschut
- Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roberto Diletti
- Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nicolas M Van Mieghem
- Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joost Daemen
- Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Csanádi B, Ferenci T, Fülöp G, Piróth Z. Clinical Implications of Fractional Flow Reserve Measured Immediately After Percutaneous Coronary Intervention. Cardiovasc Drugs Ther 2024; 38:917-925. [PMID: 36821060 PMCID: PMC11438715 DOI: 10.1007/s10557-023-07437-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE The purpose of the present study was to find the independent predictors of Fractional Flow Reserve (FFR) measured immediately after percutaneous coronary intervention with drug-eluting stent implantation (post-PCI FFR) and investigate if applying vessel-specific post-PCI FFR cut-off values to predict target vessel failure (TVF), a composite of cardiac death (CD), non-fatal myocardial infarction (MI) and target vessel revascularization (TVR), or a composite of CD and MI ameliorated its predictive power. METHODS Consecutive patients with post-PCI FFR measurement at our center between 2009 and 2021 were included in this analysis. RESULTS A total of 434 patients with 500 vessels were included. Median pre-PCI FFR was 0.72 with no difference between LAD and non-LAD vessels. Median post-PCI FFR was 0.87. LAD location, male gender, smaller stent diameter, and lower pre-PCI FFR proved to be significant predictors of a lower post-PCI FFR. On a vessel-level, post-PCI FFR, stent length, and diabetes mellitus proved to be significant predictors of TVF and the composite of CD and MI. The best post-PCI FFR cut-off to predict TVF or a composite of CD and MI was 0.83 in the LAD and 0.91 in non-LAD vessels. CONCLUSION LAD location is a predictor of a lower post-PCI FFR. Post-PCI FFR is an independent predictor of TVF as well as of the composite of CD and MI. No uniform target post-PCI FFR value exists; different cut-off values may have to be applied in LAD as opposed to non-LAD vessels.
Collapse
Affiliation(s)
- Bettina Csanádi
- Gottsegen National Cardiovascular Center, 29 Haller Str., 1096, Budapest, Hungary
| | - Tamás Ferenci
- Physiological Controls Group, John von Neumann Faculty of Informatics, Óbuda University, Budapest, Hungary
| | - Gábor Fülöp
- Gottsegen National Cardiovascular Center, 29 Haller Str., 1096, Budapest, Hungary
| | - Zsolt Piróth
- Gottsegen National Cardiovascular Center, 29 Haller Str., 1096, Budapest, Hungary.
| |
Collapse
|
4
|
Hidalgo F, Gonzalez-Manzanares R, Suárez de Lezo J, Gallo I, Alvarado M, Perea J, Maestre-Luque LC, Resúa A, Romero M, López-Benito M, Pérez de Prado A, Ojeda S, Pan M. The Usefulness of Coregistration with iFR in Tandem or Long Diffuse Coronary Lesions: The iLARDI Randomized Clinical Trial. J Clin Med 2024; 13:4342. [PMID: 39124613 PMCID: PMC11313554 DOI: 10.3390/jcm13154342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Background. Despite technical advancements, patients with sequential or diffuse coronary lesions undergoing percutaneous coronary intervention (PCI) have an increased risk of cardiovascular events at follow-up. We aimed to analyze the utility of a SyncVision/iFR (S-iFR)-guided PCI strategy versus an angiography-guided strategy in patients with this type of lesions. Methods. Randomized, multicenter, controlled, and open-label trial to compare S-iFR versus angiography-guided PCI in patients with sequential or diffuse angiographic coronary stenosis (ClinicalTrials.gov identifier: NCT04283734). The primary endpoint was the implanted stent length. The main secondary endpoint was targeting vessel failure (TVF) at one year. Results. A total of 100 patients underwent randomization, with 49 patients assigned to the S-iFR group and 51 to the angiography-guided PCI group. There were no differences between groups regarding clinical and anatomical characteristics. The baseline iFR was 0.71 ± 0.16 vs. 0.67 ± 0.19 (p = 0.279) in the S-iFR and angiography group, respectively. The mean lesion length was 42.3 ± 12 mm and 39.8 ± 12 (p = 0.297). The implanted stent length was 32.7 ± 17.2 mm in the S-iFR group and 43.1 ± 14.9 mm in the angiography group (mean difference, -10.4 mm; 95% confidence interval [CI], -16.9 to -4.0; p = 0.002). At one year, target vessel failure (TVF) occurred in four patients: three (6.1%) in the S-iFR group vs. one (1.9%) in the angiography group (p = 0.319). Conclusions. Among patients with sequential or long diffuse coronary lesions, a S-iFR-guided PCI strategy resulted in a reduction of the total stent length compared to an angiography-guided PCI strategy. A nonsignificant increase in TVF was observed in the S-iFR group.
Collapse
Affiliation(s)
- Francisco Hidalgo
- Department of Cardiology, Reina Sofia University Hospital, 14004 Cordoba, Spain; (R.G.-M.); (J.S.d.L.); (I.G.); (J.P.); (L.C.M.-L.); (A.R.); (M.R.); (S.O.); (M.P.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Rafael Gonzalez-Manzanares
- Department of Cardiology, Reina Sofia University Hospital, 14004 Cordoba, Spain; (R.G.-M.); (J.S.d.L.); (I.G.); (J.P.); (L.C.M.-L.); (A.R.); (M.R.); (S.O.); (M.P.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Suárez de Lezo
- Department of Cardiology, Reina Sofia University Hospital, 14004 Cordoba, Spain; (R.G.-M.); (J.S.d.L.); (I.G.); (J.P.); (L.C.M.-L.); (A.R.); (M.R.); (S.O.); (M.P.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Ignacio Gallo
- Department of Cardiology, Reina Sofia University Hospital, 14004 Cordoba, Spain; (R.G.-M.); (J.S.d.L.); (I.G.); (J.P.); (L.C.M.-L.); (A.R.); (M.R.); (S.O.); (M.P.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
| | - Marco Alvarado
- Department of Cardiology, Reina Sofia University Hospital, 14004 Cordoba, Spain; (R.G.-M.); (J.S.d.L.); (I.G.); (J.P.); (L.C.M.-L.); (A.R.); (M.R.); (S.O.); (M.P.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
| | - Jorge Perea
- Department of Cardiology, Reina Sofia University Hospital, 14004 Cordoba, Spain; (R.G.-M.); (J.S.d.L.); (I.G.); (J.P.); (L.C.M.-L.); (A.R.); (M.R.); (S.O.); (M.P.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
| | - Luis Carlos Maestre-Luque
- Department of Cardiology, Reina Sofia University Hospital, 14004 Cordoba, Spain; (R.G.-M.); (J.S.d.L.); (I.G.); (J.P.); (L.C.M.-L.); (A.R.); (M.R.); (S.O.); (M.P.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
| | - Adriana Resúa
- Department of Cardiology, Reina Sofia University Hospital, 14004 Cordoba, Spain; (R.G.-M.); (J.S.d.L.); (I.G.); (J.P.); (L.C.M.-L.); (A.R.); (M.R.); (S.O.); (M.P.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
| | - Miguel Romero
- Department of Cardiology, Reina Sofia University Hospital, 14004 Cordoba, Spain; (R.G.-M.); (J.S.d.L.); (I.G.); (J.P.); (L.C.M.-L.); (A.R.); (M.R.); (S.O.); (M.P.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Medicine, University of Cordoba, 14004 Cordoba, Spain
| | - María López-Benito
- Department of Cardiology, University Hospital of Leon, 24008 Leon, Spain (A.P.d.P.)
