1
|
Hasmad HN, Nordin A, Chowdhury SR, Sulaiman N, Lokanathan Y. Ischemic Rescue Potential of Conditioned Medium Derived from Skeletal Muscle Cells-Seeded Electrospun Fiber-Coated Human Amniotic Membrane Scaffolds. Int J Mol Sci 2024; 25:11697. [PMID: 39519249 PMCID: PMC11546956 DOI: 10.3390/ijms252111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Revascularization procedures such as percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) are crucial to restore blood flow to the heart and are used in the treatment of myocardial infarction (MI). However, these techniques are known to cause myocardial reperfusion injury in the ischemic heart. The present study aims to mimic ischemia-reperfusion injury in vitro on primary human cardiomyocytes (HCMs) and use the established injury model to study the rescue mechanism of skeletal muscle cell (SkM)-seeded electrospun fiber-coated human amniotic membrane scaffold (EF-HAM) on injured cardiomyocytes through paracrine secretion. An in vitro ischemia-reperfusion injury model was established by exposing the HCM to 5 h of hypoxia, followed by a 6 h reoxygenation period. Six different conditioned media (CM) including three derived from SkM-seeded EF-HAMs were introduced to the injured cells to investigate the cardioprotective effect of the CM. Cell survival analysis, caspase-3 and XIAP expression profiling, mitochondrial membrane potential analysis, and measurement of reactive oxygen species (ROS) were conducted to evaluate the outcomes of the study. The results revealed a significant increase in the viability of HCM exposed to H/R injury by 77.2% (p < 0.01), 111.8% (p < 0.001), 68.7% (p < 0.05), and 69.5% (p < 0.05) when supplemented with HAM CM, EF-HAM 3 min CM, EF-HAM 5 min CM, and EF-HAM 7 min CM, respectively. Furthermore, CM derived from SkM-seeded EF-HAM scaffolds positively impacted hypoxia-/reoxygenation-induced changes in caspase-3 expression, mitochondrial membrane potential, and reactive oxygen species generation, but not in XIAP expression. These findings suggest that EF-HAM composite scaffolds can exert antiapoptotic and cardioregenerative effects on primary human cardiomyocytes through the paracrine mechanism.
Collapse
Affiliation(s)
- Hanis Nazihah Hasmad
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, National University of Malaysia, Kuala Lumpur 56000, Malaysia; (H.N.H.); (N.S.)
| | - Abid Nordin
- Graduate School of Medicine, KPJ Healthcare University, Nilai 71800, Negeri Sembilan, Malaysia;
| | - Shiplu Roy Chowdhury
- Centre for Commercialization of Regenerative Medicine, Toronto, ON M5G 1M1, Canada;
| | - Nadiah Sulaiman
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, National University of Malaysia, Kuala Lumpur 56000, Malaysia; (H.N.H.); (N.S.)
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, National University of Malaysia, Kuala Lumpur 56000, Malaysia; (H.N.H.); (N.S.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
2
|
Pagliaro P, Weber NC, Femminò S, Alloatti G, Penna C. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol 2024; 119:509-544. [PMID: 38878210 PMCID: PMC11319428 DOI: 10.1007/s00395-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy.
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy.
| | - Nina C Weber
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science (ACS), Amsterdam, The Netherlands
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy
| |
Collapse
|
3
|
Yin X, Guo Z, Song C. AMPK, a key molecule regulating aging-related myocardial ischemia-reperfusion injury. Mol Biol Rep 2024; 51:257. [PMID: 38302614 DOI: 10.1007/s11033-023-09050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/10/2023] [Indexed: 02/03/2024]
Abstract
Aging leads to the threat of more diseases to the biological anatomical structure and the decline of disease resistance, increasing the incidence and mortality of myocardial ischemia-reperfusion injury (MI/RI). Moreover, MI/RI promotes damage to an aging heart. Notably, 5'-adenosine monophosphate-activated protein kinase (AMPK) regulates cellular energy metabolism, stress response, and protein metabolism, participates in aging-related signaling pathways, and plays an essential role in ischemia-reperfusion (I/R) injury diseases. This study aims to introduce the aging theory, summarize the interaction between aging and MI/RI, and describe the crosstalk of AMPK in aging and MI/RI. We show how AMPK can offer protective effects against age-related stressors, lifestyle factors such as alcohol consumption and smoking, and hypertension. We also review some of the clinical prospects for the development of interventions that harness the effect of AMPK to treat MI/RI and other age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaorui Yin
- Department of Cardiology, Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130041, China
| | - Ziyuan Guo
- Department of Cardiology, Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130041, China
| | - Chunli Song
- Department of Cardiology, Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
4
|
Li JN, Luo RY, Luo C, Hu ZL, Zha AH, Shen WY, Li Q, Li H, Fu D, Dai RP. Brain-Derived Neurotrophic Factor Precursor Contributes to a Proinflammatory Program in Monocytes/Macrophages After Acute Myocardial Infarction. J Am Heart Assoc 2023; 12:e028198. [PMID: 36752235 PMCID: PMC10111532 DOI: 10.1161/jaha.122.028198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Background The imbalance of monocyte/macrophage polarization toward the preferential proinflammatory phenotype and a lack of normal inflammation resolution are present in acute myocardial infarction (AMI). Our previous study showed that upregulation of brain-derived neurotrophic factor precursor (proBDNF) in M2-like monocytes may contribute to the proinflammatory response in the Stanford type-A acute aortic dissection. The present study aimed to investigate the role of proBDNF signaling in monocytes/macrophages in the progress of AMI. Methods and Results We observed the upregulation of proBDNF in the proinflammatory monocytes of patients with AMI. The upregulation of proBDNF was also observed in the circulating proinflammatory Ly6Chigh monocytes and cardiac F4/80+CD86+ macrophages 3 days after AMI in a mice model. To neutralize proBDNF, the mice subjected to AMI were injected intraperitoneally with a monoclonal anti-proBDNF antibody. Echocardiography, 2,3,5-triphenyltetrazolium chloride staining, and positron emission tomography/computed tomography results demonstrate that monoclonal anti-proBDNF antibody treatment further impaired cardiac functions, increased infarct size, and exacerbated the proinflammatory state. Moreover, the level of proinflammatory Ly6Chigh in the blood and F4/80+CD86+ in the heart was further increased in monoclonal anti-proBDNF antibody mice. RNA sequencing revealed that matrix metalloprotease-9 protein level was dramatically increased, along with the activated proinflammatory-related cytokines. Matrix metalloprotease-9 inhibitor treatment attenuated the deteriorated effect of monoclonal anti-proBDNF antibody on cardiac function and infarct areas. Conclusions Our study shows that endogenous proBDNF in monocytes/macrophages may exert protective roles in cardiac remodeling after AMI by regulating matrix metalloprotease-9 activity.
Collapse
Affiliation(s)
- Jia-Nan Li
- Department of Anesthesiology The Second Xiangya Hospital, Central South University Changsha China
- Anesthesia Medical Research Center Central South University Changsha China
| | - Ru-Yi Luo
- Department of Anesthesiology The Second Xiangya Hospital, Central South University Changsha China
- Anesthesia Medical Research Center Central South University Changsha China
| | - Cong Luo
- Department of Anesthesiology The Second Xiangya Hospital, Central South University Changsha China
- Anesthesia Medical Research Center Central South University Changsha China
| | - Zhao-Lan Hu
- Department of Anesthesiology The Second Xiangya Hospital, Central South University Changsha China