| | | | - Soledad Ojeda
- Department of Cardiology, Reina Sofia University Hospital, 14004 Cordoba, Spain; (R.G.-M.); (J.S.d.L.); (I.G.); (J.P.); (L.C.M.-L.); (A.R.); (M.R.); (S.O.); (M.P.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Medicine, University of Cordoba, 14004 Cordoba, Spain
| | - Manuel Pan
- Department of Cardiology, Reina Sofia University Hospital, 14004 Cordoba, Spain; (R.G.-M.); (J.S.d.L.); (I.G.); (J.P.); (L.C.M.-L.); (A.R.); (M.R.); (S.O.); (M.P.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Medicine, University of Cordoba, 14004 Cordoba, Spain
| |
Collapse
|
5
|
Zhang J, Hwang D, Yang S, Hu X, Lee JM, Nam CW, Shin ES, Doh JH, Hoshino M, Hamaya R, Kanaji Y, Murai T, Zhang JJ, Ye F, Li X, Ge Z, Chen SL, Kakuta T, Wang J, Koo BK. Angiographic Findings and Post-Percutaneous Coronary Intervention Fractional Flow Reserve. JAMA Netw Open 2024; 7:e2418072. [PMID: 38904958 PMCID: PMC11193130 DOI: 10.1001/jamanetworkopen.2024.18072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/22/2024] [Indexed: 06/22/2024] Open
Abstract
Importance The associations between angiographic findings and post-percutaneous coronary intervention (PCI) fractional flow reserve (FFR) and their clinical relevance according to residual functional disease burden have not been thoroughly investigated. Objectives To evaluate the association of angiographic and physiologic parameters according to residual functional disease burden after drug-eluting stent implantation. Design, Setting, and Participants This cohort study population was from the International Post-PCI FFR registry, which incorporated 4 registries from Korea, China, and Japan. Patients who underwent angiographically successful second-generation drug-eluting stent implantation and post-PCI FFR measurement were included in the analysis. The patients were divided into 3 groups according to the residual disease burden (post-PCI FFR ≤0.80 [residual ischemia], 0.81-0.86 [suboptimal], and >0.86 [optimal]). The data were collected from August 23, 2018, to June 11, 2019, and the current analysis was performed from January 11, 2022, to October 7, 2023. Exposures Angiographic parameters and post-PCI FFR. Main Outcomes and Measures The primary outcome was target vessel failure (TVF), defined as a composite of cardiac death, target vessel-related myocardial infarction, and target vessel revascularization (TVR) at 2 years. Results In this cohort of 2147 patients, the mean (SD) age was 64.3 (10.0) years, and 1644 patients (76.6%) were men. Based on the post-PCI physiologic status, 269 patients (12.5%) had residual ischemia, 551 (25.7%) had suboptimal results, and 1327 (61.8%) had optimal results. Angiographic parameters had poor correlations with post-PCI FFR (r < 0.20). Post-PCI FFR was isolated from all angiographic parameters in the unsupervised hierarchical cluster analysis. Post-PCI FFR was associated with the occurrence of TVF (adjusted hazard ratio [AHR] per post-PCI FFR 0.01 increase, 0.94 [95% CI, 0.92-0.97]; P < .001), but angiographic parameters were not. The residual ischemia group had a significantly higher rate of TVF than the suboptimal group (AHR, 1.75 [95% CI, 1.08-2.83]; P = .02) and the optimal group (AHR, 2.94 [95% CI, 1.82-4.73]; P < .001). The TVR in the residual ischemia group was predominantly associated with TVR in the nonstented segment (14 [53.8%]), unlike the other 2 groups (3 [10.0%] in the suboptimal group and 13 [30.2%] in the optimal group). Conclusions and Relevance In this cohort study of the International Post-PCI FFR registry, a low degree of associations were observed between angiographic and physiologic parameters after PCI. Post-PCI FFR, unlike angiographic parameters, was associated with clinical events and the distribution of clinical events. The current study supports the use of post-PCI FFR as a procedural quality metric and further prospective study is warranted.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Doyeon Hwang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Seokhun Yang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Wook Nam
- Department of Cardiology, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Joon-Hyung Doh
- Department of Cardiology, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Masahiro Hoshino
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Rikuta Hamaya
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Yoshihisa Kanaji
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Tadashi Murai
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Jun-Jie Zhang
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fei Ye
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaobo Li
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen Ge
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shao-Liang Chen
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tsunekazu Kakuta
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Jian’an Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
6
|
Chen Y, Lu D, Xing H, Ding H, Luo J, Liu H, Kong X, Xu F. Recent Progress in MEMS Fiber-Optic Fabry-Perot Pressure Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:1079. [PMID: 38400236 PMCID: PMC10893101 DOI: 10.3390/s24041079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Pressure sensing plays an important role in many industrial fields; conventional electronic pressure sensors struggle to survive in the harsh environment. Recently microelectromechanical systems (MEMS) fiber-optic Fabry-Perot (FP) pressure sensors have attracted great interest. Here we review the basic principles of MEMS fiber-optic FP pressure sensors and then discuss the sensors based on different materials and their industrial applications. We also introduce recent progress, such as two-photon polymerization-based 3D printing technology, and the state-of-the-art in this field, e.g., sapphire-based sensors that work up to 1200 °C. Finally, we discuss the limitations and opportunities for future development.
Collapse
Affiliation(s)
- Ye Chen
- MIIT Key Laboratory of Aerospace Information Materials and Physics, State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
| | - Dongqin Lu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Huan Xing
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Haotian Ding
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Junxian Luo
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Hanwen Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xiangxu Kong
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Fei Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Shin D, Lee SH, Hong D, Choi KH, Lee JM. Physiologic Assessment After Percutaneous Coronary Interventions and Functionally Optimized Revascularization. Cardiol Clin 2024; 42:55-76. [PMID: 37949540 DOI: 10.1016/j.ccl.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Coronary physiologic assessment has become a standard of care for patients with coronary atherosclerotic disease. While most attention has focused on pre-interventional physiologic assessment to aid in revascularization decision-making, post-interventional physiologic assessment has not been as widely used, despite evidence supporting its role in assessment and optimization of the revascularization procedure. A thorough understanding of such evidence and ongoing studies would be crucial to incorporate post-interventional physiologic assessment into daily practice. Thus, this review provides a comprehensive overview of current evidence regarding the evolving role of physiologic assessment as a functional optimization tool for the entire revascularization process.
Collapse
Affiliation(s)
- Doosup Shin
- Division of Cardiology, Duke University Medical Center, 2301 Erwin Rd, Durham, NC 27710, USA
| | - Seung Hun Lee
- Department of Internal Medicine and Cardiovascular Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 61469, Republic of Korea
| | - David Hong
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Ki Hong Choi
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea.
| |
Collapse
|
8
|
Budrys P, Peace A, Baranauskas A, Davidavicius G. Intravascular Ultrasound vs. Fractional Flow Reserve for Percutaneous Coronary Intervention Optimization in Long Coronary Artery Lesions. Diagnostics (Basel) 2023; 13:2921. [PMID: 37761287 PMCID: PMC10528528 DOI: 10.3390/diagnostics13182921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND intravascular ultrasound (IVUS) and fractional flow reserve (FFR) have both been shown to be superior to angiography in optimizing percutaneous coronary intervention (PCI). However, there is still a lack of comparative studies between PCI optimization using physiology and intravascular imaging head-to-head. The aim of this study was to compare the effectiveness of FFR and IVUS PCI optimization strategies on the functional PCI result (assessed with FFR) immediately post-PCI and at 9-12 months after the treatment of long coronary lesions. METHODS This was a single-center study comparing post-PCI FFR between two different PCI optimization strategies (FFR and IVUS). The study included 154 patients who had hemodynamically significant long lesions, necessitating a stent length of 30 mm or more. The procedural outcomes were functional PCI result immediately post-PCI and at 9-12 months after treatment. Clinical outcomes included target vessel failure (TVF) and functional target vessel restenosis rate during follow-up. RESULTS Baseline clinical characteristics and FFR (0.65 [0.55-0.71]) did not differ significantly between the two groups and the left anterior descending artery was treated in 82% of cases. The FFR optimization strategy resulted in a significantly shorter stented segment (49 mm vs. 63 mm, p = 0.001) compared to the IVUS optimization strategy. Although the rates of optimal functional PCI result (FFR > 0.9) did not significantly differ between the FFR and IVUS optimization strategies, a proportion of patients in the FFR group (12%) experienced poor post-PCI functional outcome with FFR values ≤ 0.8, which was not observed in the IVUS group. At the 9-12 month follow-up, 20% of patients in the FFR group had target-vessel-related myocardial ischemia, compared to 6% in the IVUS group. The rates of TVF and functional target vessel restenosis during follow-up were also numerically higher in the FFR optimization group. CONCLUSIONS The use of FFR PCI optimization strategy in the treatment of long coronary artery lesions is associated with a higher incidence of poor functional PCI result and larger myocardial ischemia burden at follow-up compared to the IVUS optimization strategy. However, this discrepancy did not translate into a statistically significant difference in clinical outcomes. This study highlights the importance of using IVUS to optimize long lesions functional PCI outcomes.