- Anesthesia Medical Research Center Central South University Changsha China
| | - An-Hui Zha
- Department of Anesthesiology The Second Xiangya Hospital, Central South University Changsha China
- Anesthesia Medical Research Center Central South University Changsha China
| | - Wei-Yun Shen
- Department of Anesthesiology The Second Xiangya Hospital, Central South University Changsha China
- Anesthesia Medical Research Center Central South University Changsha China
| | - Qiao Li
- Department of Anesthesiology The Second Xiangya Hospital, Central South University Changsha China
- Anesthesia Medical Research Center Central South University Changsha China
| | - Hui Li
- Department of Anesthesiology The Second Xiangya Hospital, Central South University Changsha China
- Anesthesia Medical Research Center Central South University Changsha China
| | - Di Fu
- Department of Anesthesiology Xiangya Hospital, Central South University Changsha China
| | - Ru-Ping Dai
- Department of Anesthesiology The Second Xiangya Hospital, Central South University Changsha China
- Anesthesia Medical Research Center Central South University Changsha China
| |
Collapse
|
5
|
Plotnikov MB, Chernysheva GA, Smol’yakova VI, Aliev OI, Fomina TI, Sandrikina LA, Sukhodolo IV, Ivanova VV, Osipenko AN, Anfinogenova ND, Khlebnikov AI, Atochin DN, Schepetkin IA, Quinn MT. Cardioprotective Effects of a Selective c-Jun N-terminal Kinase Inhibitor in a Rat Model of Myocardial Infarction. Biomedicines 2023; 11:714. [PMID: 36979693 PMCID: PMC10044897 DOI: 10.3390/biomedicines11030714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Activation of c-Jun N-terminal kinases (JNKs) is involved in myocardial injury, left ventricular remodeling (LV), and heart failure (HF) after myocardial infarction (MI). The aim of this research was to evaluate the effects of a selective JNK inhibitor, 11H-indeno [1,2-b]quinoxalin-11-one oxime (IQ-1), on myocardial injury and acute myocardial ischemia/reperfusion (I/R) in adult male Wistar rats. Intraperitoneal administration of IQ-1 (25 mg/kg daily for 5 days) resulted in a significant decrease in myocardial infarct size on day 5 after MI. On day 60 after MI, a significant (2.6-fold) decrease in LV scar size, a 2.2-fold decrease in the size of the LV cavity, a 2.9-fold decrease in the area of mature connective tissue, and a 1.7-fold decrease in connective tissue in the interventricular septum were observed compared with the control group. The improved contractile function of the heart resulted in a significant (33%) increase in stroke size, a 40% increase in cardiac output, a 12% increase in LV systolic pressure, a 28% increase in the LV maximum rate of pressure rise, a 45% increase in the LV maximum rate of pressure drop, a 29% increase in the contractility index, a 14% increase in aortic pressure, a 2.7-fold decrease in LV end-diastolic pressure, and a 4.2-fold decrease in LV minimum pressure. We conclude that IQ-1 has cardioprotective activity and reduces the severity of HF after MI.
Collapse
Affiliation(s)
- Mark B. Plotnikov
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
- Faculty of Radiophysics, National Research Tomsk State University, 634050 Tomsk, Russia
| | - Galina A. Chernysheva
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
| | - Vera I. Smol’yakova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
| | - Oleg I. Aliev
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
| | - Tatyana I. Fomina
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
| | - Lyubov A. Sandrikina
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
| | - Irina V. Sukhodolo
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Vera V. Ivanova
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Anton N. Osipenko
- Department of Pharmacology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Nina D. Anfinogenova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | | | - Dmitriy N. Atochin
- Kizhner Research Center, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02115, USA
| | - Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
6
|
Li H, Liu T, Sun J, Zhao S, Wang X, Luo W, Luo R, Shen W, Luo C, Fu D. Up-Regulation of ProBDNF/p75 NTR Signaling in Spinal Cord Drives Inflammatory Pain in Male Rats. J Inflamm Res 2023; 16:95-107. [PMID: 36643954 PMCID: PMC9838215 DOI: 10.2147/jir.s387127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background The spinal cord expresses brain-derived neurotrophic factor precursor (proBDNF) and its receptor pan neurotrophin receptor 75 (p75NTR). However, the role of spinal proBDNF signaling in the pathogenesis of inflammatory pain remains unknown. Methods Rats were locally injected with complete Freund's adjuvant (CFA) to induce inflammatory pain. The proBDNF signal expression was detected by double-labeled immunofluorescence. ProBDNF protein, p75NTR extracellular domain (p75NTR-ECD), or monoclonal anti-proBDNF (McAb-proB) were administrated by intrathecal injection to investigate their effects on pain behavior. Paw withdrawal thermal latency (PWL) and paw withdrawal mechanical threshold (PWT) were performed to evaluate pain behavior. Immunoblotting, immunohistochemistry, and immunofluorescence were used to assess inflammation-induced biochemical changes. Results CFA induced a rapid increase in proBDNF in the ipsilateral spinal cord, and immunofluorescence revealed that CFA-enhanced proBDNF was expressed in NeuN positive neurons and GFAP positive astrocytes. The administration of furin cleavage-resistant proBDNF via intrathecal injection (I.t.) significantly decreased the PWT and PWL, whereas McAb-proB by I.t. alleviated CFA-induced pain-like hypersensitivity in rats. Meanwhile, CFA administration triggered the activation of p75NTR and its downstream signaling extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor (NF)-kappaB p65 in the spinal cord. I.t. administration of p75NTR-ECD suppressed CFA-induced pain and neuroinflammation, including the expression of p-ERK1/2, p-p65, and the gene expression of tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6). Conclusion Our study reveals that the activated proBDNF/p75NTRsignaling in the spinal cord contributes to the development of CFA-induced inflammatory pain. McAb-proB and p75NTR-ECD appear to be promising therapeutic agents for inflammatory pain.
Collapse
Affiliation(s)
- Hui Li
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Tao Liu
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Jingjing Sun
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Shuai Zhao
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Xin Wang
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Wei Luo
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Ruyi Luo
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Weiyun Shen
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Cong Luo
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Di Fu
- Department of Anesthesiology, the XiangYa Hospital, Central South University, ChangSha, People’s Republic of China,Correspondence: Di Fu, Department of Anesthesiology, the XiangYa Hospital, Central South University, Xiangya Road No. 86, Changsha, Hunan Province, 410011, People’s Republic of China, Tel/Fax +86 85295987, Email
| |
Collapse
|
7
|
Dabravolski SA, Markin AM, Andreeva ER, Eremin II, Orekhov AN, Melnichenko AA. Emerging role of pericytes in therapy of cardiovascular diseases. Biomed Pharmacother 2022; 156:113928. [DOI: 10.1016/j.biopha.2022.113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
|
8
|
He S, Zhang Z, Peng X, Wu Y, Zhu Y, Wang L, Zhou H, Li T, Liu L. The protective effect of pericytes on vascular permeability after hemorrhagic shock and their relationship with Cx43. Front Physiol 2022; 13:948541. [PMID: 36262250 PMCID: PMC9576106 DOI: 10.3389/fphys.2022.948541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular hyperpermeability is a complication of hemorrhagic shock. Pericytes (PCs) are a group of mural cells surrounded by microvessels that are located on the basolateral side of the endothelium. Previous studies have shown that damage to PCs contributes to the occurrence of many diseases such as diabetic retinopathy and myocardial infarction. Whether PCs can protect the vascular barrier function following hemorrhagic shock and the underlying mechanisms are unknown. A hemorrhagic shock rat model, Cx43 vascular endothelial cell (VEC)-specific knockdown mice, and VECs were used to investigate the role of PCs in vascular barrier function and their relationship with Cx43. The results showed that following hemorrhagic shock, the number of PCs in the microvessels was significantly decreased and was negatively associated with an increase in pulmonary and mesenteric vascular permeability. Exogenous infusion of PCs (106 cells per rat) colonized the microvessels and improved pulmonary and mesenteric vascular barrier function. Upregulation of Cx43 in PCs significantly increased the number of PCs colonizing the pulmonary vessels. In contrast, downregulation of Cx43 expression in PCs or knockout of Cx43 in VECs (Cx43 KO mice) significantly reduced PC colonization in pulmonary vessels in vivo and reduced direct contact formation between PCs and VECs in vitro. It has been suggested that PCs have an important protective effect on vascular barrier function in pulmonary and peripheral vessels following hemorrhagic shock. Cx43 plays an important role in the colonization of exogenous PCs in the microvessels. This finding provides a potential new shock treatment measure.