Collapse
Affiliation(s)
- Povilas Budrys
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Cardiology and Angiology Center, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Aaron Peace
- Department of Cardiology, Western Health and Social Care Trust, Derry BT47 6SB, UK
| | - Arvydas Baranauskas
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Cardiology and Angiology Center, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Giedrius Davidavicius
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Cardiology and Angiology Center, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| |
Collapse
|
9
|
Yang S, Hwang D, Zhang J, Park J, Yun JP, Lee JM, Nam C, Shin E, Doh J, Chen S, Kakuta T, Toth GG, Piroth Z, Johnson NP, Hakeem A, Uretsky BF, Hokama Y, Tanaka N, Lim H, Ito T, Matsuo A, Azzalini L, Leesar MA, Neleman T, van Mieghem NM, Diletti R, Daemen J, Collison D, Collet C, De Bruyne B, Koo B. Clinical and Vessel Characteristics Associated With Hard Outcomes After PCI and Their Combined Prognostic Implications. J Am Heart Assoc 2023; 12:e030572. [PMID: 37642032 PMCID: PMC10547308 DOI: 10.1161/jaha.123.030572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Background Cardiac death or myocardial infarction still occurs in patients undergoing contemporary percutaneous coronary intervention (PCI). We aimed to identify adverse clinical and vessel characteristics related to hard outcomes after PCI and to investigate their individual and combined prognostic implications. Methods and Results From an individual patient data meta-analysis of 17 cohorts of patients who underwent post-PCI fractional flow reserve measurement after drug-eluting stent implantation, 2081 patients with available clinical and vessel characteristics were analyzed. The primary outcome was cardiac death or target-vessel myocardial infarction at 2 years. The mean age of patients was 64.2±10.2 years, and the mean angiographic percent diameter stenosis was 63.9%±14.3%. Among 11 clinical and 8 vessel features, 4 adverse clinical characteristics (age ≥65 years, diabetes, chronic kidney disease, and left ventricular ejection fraction <50%) and 2 adverse vessel characteristics (post-PCI fractional flow reserve ≤0.80 and total stent length ≥54 mm) were identified to independently predict the primary outcome (all P<0.05). The number of adverse vessel characteristics had additive predictability for the primary end point to that of adverse clinical characteristics (area under the curve 0.72 versus 0.78; P=0.03) and vice versa (area under the curve 0.68 versus 0.78; P=0.03). The cumulative event rate increased in the order of none, either, and both of adverse clinical characteristics ≥2 and adverse vessel characteristics ≥1 (0.3%, 2.4%, and 5.3%; P for trend <0.01). Conclusions In patients undergoing drug-eluting stent implantation, adverse clinical and vessel characteristics were associated with the risk of cardiac death or target-vessel myocardial infarction. Because these characteristics showed independent and additive prognostic value, their integrative assessment can optimize post-PCI risk stratification. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04684043. www.crd.york.ac.uk/prospero/. Unique Identifier: CRD42021234748.
Collapse
Affiliation(s)
- Seokhun Yang
- Department of Internal Medicine and Cardiovascular CenterSeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Doyeon Hwang
- Department of Internal Medicine and Cardiovascular CenterSeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Jinlong Zhang
- Department of CardiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Jiesuck Park
- Department of Internal Medicine and Cardiovascular CenterSeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Jun Pil Yun
- Department of Internal Medicine and Cardiovascular CenterSeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal MedicineHeart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulSouth Korea
| | - Chang‐Wook Nam
- Department of MedicineKeimyung University Dongsan Medical CenterDaeguSouth Korea
| | - Eun‐Seok Shin
- Department of CardiologyUlsan University Hospital, University of Ulsan College of MedicineUlsanSouth Korea
| | - Joon‐Hyung Doh
- Department of MedicineInje University Ilsan Paik HospitalGoyangSouth Korea
| | - Shao‐Liang Chen
- Division of Cardiology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Tsunekazu Kakuta
- Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| | - Gabor G. Toth
- University Heart Centre Graz, Medical University GrazGrazAustria
| | - Zsolt Piroth
- Gottsegen Hungarian Institute of CardiologyBudapestHungary
| | - Nils P. Johnson
- Division of Cardiology, Department of Medicine, Weatherhead PET Center For Preventing and Reversing AtherosclerosisUniversity of Texas Medical School and Memorial Hermann HospitalHoustonTX
| | - Abdul Hakeem
- Division of Cardiovascular Diseases & Hypertension, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNJ
| | - Barry F Uretsky
- Central Arkansas VA Health System/University of Arkansas for Medical SciencesLittle RockAR
| | - Yohei Hokama
- Department of CardiologyTokyo Medical University Hachioji Medical CenterTokyoJapan
| | - Nobuhiro Tanaka
- Department of CardiologyTokyo Medical University Hachioji Medical CenterTokyoJapan
| | - Hong‐Seok Lim
- Department of CardiologyAjou University School of MedicineSuwonSouth Korea
| | - Tsuyoshi Ito
- Department of CardiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Akiko Matsuo
- Department of CardiologyKyoto Second Red Cross HospitalKyotoJapan
| | - Lorenzo Azzalini
- Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWA
| | - Massoud A. Leesar
- Division of Cardiovascular DiseasesUniversity of AlabamaBirminghamAL
| | - Tara Neleman
- Department of Interventional CardiologyThoraxcenter, Erasmus University Medical CentreRotterdamThe Netherlands
| | - Nicolas M van Mieghem
- Department of Interventional CardiologyThoraxcenter, Erasmus University Medical CentreRotterdamThe Netherlands
| | - Roberto Diletti
- Department of Interventional CardiologyThoraxcenter, Erasmus University Medical CentreRotterdamThe Netherlands
| | - Joost Daemen
- Department of Interventional CardiologyThoraxcenter, Erasmus University Medical CentreRotterdamThe Netherlands
| | - Damien Collison
- West of Scotland Regional Heart and Lung Centre, Golden Jubilee National HospitalGlasgowUnited Kingdom
| | | | - Bernard De Bruyne
- Cardiovascular Center AalstAalstBelgium
- Department of CardiologyUniversity of LausanneSwitzerland
| | - Bon‐Kwon Koo
- Department of Internal Medicine and Cardiovascular CenterSeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| |
Collapse
|
10
|
Escaned J, Berry C, De Bruyne B, Shabbir A, Collet C, Lee JM, Appelman Y, Barbato E, Biscaglia S, Buszman PP, Campo G, Chieffo A, Colleran R, Collison D, Davies J, Giacoppo D, Holm NR, Jeremias A, Paradies V, Piróth Z, Raposo L, Roguin A, Rudolph T, Sarno G, Sen S, Toth GG, Van Belle E, Zimmermann FM, Dudek D, Stefanini G, Tarantini G. Applied coronary physiology for planning and guidance of percutaneous coronary interventions. A clinical consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) of the European Society of Cardiology. EUROINTERVENTION 2023; 19:464-481. [PMID: 37171503 PMCID: PMC10436072 DOI: 10.4244/eij-d-23-00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023]
Abstract
The clinical value of fractional flow reserve and non-hyperaemic pressure ratios are well established in determining an indication for percutaneous coronary intervention (PCI) in patients with coronary artery disease (CAD). In addition, over the last 5 years we have witnessed a shift towards the use of physiology to enhance procedural planning, assess post-PCI functional results, and guide PCI optimisation. In this regard, clinical studies have reported compelling data supporting the use of longitudinal vessel analysis, obtained with pressure guidewire pullbacks, to better understand how obstructive CAD contributes to myocardial ischaemia, to establish the likelihood of functionally successful PCI, to identify the presence and location of residual flow-limiting stenoses and to predict long-term outcomes. The introduction of new functional coronary angiography tools, which merge angiographic information with fluid dynamic equations to deliver information equivalent to intracoronary pressure measurements, are now available and potentially also applicable to these endeavours. Furthermore, the ability of longitudinal vessel analysis to predict the functional results of stenting has played an integral role in the evolving field of simulated PCI. Nevertheless, it is important to have an awareness of the value and challenges of physiology-guided PCI in specific clinical and anatomical contexts. The main aim of this European Association of Percutaneous Cardiovascular Interventions clinical consensus statement is to offer up-to-date evidence and expert opinion on the use of applied coronary physiology for procedural PCI planning, disease pattern recognition and post-PCI optimisation.
Collapse
Affiliation(s)
- Javier Escaned
- Hospital Clínico San Carlos IdISCC, Complutense University of Madrid, Madrid, Spain
| | - Colin Berry
- Institute of Cardiovascular & Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Cardiology, Lausanne University Center Hospital, Lausanne, Switzerland
| | - Asad Shabbir
- Hospital Clínico San Carlos IdISCC, Complutense University of Madrid, Madrid, Spain
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yolande Appelman
- Amsterdam UMC, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Simone Biscaglia
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Italy
| | - Piotr P Buszman
- Andrzej Frycz Modrzewski Kraków University, Kraków, Poland
- American Heart of Poland, Ustroń, Poland
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Italy
| | - Alaide Chieffo
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Róisín Colleran
- Cardiovascular Research Institute Dublin and Department of Cardiology, Mater Private Network, Dublin, Ireland
- School of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Damien Collison
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Justin Davies
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Daniele Giacoppo
- Cardiovascular Research Institute Dublin and Department of Cardiology, Mater Private Network, Dublin, Ireland
- Department of Cardiology, Alto Vicentino Hospital, Santorso, Italy
- ISAResearch, German Heart Centre Munich, Munich, Germany
| | - Niels R. Holm
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Valeria Paradies
- Department of Cardiology, Maasstad Hospital, Rotterdam, the Netherlands
| | - Zsolt Piróth
- Gottsegen National Cardiovascular Center, Budapest, Hungary
| | - Luís Raposo
- Unidade de Intervenção Cardiovascular, Serviço de Cardiologia, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Ariel Roguin
- Hillel Yaffe Medical Center, Hadera, Israel
- Faculty of Medicine, Technion, Haifa, Israel
| | - Tanja Rudolph
- Heart and Diabetes Center North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Giovanna Sarno
- Cardiology, Department of Medical Sciences and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Sayan Sen
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Gabor G Toth
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Eric Van Belle
- Department of Interventional Cardiology for Coronary, Valves and Structural Heart Diseases, Institut Coeur Poumon, Lille, France
- Department of Cardiology, Institut Pasteur de Lille, Lille, France
| | | | - Dariusz Dudek
- Interventional Cardiology Unit, Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Giulio Stefanini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | - Giuseppe Tarantini
- Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
- University of Padua Medical School, Padua, Italy
| |
Collapse
|
11
|
Sant’Anna FM, Sant’Anna LB, Couceiro SLM. Is it Time to Revisit Fractional Flow Reserve Thresholds? Arq Bras Cardiol 2023; 120:e20230363. [PMID: 37466492 PMCID: PMC10365011 DOI: 10.36660/abc.20230363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Affiliation(s)
- Fernando Mendes Sant’Anna
- Universidade Federal do Rio de JaneiroMacaéRJBrasilUniversidade Federal do Rio de Janeiro - Campus Macaé, Macaé, RJ – Brasil
- Serviço de HemodinâmicaHospital Santa IzabelCabo FrioRJBrasilServiço de Hemodinâmica do Hospital Santa Izabel, Cabo Frio, RJ – Brasil
| | - Lucas Bonacossa Sant’Anna
- Fundação Técnico-Educacional Souza MarquesRio de JaneiroRJBrasilFundação Técnico-Educacional Souza Marques (FTESM), Rio de Janeiro, RJ – Brasil
| | - Sérgio Lívio Menezes Couceiro
- Departamento de CardiologiaHospital Santa IzabelCabo FrioRJBrasilDepartamento de Cardiologia do Hospital Santa Izabel, Cabo Frio, RJ – Brasil
| |
Collapse
|
12
|
Neleman T, Groenland FTW, Ziedses des Plantes AC, Scoccia A, van Zandvoort LJC, Boersma E, Nuis RJ, den Dekker WK, Diletti R, Wilschut J, Zijlstra F, Van Mieghem NM, Daemen J. Changes in post-PCI optimisation strategies with post-procedural FFR followed by IVUS. EUROINTERVENTION 2023; 19:80-82. [PMID: 36785952 PMCID: PMC10173753 DOI: 10.4244/eij-d-22-00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023]
Affiliation(s)
- Tara Neleman
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Frederik T W Groenland
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Alessandra Scoccia
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Laurens J C van Zandvoort
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rutger-Jan Nuis
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wijnand K den Dekker
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roberto Diletti
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen Wilschut
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Felix Zijlstra
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nicolas M Van Mieghem
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joost Daemen
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Shin D, Lee SH, Hong D, Choi KH, Lee JM. Physiologic Assessment After Percutaneous Coronary Interventions and Functionally Optimized Revascularization. Interv Cardiol Clin 2023; 12:55-69. [PMID: 36372462 DOI: 10.1016/j.iccl.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Coronary physiologic assessment has become a standard of care for patients with coronary atherosclerotic disease. While most attention has focused on pre-interventional physiologic assessment to aid in revascularization decision-making, post-interventional physiologic assessment has not been as widely used, despite evidence supporting its role in assessment and optimization of the revascularization procedure. A thorough understanding of such evidence and ongoing studies would be crucial to incorporate post-interventional physiologic assessment into daily practice. Thus, this review provides a comprehensive overview of current evidence regarding the evolving role of physiologic assessment as a functional optimization tool for the entire revascularization process.
Collapse
Affiliation(s)
- Doosup Shin
- Division of Cardiology, Duke University Medical Center, 2301 Erwin Rd, Durham, NC 27710, USA
| | - Seung Hun Lee
- Department of Internal Medicine and Cardiovascular Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 61469, Republic of Korea
| | - David Hong
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Ki Hong Choi
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea.
| |
Collapse
|
14
|
Budrys P, Baranauskas A, Davidavicius G. Intravascular Ultrasound Guidance Is Associated with a Favorable One-Year Target Vessel Failure Rate and No Residual Myocardial Ischemia after the Percutaneous Treatment of Very Long Coronary Artery Lesions. J Cardiovasc Dev Dis 2022; 9:445. [PMID: 36547442 PMCID: PMC9788518 DOI: 10.3390/jcdd9120445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Studies have shown that percutaneous coronary intervention (PCI) in long coronary artery lesions (≥30 mm) is associated with more frequent target vessel failure (TVF), and a significant proportion of patients have lesions that continue to induce ischemia after PCI (FFR ≤ 0.8). We investigated the impact of intravascular ultrasound (IVUS) on the functional PCI result and one-year TVF rate after the percutaneous treatment of long coronary artery lesions. Methods: A total of 80 patients underwent IVUS-guided PCI in long coronary artery lesions. The PCI results were validated with IVUS and FFR. Procedural outcomes were the proportion of patients with: (1) optimal physiology result (post PCI FFR value ≥ 0.9); (2) optimal anatomy result (all IVUS PCI optimization criteria met); and (3) optimal physiology and anatomy result. The clinical outcome was TVF during a one-year follow-up (target vessel (TV)-related death, TV myocardial infarction, ischemia-driven TV revascularization). Results: The mean stented segment length was 62 mm. The target vessel (TV) was the left anterior descending artery in 82.5% of cases. There were no patients with residual ischemia (FFR ≤ 0.8) after PCI. Optimal coronary flow (FFR ≥ 0.9) was achieved in 37.5%; optimal anatomy, as assessed by IVUS, was achieved in 68.4%; and both optimal flow and anatomy were achieved in 25% of patients. Target vessel failure during the 12-month follow-up was 2.5%. Conclusions: In the percutaneous treatment of very long coronary artery lesions, the use of IVUS guidance is associated with a low TVF rate during a one-year follow-up and no residual myocardial ischemia, as assessed by FFR.
Collapse
Affiliation(s)
- Povilas Budrys
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Cardiology and Angiology Center, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Arvydas Baranauskas
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Cardiology and Angiology Center, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Giedrius Davidavicius
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Cardiology and Angiology Center, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania
| |
Collapse
|
15
|
Piroth Z, Otsuki H, Zimmermann FM, Ferenci T, Keulards DCJ, Yeung AC, Pijls NHJ, De Bruyne B, Fearon WF. Prognostic Value of Measuring Fractional Flow Reserve After Percutaneous Coronary Intervention in Patients With Complex Coronary Artery Disease: Insights From the FAME 3 Trial. Circ Cardiovasc Interv 2022; 15:884-891. [PMID: 36121706 DOI: 10.1161/circinterventions.122.012542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND We evaluate the prognostic value of measuring fractional flow reserve (FFR) after percutaneous coronary intervention (post-PCI FFR) and intravascular imaging in patients undergoing PCI for 3-vessel coronary artery disease in the FAME 3 trial (Fractional Flow Reserve versus Angiography for Multivessel Evaluation). METHODS The FAME 3 trial is a multicenter, international, randomized study comparing FFR-guided PCI with coronary artery bypass grafting in patients with multivessel coronary artery disease. PCI was not noninferior with respect to the primary end point of death, myocardial infarction, stroke, or repeat revascularization at 1 year. Post-PCI FFR data were acquired on a patient and vessel-related basis. Intravascular imaging guidance was tracked. The primary end point is a comparison of target vessel failure (TVF) defined as a composite of cardiac death, target vessel myocardial infarction, and target vessel revascularization at 1 year based on post-PCI FFR values. Cox regression with robust SEs was used for analysis. RESULTS Of the 757 patients randomized to PCI, 461 (61%) had post-PCI FFR measurement and 11.1% had intravascular imaging performed. The median post-PCI FFR was 0.89 [IQR' 0.85-0.94]. On a vessel-level, post-PCI FFR was found to be a significant predictor of TVF univariately (hazard ratio=0.67 [95% CI' 0.48-0.93] for 0.1 unit increase, P=0.0165). On a patient-level, the single lowest post-PCI FFR value was also found to be a significant predictor of TVF univariately (hazard ratio=0.65 [95% CI' 0.48-0.89] for 0.1 unit increase, P=0.0074). Post-PCI FFR was an independent predictor of TVF in multivariable analysis adjusted for key clinical parameters. Outcomes were similar between patients who had intravascular imaging guidance and those who did not. CONCLUSIONS Post-PCI FFR measurement was a significant predictor of TVF on a vessel and patient level and an independent predictor of outcomes in a population with complex 3-vessel coronary artery disease eligible for coronary artery bypass grafting. The limited use of intravascular imaging did not affect outcomes. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT02100722.