Collapse
Affiliation(s)
- Shuangshuang He
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
- Department of Pharmacy, Army Medical Center, Army Medical University, Chongqing, China
| | - Zisen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Li Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Henan Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
- *Correspondence: Tao Li, ; Liangming Liu,
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
- *Correspondence: Tao Li, ; Liangming Liu,
| |
Collapse
|
9
|
An Shen Ding Zhi Ling Ameliorates the Symptoms of Attention Deficit Hyperactivity Disorder via Modulating Brain-Derived Neurotrophic Factor-Related Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5471586. [PMID: 35911131 PMCID: PMC9334057 DOI: 10.1155/2022/5471586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 06/16/2022] [Indexed: 11/18/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common childhood neurodevelopmental disorder. It may impact the cognitive and social functions throughout childhood and determine adult outcomes. Dopamine (DA) deficiency theory is the pathogenesis of ADHD that is recognized by most international literature. Existing studies have shown that DA deficiency is caused by the abnormal function of the DA transporter and an imbalance in the DA receptor functionality. Recent clinical and experimental studies have found that the brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling pathway acts a pivotal part in DA vesicle circulation and ADHD pathogenesis. An Shen Ding Zhi Ling (ASDZL) is a traditional Chinese medicine (TCM) prescription, which was widely prescribed to treat ADHD in Jiangsu, China, but its therapeutic mechanism is unclear. Therefore, we constructed a spontaneously hypertensive rat (SHR) model to explain its mechanism. SHRs were randomly assigned to four groups: SHR model group (vehicle), methylphenidate hydrochloride group (MPH), ASDZL group, and 7,8-dihydroxyflavone group (7,8-DHF). At the same time, the above groups were given continuous medication for four weeks. The results show that ASDZL, MPH, and 7,8-DHF group could significantly improve the spatial memory of SHRs in the Morris water maze tests. ASDZL increased the levels of BDNF, TrkB, p75 neurotrophin receptor (p75), C-Jun N-terminal kinases 1 (JNK1), and nuclear factor kappa B (NF-κB) in the prefrontal cortex (PFC) and hippocampus synaptosome of SHRs. The results of this study suggest that ASDZL can relieve the symptoms of ADHD in SHRs by regulating the balance between the BDNF/TrkB signaling pathway (promoting vesicle circulation) and the BDNF/P75/JNK1/NF-κB signaling pathway (inhibiting vesicle circulation) within the PFC and hippocampus synaptosome to increase the DA concentration in the synaptic cleft. The BDNF/TrkB signal pathway within the PFC and hippocampus synaptosome was activated by 7,8-DHF to increase DA concentration in the synaptic cleft. Whether 7,8-DHF can activate or inhibit the BDNF/P75 signaling pathway remains unclear.
Collapse
|
10
|
Zhu Y, Gao M, Huang H, Gao SH, Liao LY, Tao Y, Cheng H, Gao CY. p75NTR Ectodomain Ameliorates Cognitive Deficits and Pathologies in a Rapid Eye Movement Sleep Deprivation Mice Model. Neuroscience 2022; 496:27-37. [PMID: 35697320 DOI: 10.1016/j.neuroscience.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The neurotrophin receptor p75 (p75NTR) is a circadian rhythm regulator and mediates cognitive deficits induced by sleep deprivation (SD). The soluble extracellular domain of p75NTR (p75ECD) has been shown to exert a neuroprotective function in Alzheimer's disease (AD) and depression animal models. Nevertheless, the role of p75ECD in SD-induced cognitive dysfunction is unclear. In the present study we administrated p75ECD-Fc (10, 3 mg/kg), a recombinant fusion protein of human p75ECD and fragment C of immunoglobulin IgG1, to treat mice via intraperitoneal injection. The results revealed that peripheral supplementation of high-dose p75ECD-Fc (10 mg/kg) recovered the balance between Aβ and p75ECD in the hippocampus and rescued the cognitive deficits in SD mice. We also found that p75ECD-Fc ameliorated other pathologies induced by SD, including neuronal apoptosis, synaptic plasticity impairment and neuroinflammation. The current study suggests that p75ECD-Fc is a potential candidate for SD and peripheral supplementation of p75ECD-Fc may be a prospective preventive measure for cognitive decline in SD.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Neurology, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Min Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Hao Huang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Shi-Hao Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Ling-Yi Liao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Yong Tao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Huan Cheng
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Chang-Yue Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China.