Collapse
Affiliation(s)
- Zsolt Piroth
- Gottsegen National Cardiovascular Center, Budapest' Hungary (Z.P.)
| | - Hisao Otsuki
- Division of Cardiovascular Medicine and Stanford Cardiovascular Institute, Stanford University, CA (H.O., A.C.Y., W.F.F.)
| | | | - Tamás Ferenci
- Physiological Controls Research Center, Obuda University and Department of Statistics, Corvinus University of Budapest, Hungary (T.F.)
| | | | - Alan C Yeung
- Division of Cardiovascular Medicine and Stanford Cardiovascular Institute, Stanford University, CA (H.O., A.C.Y., W.F.F.)
| | - Nico H J Pijls
- Physiological Controls Research Center, Obuda University and Department of Statistics, Corvinus University of Budapest, Hungary (T.F.)
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, Aalst, Belgium and Lausanne University Centre Hospital, Switzerland (B.D.B.)
| | - William F Fearon
- Division of Cardiovascular Medicine and Stanford Cardiovascular Institute, Stanford University, CA (H.O., A.C.Y., W.F.F.).,Stanford University School of Medicine, Stanford Cardiovascular Institute, and VA Palo Alto Health Care System, CA (W.F.F.)
| | | |
Collapse
|
16
|
Hwang D, Koo BK, Zhang J, Park J, Yang S, Kim M, Yun JP, Lee JM, Nam CW, Shin ES, Doh JH, Chen SL, Kakuta T, Toth GG, Piroth Z, Johnson NP, Pijls NHJ, Hakeem A, Uretsky BF, Hokama Y, Tanaka N, Lim HS, Ito T, Matsuo A, Azzalini L, Leesar MA, Neleman T, van Mieghem NM, Diletti R, Daemen J, Collison D, Collet C, De Bruyne B. Prognostic Implications of Fractional Flow Reserve After Coronary Stenting: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5:e2232842. [PMID: 36136329 PMCID: PMC9500557 DOI: 10.1001/jamanetworkopen.2022.32842] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IMPORTANCE Fractional flow reserve (FFR) after percutaneous coronary intervention (PCI) is generally considered to reflect residual disease. Yet the clinical relevance of post-PCI FFR after drug-eluting stent (DES) implantation remains unclear. OBJECTIVE To evaluate the clinical relevance of post-PCI FFR measurement after DES implantation. DATA SOURCES MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials were searched for relevant published articles from inception to June 18, 2022. STUDY SELECTION Published articles that reported post-PCI FFR after DES implantation and its association with clinical outcomes were included. DATA EXTRACTION AND SYNTHESIS Patient-level data were collected from the corresponding authors of 17 cohorts using a standardized spreadsheet. Meta-estimates for primary and secondary outcomes were analyzed per patient and using mixed-effects Cox proportional hazard regression with registry identifiers included as a random effect. All processes followed the Preferred Reporting Items for Systematic Review and Meta-analysis of Individual Participant Data. MAIN OUTCOMES AND MEASURES The primary outcome was target vessel failure (TVF) at 2 years, a composite of cardiac death, target vessel myocardial infarction (TVMI), and target vessel revascularization (TVR). The secondary outcome was a composite of cardiac death or TVMI at 2 years. RESULTS Of 2268 articles identified, 29 studies met selection criteria. Of these, 28 articles from 17 cohorts provided data, including a total of 5277 patients with 5869 vessels who underwent FFR measurement after DES implantation. Mean (SD) age was 64.4 (10.1) years and 4141 patients (78.5%) were men. Median (IQR) post-PCI FFR was 0.89 (0.84-0.94) and 690 vessels (11.8%) had a post-PCI FFR of 0.80 or below. The cumulative incidence of TVF was 340 patients (7.2%), with cardiac death or TVMI occurring in 111 patients (2.4%) at 2 years. Lower post-PCI FFR significantly increased the risk of TVF (adjusted hazard ratio [HR] per 0.01 FFR decrease, 1.04; 95% CI, 1.02-1.05; P < .001). The risk of cardiac death or MI also increased inversely with post-PCI FFR (adjusted HR, 1.03; 95% CI, 1.00-1.07, P = .049). These associations were consistent regardless of age, sex, the presence of hypertension or diabetes, and clinical diagnosis. CONCLUSIONS AND RELEVANCE Reduced FFR after DES implantation was common and associated with the risks of TVF and of cardiac death or TVMI. These results indicate the prognostic value of post-PCI physiologic assessment after DES implantation.
Collapse
Affiliation(s)
- Doyeon Hwang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Jinlong Zhang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiesuck Park
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Seokhun Yang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Minsang Kim
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Jun Pil Yun
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Wook Nam
- Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Eun-Seok Shin
- Division of Cardiology, Ulsan Hospital, Ulsan, Korea
| | - Joon-Hyung Doh
- Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Shao-Liang Chen
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tsunekazu Kakuta
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Gabor G. Toth
- University Heart Centre Graz, Medical University Graz, Austria
| | - Zsolt Piroth
- Gottsegen Hungarian Institute of Cardiology, Budapest, Hungary
| | - Nils P. Johnson
- Weatherhead PET Center For Preventing and Reversing Atherosclerosis, Division of Cardiology, Department of Medicine, University of Texas Medical School and Memorial Hermann Hospital, Houston
| | - Nico H. J. Pijls
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | - Abdul Hakeem
- Division of Cardiovascular Diseases & Hypertension, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
- National Institute of Cardiovascular Diseases, Karachi, Pakistan
| | - Barry F. Uretsky
- Central Arkansas VA Health System, Little Rock, Arkansas
- University of Arkansas for Medical Sciences, Little Rock
| | - Yohei Hokama
- Department of Cardiology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Nobuhiro Tanaka
- Department of Cardiology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Hong-Seok Lim
- Department of Cardiology, Ajou University School of Medicine, Suwon, Korea
| | - Tsuyoshi Ito
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akiko Matsuo
- Department of Cardiology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Lorenzo Azzalini
- Division of Cardiology, Department of Medicine, University of Washington, Seattle
| | - Massoud A. Leesar
- Division of Cardiovascular Diseases, University of Alabama, Birmingham
| | - Tara Neleman
- Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Nicolas M. van Mieghem
- Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Roberto Diletti
- Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Joost Daemen
- Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Damien Collison
- West of Scotland Regional Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, United Kingdom
| | | | - Bernard De Bruyne
- Cardiovascular Center Aalst, Aalst, Belgium
- Department of Cardiology, University of Lausanne, Switzerland
| |
Collapse
|
17
|
Impact of trans-stent gradient on outcome after PCI: results from a HAWKEYE substudy. Int J Cardiovasc Imaging 2022; 38:2819-2827. [DOI: 10.1007/s10554-022-02708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022]
Abstract
AbstractTo test whether quantitative flow ratio (QFR)-based trans-stent gradient (TSG) is associated with adverse clinical events at follow-up. A post-hoc analysis of the multi-center HAWKEYE study was performed. Vessels post-PCI were divided into four groups (G) as follows: G1: QFR ≥ 0.90 TSG = 0 (n = 412, 54.8%); G2: QFR ≥ 0.90, TSG > 0 (n = 216, 28.7%); G3: QFR < 0.90, TSG = 0 (n = 37, 4.9%); G4: QFR < 0.90, TSG > 0 (n = 86, 11.4%). Cox proportional hazards regression model was used to analyze the effect of baseline and prognostic variables. The final reduced model was obtained by backward stepwise variable selection. Receiver operating characteristic (ROC) was plotted and area under the curve (AUC) was calculated and reported. Overall, 449 (59.8%) vessels had a TSG = 0 whereas (40.2%) had TSG > 0. Ten (2.2%) vessel-oriented composite endpoint (VOCE) occurred in vessels with TSG = 0, compared with 43 (14%) in vessels with TSG > 0 (p < 0.01). ROC analysis showed an AUC of 0.74 (95% CI: 0.67 to 0.80; p < 0.001). TSG > 0 was an independent predictor of the VOCE (HR 2.95 [95% CI 1.77–4.91]). The combination of higher TSG and lower final QFR (G4) showed the worst long-term outcome while low TSG and high QFR showed the best outcome (G1) while either high TSG or low QFR (G2, G3) showed intermediate and comparable outcomes. Higher trans-stent gradient was an independent predictor of adverse events and identified a subgroup of patients at higher risk for poor outcomes even when vessel QFR was optimal (> 0.90).
Collapse
|
18
|
Leone AM, Migliaro S, Zimbardo G, Cialdella P, Basile E, Galante D, Di Giusto F, Anastasia G, Vicere A, Petrolati E, Di Stefano A, Campaniello G, D’Amario D, Vergallo R, Montone RA, Buffon A, Romagnoli E, Aurigemma C, Burzotta F, Trani C, Crea F. Safety and effectiveness of post percutaneous coronary intervention physiological assessment: Retrospective data from the post-revascularization optimization and physiological evaluation of intermediate lesions using fractional flow reserve registry. Front Cardiovasc Med 2022; 9:983003. [PMID: 36061555 PMCID: PMC9433711 DOI: 10.3389/fcvm.2022.983003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background While the importance of invasive physiological assessment (IPA) to choose coronary lesions to be treated is ascertained, its role after PCI is less established. We evaluated feasibility and efficacy of Physiology-guided PCI in the everyday practice in a retrospective registry performed in a single high-volume and “physiology-believer” center. Materials and methods The PROPHET-FFR study (NCT05056662) patients undergoing an IPA in 2015–2020 were retrospectively enrolled in three groups: Control group comprising patients for whom PCI was deferred based on a IPA; Angiography-Guided PCI group comprising patients undergoing PCI based on an IPA but without a post-PCI IPA; Physiology-guided PCI group comprising patients undergoing PCI based on an IPA and an IPA after PCI, followed by a physiology-guided optimization, if indicated. Optimal result was defined by an FFR value ≥ 0.90. Results A total of 1,322 patients with 1,591 lesions were available for the analysis. 893 patients (67.5%) in Control Group, 249 patients (18.8%) in Angiography-guided PCI Group and 180 patients (13.6%) in Physiology-guided PCI group. In 89 patients a suboptimal functional result was achieved that was optimized in 22 cases leading to a “Final FFR” value of 0.90 ± 0.04 in Angiography-Guided PCI group. Procedural time, costs, and rate of complications were similar. At follow up the rate of MACEs for the Physiology-guided PCI group was similar to the Control Group (7.2% vs. 8.2%, p = 0.765) and significantly lower than the Angiography-guided PCI Group (14.9%, p < 0.001), mainly driven by a reduction in TVRs. Conclusion “Physiology-guided PCI” is a feasible strategy with a favorable impact on mid-term prognosis. Prospective studies using a standardized IPA are warrant to confirm these data.
Collapse
Affiliation(s)
- Antonio Maria Leone
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), Rome, Italy
- *Correspondence: Antonio Maria Leone, ,
| | - Stefano Migliaro
- Dipartimento di Scienze Cardiovascolari, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Eloisa Basile
- Dipartimento di Scienze Cardiovascolari, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenico Galante
- Dipartimento di Scienze Cardiovascolari, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federico Di Giusto
- Dipartimento di Scienze Cardiovascolari, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianluca Anastasia
- Dipartimento di Scienze Cardiovascolari, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Vicere
- Dipartimento di Scienze Cardiovascolari, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Edoardo Petrolati
- Dipartimento di Scienze Cardiovascolari, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Di Stefano
- Dipartimento di Scienze Cardiovascolari, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgia Campaniello
- Dipartimento di Scienze Cardiovascolari, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenico D’Amario
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), Rome, Italy
| | - Rocco Vergallo
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), Rome, Italy
| | - Rocco Antonio Montone
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), Rome, Italy
| | - Antonino Buffon
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), Rome, Italy
- Dipartimento di Scienze Cardiovascolari, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enrico Romagnoli
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), Rome, Italy
| | - Cristina Aurigemma
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), Rome, Italy
| | - Francesco Burzotta
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), Rome, Italy
- Dipartimento di Scienze Cardiovascolari, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Trani
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), Rome, Italy
- Dipartimento di Scienze Cardiovascolari, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filippo Crea
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), Rome, Italy
- Dipartimento di Scienze Cardiovascolari, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
19
|
Masdjedi K, van Zandvoort LJC, Balbi MM, Nuis R, Wilschut J, Diletti R, de Jaegere PP, Zijlstra F, Van Mieghem NM, Daemen J. Validation of novel 3-dimensional quantitative coronary angiography based software to calculate fractional flow reserve post stenting. Catheter Cardiovasc Interv 2021; 98:671-677. [PMID: 33022098 PMCID: PMC8519140 DOI: 10.1002/ccd.29311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/02/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To validate novel dedicated 3D-QCA based on the software to calculate post PCI vessel-FFR (vFFR) in a consecutive series of patients, to assess the diagnostic accuracy, and to assess inter-observer variability. BACKGROUND Low post percutaneous coronary intervention (PCI) fractional flow reserve (FFR) predicts future adverse cardiac events. However, FFR assessment requires the insertion of a pressure wire in combination with the use of a hyperemic agent. METHODS FAST POST study is an observational, retrospective, single-center cohort study. One hundred patients presenting with stable angina or non ST-elevation myocardial infarction, who underwent post PCI FFR assessment using a dedicated microcatheter were included. Two orthogonal angiographic projections were acquired to create a 3D reconstruction of the coronary artery using the CAAS workstation 8.0. vFFR was subsequently calculated using the aortic root pressure. RESULTS Mean age was 65±12 years and 70% were male. Mean microcatheter based FFR and vFFR were 0.91±0.07 and 0.91±0.06, respectively. A good linear correlation was found between FFR and vFFR (r = 0.88; p <.001). vFFR had a higher accuracy in the identification of patients with FFR values <0.90, AUC 0.98 (95% CI: 0.96-1.00) as compared with 3D-QCA AUC 0.62 (95% CI: 0.94-0.74). Assessment of vFFR had a low inter-observer variability (r = 0.95; p <.001). CONCLUSION 3D-QCA derived post PCI vFFR correlates well with invasively measured microcatheter based FFR and has a high diagnostic accuracy to detect FFR <0.90 with low inter-observer variability.
Collapse
Affiliation(s)
- Kaneshka Masdjedi
- Department of cardiologyThoraxcenter, Erasmus Medical CenterRotterdamThe Netherlands
| | | | - Matthew M Balbi
- Department of cardiologyThoraxcenter, Erasmus Medical CenterRotterdamThe Netherlands
| | - Rutger‐Jan Nuis
- Department of cardiologyThoraxcenter, Erasmus Medical CenterRotterdamThe Netherlands
| | - Jeroen Wilschut
- Department of cardiologyThoraxcenter, Erasmus Medical CenterRotterdamThe Netherlands
| | - Roberto Diletti
- Department of cardiologyThoraxcenter, Erasmus Medical CenterRotterdamThe Netherlands
| | - Peter P.T. de Jaegere
- Department of cardiologyThoraxcenter, Erasmus Medical CenterRotterdamThe Netherlands
| | - Felix Zijlstra
- Department of cardiologyThoraxcenter, Erasmus Medical CenterRotterdamThe Netherlands
| | - Nicolas M Van Mieghem
- Department of cardiologyThoraxcenter, Erasmus Medical CenterRotterdamThe Netherlands
| | - Joost Daemen
- Department of cardiologyThoraxcenter, Erasmus Medical CenterRotterdamThe Netherlands
| |
Collapse
|
20
|
Zimbardo G, Cialdella P, DI Giusto F, Migliaro S, Anastasia G, Petrolati E, Galante D, D'Amario D, Leone AM. Physiological assessment after percutaneous coronary intervention: the hard truth. Panminerva Med 2021; 63:519-528. [PMID: 34486363 DOI: 10.23736/s0031-0808.21.04363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Physiologically guided revascularization, using Fractional Flow Reserve (FFR) or instantaneous wave free ratio (iFR) has been demonstrated to be associated with better long-term outcomes compared to an angiographically-guided strategy, mainly avoiding inappropriate coronary stenting and its associated adverse events. On the contrary, the role of invasive physiological assessment after percutaneous coronary intervention (PCI) is much less well established. However, a large body of evidence suggests that a relevant proportion of patients undergoing PCI with a satisfying angiographic result show instead a suboptimal functional product with a potentially negative prognostic impact. For this reason, many efforts have been focused to identify interventional strategies to physiologically optimize PCI. Measuring the functional result after as PCI, especially when performed after a physiological assessment, implies that the operator is ready to accept the hard truth of an unsatisfactory physiological result despite angiographically optimal and, consequently, to optimize the product with some additional effort. The aim of this review is to bridge this gap in knowledge by better defining the paradigm shift of invasive physiological assessment from a simple tool for deciding whether an epicardial stenosis has to be treated to a thoroughly physiological approach to PCI with the suggestion of a practical flow chart.
Collapse
Affiliation(s)
| | | | - Federico DI Giusto
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Stefano Migliaro
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluca Anastasia
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Edoardo Petrolati
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Domenico Galante
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Domenico D'Amario
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio M Leone
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy -
| |
Collapse
|
21
|
A prospective multicenter validation study for a novel angiography-derived physiological assessment software: Rationale and design of the radiographic imaging validation and evaluation for Angio-iFR (ReVEAL iFR) study. Am Heart J 2021; 239:19-26. [PMID: 33992606 DOI: 10.1016/j.ahj.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/05/2021] [Indexed: 01/15/2023]
Abstract
Angiography-derived physiological assessment of coronary lesions has emerged as an alternative to wire-based assessment aiming at less-invasiveness and shorter procedural time as well as cost effectiveness in physiology-guided decision making. However, current available image-derived physiology software have limitations including the requirement of multiple projections and are time consuming. METHODS/DESIGN: The ReVEAL iFR (Radiographic imaging Validation and EvALuation for Angio-iFR) trial is a multicenter, multicontinental, validation study which aims to validate the diagnostic accuracy of the Angio-iFR medical software device (Philips, San Diego, US) in patients undergoing angiography for Chronic Coronary Syndrome (CCS). The Angio-iFR will enable operators to predict both the iFR and FFR value within a few seconds from a single projection of cine angiography by using a lumped parameter fluid dynamics model. Approximately 440 patients with at least one de-novo 40% to 90% stenosis by visual angiographic assessment will be enrolled in the study. The primary endpoint is the sensitivity and specificity of the iFR and FFR for a given lesion compared to the corresponding invasive measures. The enrollment started in August 2019, and was completed in March 2021. SUMMARY: The Angio-iFR system has the potential of simplifying physiological evaluation of coronary stenosis compared with available systems, providing estimates of both FFR and iFR. The ReVEAL iFR study will investigate the predictive performance of the novel Angio-iFR software in CCS patients. Ultimately, based on its unique characteristics, the Angio-iFR system may contribute to improve adoption of functional coronary assessment and the workflow in the catheter laboratory.
Collapse
|
22
|
Ding D, Huang J, Westra J, Cohen DJ, Chen Y, Andersen BK, Holm NR, Xu B, Tu S, Wijns W. Immediate post-procedural functional assessment of percutaneous coronary intervention: current evidence and future directions. Eur Heart J 2021; 42:2695-2707. [PMID: 33822922 DOI: 10.1093/eurheartj/ehab186] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/17/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Percutaneous coronary intervention (PCI) guided by coronary physiology provides symptomatic benefit and improves patient outcomes. Nevertheless, over one-fourth of patients still experience recurrent angina or major adverse cardiac events following the index procedure. Coronary angiography, the current workhorse for evaluating PCI efficacy, has limited ability to identify suboptimal PCI results. Accumulating evidence supports the usefulness of immediate post-procedural functional assessment. This review discusses the incidence and possible mechanisms behind a suboptimal physiology immediately after PCI. Furthermore, we summarize the current evidence base supporting the usefulness of immediate post-PCI functional assessment for evaluating PCI effectiveness, guiding PCI optimization, and predicting clinical outcomes. Multiple observational studies and post hoc analyses of datasets from randomized trials demonstrated that higher post-PCI functional results are associated with better clinical outcomes as well as a reduced rate of residual angina and repeat revascularization. As such, post-PCI functional assessment is anticipated to impact patient management, secondary prevention, and resource utilization. Pre-PCI physiological guidance has been shown to improve clinical outcomes and reduce health care costs. Whether similar benefits can be achieved using post-PCI physiological assessment requires evaluation in randomized clinical outcome trials.
Collapse
Affiliation(s)
- Daixin Ding
- The Lambe Institute for Translational Medicine and Curam, National University of Ireland, University Road, Galway H91 TK3, Ireland.,Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954 Hua Shan Road, Xuhui District, Shanghai 200030, China
| | - Jiayue Huang
- The Lambe Institute for Translational Medicine and Curam, National University of Ireland, University Road, Galway H91 TK3, Ireland.,Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954 Hua Shan Road, Xuhui District, Shanghai 200030, China
| | - Jelmer Westra
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - David Joel Cohen
- St. Francis Hospital, Roslyn NY and Cardiovascular Research Foundation, 100 Port Washington Blvd (Middle Neck Road), New York, NY 11576, USA
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | | | - Niels Ramsing Holm
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Bo Xu
- Catheterization Laboratories, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Cardiovascular Diseases, A 167, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Shengxian Tu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954 Hua Shan Road, Xuhui District, Shanghai 200030, China.,Department of Cardiology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou, Fujian 350001, China
| | - William Wijns
- The Lambe Institute for Translational Medicine and Curam, National University of Ireland, University Road, Galway H91 TK3, Ireland
| |
Collapse
|
23
|
Collison D, Didagelos M, Aetesam-Ur-Rahman M, Copt S, McDade R, McCartney P, Ford TJ, McClure J, Lindsay M, Shaukat A, Rocchiccioli P, Brogan R, Watkins S, McEntegart M, Good R, Robertson K, O'Boyle P, Davie A, Khan A, Hood S, Eteiba H, Berry C, Oldroyd KG. Post-stenting fractional flow reserve vs coronary angiography for optimisation of percutaneous coronary intervention: TARGET-FFR trial. Eur Heart J 2021; 42:4656-4668. [PMID: 34279606 PMCID: PMC8634564 DOI: 10.1093/eurheartj/ehab449] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/29/2021] [Accepted: 06/28/2021] [Indexed: 11/14/2022] Open
Abstract
Aims A fractional flow reserve (FFR) value ≥0.90 after percutaneous coronary intervention (PCI) is associated with a reduced risk of adverse cardiovascular events. TARGET-FFR is an investigator-initiated, single-centre, randomized controlled trial to determine the feasibility and efficacy of a post-PCI FFR-guided optimization strategy vs. standard coronary angiography in achieving final post-PCI FFR values ≥0.90. Methods and results After angiographically guided PCI, patients were randomized 1:1 to receive a physiology-guided incremental optimization strategy (PIOS) or a blinded coronary physiology assessment (control group). The primary outcome was the proportion of patients with a final post-PCI FFR ≥0.90. Final FFR ≤0.80 was a prioritized secondary outcome. A total of 260 patients were randomized (131 to PIOS, 129 to control) and 68.1% of patients had an initial post-PCI FFR <0.90. In the PIOS group, 30.5% underwent further intervention (stent post-dilation and/or additional stenting). There was no significant difference in the primary endpoint of the proportion of patients with final post-PCI FFR ≥0.90 between groups (PIOS minus control 10%, 95% confidence interval −1.84 to 21.91, P = 0.099). The proportion of patients with a final FFR ≤0.80 was significantly reduced when compared with the angiography-guided control group (−11.2%, 95% confidence interval −21.87 to −0.35], P = 0.045). Conclusion Over two-thirds of patients had a physiologically suboptimal result after angiography-guided PCI. An FFR-guided optimization strategy did not significantly increase the proportion of patients with a final FFR ≥0.90, but did reduce the proportion of patients with a final FFR ≤0.80.
Collapse
Affiliation(s)
- Damien Collison
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK.,Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Matthaios Didagelos
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK
| | - Muhammad Aetesam-Ur-Rahman
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK
| | - Samuel Copt
- University of Geneva, 24 rue de Général-Dufour, 1211 Genève 4, Switzerland
| | - Robert McDade
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK
| | - Peter McCartney
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK.,Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Thomas J Ford
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - John McClure
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Mitchell Lindsay
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK
| | - Aadil Shaukat
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK
| | - Paul Rocchiccioli
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK
| | - Richard Brogan
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK
| | - Stuart Watkins
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK.,Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Margaret McEntegart
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK.,Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Richard Good
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK.,Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Keith Robertson
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK
| | - Patrick O'Boyle
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK
| | - Andrew Davie
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK
| | - Adnan Khan
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK
| | - Stuart Hood
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK
| | - Hany Eteiba
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK.,Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Colin Berry
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK.,Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Keith G Oldroyd
- West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, G81 4DY, UK.,Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
24
|
Hakeem A, Hou L, Shah K, Agarwal SK, Almomani A, Edupuganti M, Kasula S, Pothineni NV, Al-Hawwas M, Miller K, Zakir R, Ghosh B, Uretsky BF. Derivation and validation of Pd/Pa in the assessment of residual ischemia post-intervention: A prospective all-comer registry. Catheter Cardiovasc Interv 2021; 99:714-722. [PMID: 34101336 DOI: 10.1002/ccd.29790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/27/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Measurement of post-percutaneous coronary intervention (PCI) fractional flow reserve (FFR) demonstrates residual ischemia in a large percentage of cases deemed angiographically successful which, in turn, has been associated with worse long-term outcomes. It has recently been shown that a resting pressure index, Pd/Pa, has prognostic value post stenting, however, its diagnostic value relative to FFR post-PCI has not been evaluated. METHODS The diagnostic accuracy of Pd/Pa in identifying ischemia (FFR≤0.80) pre- and post-PCI was evaluated. Three patient subsets were analyzed. A reference pre-PCI cohort of 1,255 patients (1,560 vessels) was used to measure the accuracy of pre-PCI Pd/Pa vs. FFR. A derivation post-PCI group of 574 patient (664 vessels) was then used to calculate the diagnostic accuracy of post-PCI Pd/Pa vs. FFR. A final prospective validation cohort of 230 patients (255 vessels) was used to test and validate the diagnostic performance of post-PCI Pd/Pa. RESULTS Median Pd/Pa and FFR were 0.90 (IQR 0.90-0.98) and 0.80 (IQR 0.71-0.88) in the reference pre-PCI model, 0.96 (IQR 0.93-1.00) and 0.87 (IQR 0.77-0.90) in the post-PCI derivation model, and 0.94 (IQR 0.89-0.97) and 0.84 (IQR 0.77-0.90) in the post-PCI validation model respectively. There was a strong linear correlation between Pd/Pa and FFR in all three models (p < 0.0001). Using ROC analysis, the optimal Pd/Pa cutoff value to predict a FFR ≤ 0.80 was ≤0.92 (AUC 0.87) in the pre-PCI model, ≤0.93 (AUC 0.85) in the post-PCI derivation model, and ≤ 0.90 (AUC 0.91) in the post-PCI validation model. Using a hybrid strategy of post-PCI Pd/Pa and post-PCI FFR when necessary (25% patients), overall diagnostic accuracy was improved to 95%. CONCLUSIONS Pd/Pa has excellent diagnostic accuracy for identifying ischemia post-intervention. Using a hybrid strategy of post-PCI Pd/Pa first, and FFR afterwards, if required, adenosine administration can be avoided in over 75% of physiologic assessments post intervention.
Collapse
Affiliation(s)
- Abdul Hakeem
- Department of Cardiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Linle Hou
- Department of Cardiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Kulin Shah
- Department of Cardiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Shiv K Agarwal
- John L McClellan Memorial Veterans Hospital, Central Arkansas VA Healthy System, Little Rock, Arkansas, USA
| | - Ahmed Almomani
- John L McClellan Memorial Veterans Hospital, Central Arkansas VA Healthy System, Little Rock, Arkansas, USA
| | - Mallik Edupuganti
- John L McClellan Memorial Veterans Hospital, Central Arkansas VA Healthy System, Little Rock, Arkansas, USA
| | - Sirkanth Kasula
- John L McClellan Memorial Veterans Hospital, Central Arkansas VA Healthy System, Little Rock, Arkansas, USA
| | - Naga V Pothineni
- John L McClellan Memorial Veterans Hospital, Central Arkansas VA Healthy System, Little Rock, Arkansas, USA
| | - Malek Al-Hawwas
- John L McClellan Memorial Veterans Hospital, Central Arkansas VA Healthy System, Little Rock, Arkansas, USA
| | - Kristin Miller
- John L McClellan Memorial Veterans Hospital, Central Arkansas VA Healthy System, Little Rock, Arkansas, USA
| | - Ramzan Zakir
- Department of Cardiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Bobby Ghosh
- Department of Cardiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Barry F Uretsky
- John L McClellan Memorial Veterans Hospital, Central Arkansas VA Healthy System, Little Rock, Arkansas, USA
| |
Collapse
|
25
|
Lee JM, Lee SH, Shin D, Choi KH, van de Hoef TP, Kim HK, Samady H, Kakuta T, Matsuo H, Koo BK, Fearon WF, Escaned J. Physiology-Based Revascularization: A New Approach to Plan and Optimize Percutaneous Coronary Intervention. JACC. ASIA 2021; 1:14-36. [PMID: 36338358 PMCID: PMC9627934 DOI: 10.1016/j.jacasi.2021.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Coronary physiological assessment using fractional flow reserve or nonhyperemic pressure ratios has become a standard of care for patients with coronary atherosclerotic disease. However, most evidence has focused on the pre-interventional use of physiological assessment to aid revascularization decision-making, whereas post-interventional physiological assessment has not been well established. Although evidence for supporting the role of post-interventional physiological assessment to optimize immediate revascularization results and long-term prognosis has been reported, a more thorough understanding of these data is crucial in incorporating post-interventional physiological assessment into daily practice. Recent scientific efforts have also focused on the potential role of pre-interventional fractional flow reserve or nonhyperemic pressure ratio pullback tracings to characterize patterns of coronary atherosclerotic disease to better predict post-interventional physiological outcomes, and thereby identify the appropriate revascularization target. Pre-interventional pullback tracings with dedicated post-processing methods can provide characterization of focal versus diffuse disease or major gradient versus minor gradient stenosis, which would result in different post-interventional physiological results. This review provides a comprehensive look at the current evidence regarding the evolving role of physiological assessment as a functional optimization tool for the entire process of revascularization, and not merely as a pre-interventional tool for revascularization decision-making.
Collapse
Key Words
- CI, confidence interval
- DES, drug-eluting stent(s)
- FFR, fractional flow reserve
- HR, hazard ratio
- MACE, major adverse cardiac event(s)
- NHPR, nonhyperemic pressure ratio
- PCI, percutaneous coronary intervention
- TVF, target vessel failure
- VOCE, vessel-related composite event
- fractional flow reserve
- iFR, instantaneous wave-free ratio
- instantaneous wave-free ratio
- nonhyperemic pressure ratios
- percutaneous coronary intervention
- prognosis
Collapse
Affiliation(s)
- Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Hun Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Doosup Shin
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ki Hong Choi
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tim P. van de Hoef
- Department of Clinical and Experimental Cardiology, Amsterdam UMC–University of Amsterdam, Amsterdam, the Netherlands
| | - Hyun Kuk Kim
- Department of Internal Medicine and Cardiovascular Center, Chosun University Hospital, University of Chosun College of Medicine, Gwangju, Republic of Korea
| | - Habib Samady
- Andreas Gruentzig Cardiovascular Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tsunekazu Kakuta
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - William F. Fearon
- Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Javier Escaned
- Hospital Clínico San Carlos, IDISSC, and Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
26
|
Agarwal SK, Uretsky BF. Is it time for a "functional" hybrid algorithm to optimize interventional results in chronic total occlusion? Catheter Cardiovasc Interv 2021; 97:656-657. [PMID: 33721414 DOI: 10.1002/ccd.29572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Shiv Kumar Agarwal
- Central Arkansas Veterans Health System, Little Rock, Arkansas.,University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Barry F Uretsky
- Central Arkansas Veterans Health System, Little Rock, Arkansas.,University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
27
|
Lee JM, Koo BK. Clinical Implications of Physiologic Assessment After Stenting: Practical Tool Beyond Simple Digits. Circ Cardiovasc Interv 2021; 14:e010592. [PMID: 33685216 DOI: 10.1161/circinterventions.121.010592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.M.L.)
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Korea (B.-K.K.)
| |
Collapse
|
28
|
Uretsky BF, Agarwal SK, Vallurupalli S, Al-Hawwas M, Hasan R, Miller K, Hakeem A. Prospective Evaluation of the Strategy of Functionally Optimized Coronary Intervention. J Am Heart Assoc 2020; 9:e015073. [PMID: 32013707 PMCID: PMC7033880 DOI: 10.1161/jaha.119.015073] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Long‐term outcomes after percutaneous coronary intervention (PCI) relate in part to residual ischemia in the treated vessel, as reflected by post‐PCI fractional flow reserve (FFR). The strategy of FFR after PCI and treatment of residual ischemia—known as functionally optimized coronary intervention (FCI)—may be feasible and capable of improving outcomes. Methods and Results Feasibility and results of FCI using an optical‐sensor pressure wire were prospectively evaluated in an all‐comer population with 50% to 99% lesions and ischemic FFR (≤0.80; ClinicalTrials.gov identifier NCT03227588). FCI was attempted in 250 vessels in 226 consecutive patients. The PCI success rate was 99.6% (249/250 vessels). FCI technical success—that is, FFR before and after PCI and PCI itself using the FFR wire—was 92% (230/250 vessels). Incidence of residual ischemia in the treated vessel was 36.5%. Approximately a third of these vessels (34.5%, n=29) were considered appropriate for further intervention, with FFR increasing from 0.71±0.07 to 0.81±0.06 (P<0.001). Pressure wire pullback showed FFR ≤0.8 at distal stent edge was 7.9% and 0.7% proximal to the stent. FFR increase across the stent was larger in the ischemic than in the nonischemic group (0.06 [interquartile range: 0.04–0.08] versus 0.03 [interquartile range: 0.01–0.05]; P<0.0001) compatible with stent underexpansion as a contributor to residual ischemia. Conclusions FCI is a feasible and safe clinical strategy that identifies residual ischemia in a large proportion of patients undergoing angiographically successful PCI. Further intervention can improve ischemia. The impact of this strategy on long‐term outcomes needs further study.
Collapse
Affiliation(s)
- Barry F Uretsky
- Central Arkansas Veterans Health System Little Rock AR.,University of Arkansas for Medical Sciences Little Rock AR
| | - Shiv K Agarwal
- Central Arkansas Veterans Health System Little Rock AR.,University of Arkansas for Medical Sciences Little Rock AR
| | - Srikanth Vallurupalli
- Central Arkansas Veterans Health System Little Rock AR.,University of Arkansas for Medical Sciences Little Rock AR
| | - Malek Al-Hawwas
- Central Arkansas Veterans Health System Little Rock AR.,University of Arkansas for Medical Sciences Little Rock AR
| | - Rimsha Hasan
- University of Arkansas for Medical Sciences Little Rock AR
| | | | - Abdul Hakeem
- Robert Wood Johnson University Hospital Rutgers University New Brunswick NJ
| |
Collapse
|