| |
Collapse
|
11
|
Xu J, Li Z, Tower RJ, Negri S, Wang Y, Meyers CA, Sono T, Qin Q, Lu A, Xing X, McCarthy EF, Clemens TL, James AW. NGF-p75 signaling coordinates skeletal cell migration during bone repair. SCIENCE ADVANCES 2022; 8:eabl5716. [PMID: 35302859 PMCID: PMC8932666 DOI: 10.1126/sciadv.abl5716] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Bone regeneration following injury is initiated by inflammatory signals and occurs in association with infiltration by sensory nerve fibers. Together, these events are believed to coordinate angiogenesis and tissue reprogramming, but the mechanism of coupling immune signals to reinnervation and osteogenesis is unknown. Here, we found that nerve growth factor (NGF) is expressed following cranial bone injury and signals via p75 in resident mesenchymal osteogenic precursors to affect their migration into the damaged tissue. Mice lacking Ngf in myeloid cells demonstrated reduced migration of osteogenic precursors to the injury site with consequently delayed bone healing. These features were phenocopied by mice lacking p75 in Pdgfra+ osteoblast precursors. Single-cell transcriptomics identified mesenchymal subpopulations with potential roles in cell migration and immune response, altered in the context of p75 deletion. Together, these results identify the role of p75 signaling pathway in coordinating skeletal cell migration during early bone repair.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert J. Tower
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Orthopaedics and Traumatology, University of Verona, Verona 37129, Italy
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amy Lu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Edward F. McCarthy
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Thomas L. Clemens
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Fleury S, Schnitzer ME, Ledoux-Hutchinson L, Boukhatem I, Bélanger JC, Welman M, Busseuil D, Tardif JC, D’Antono B, Lordkipanidzé M. Clinical Correlates Identify ProBDNF and Thrombo-Inflammatory Markers as Key Predictors of Circulating p75NTR Extracellular Domain Levels in Older Adults. Front Aging Neurosci 2022; 14:821865. [PMID: 35264944 PMCID: PMC8899540 DOI: 10.3389/fnagi.2022.821865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The p75NTR receptor binds all neurotrophins and is mostly known for its role in neuronal survival and apoptosis. Recently, the extracellular domain (ECD) of p75NTR has been reported in plasma, its levels being dysregulated in numerous neurological diseases. However, the factors associated with p75NTR ECD levels remain unknown. We investigated clinical correlates of plasma p75NTR ECD levels in older adults without clinically manifested neurological disorders. Circulating p75NTR levels were measured by enzyme-linked immunosorbent assay in plasma obtained from participants in the BEL-AGE cohort (n = 1,280). Determinants of plasma p75NTR ECD levels were explored using linear and non-linear statistical models. Plasma p75NTR ECD levels were higher in male participants; were positively correlated with circulating concentrations of pro-brain-derived neurotrophic factor, and inflammatory markers interleukin-6 and CD40 Ligand; and were negatively correlated with the platelet activation marker P-selectin. While most individuals had p75NTR levels ranging from 43 to 358 pg/ml, high p75NTR levels reaching up to 9,000 pg/ml were detectable in a subgroup representing 15% of the individuals studied. In this cohort of older adults without clinically manifested neurological disorders, there was no association between plasma p75NTR ECD levels and cognitive performance, as assessed by the Montreal Cognitive Assessment score. The physiological relevance of high p75NTR ECD levels in plasma warrants further investigation. Further research assessing the source of circulating p75NTR is needed for a deeper understanding of the direction of effect, and to investigate whether high p75NTR ECD levels are predictive biomarkers or consequences of neuropathology.
Collapse
Affiliation(s)
- Samuel Fleury
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Mireille E. Schnitzer
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
- Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, Montreal, QC, Canada
| | | | - Imane Boukhatem
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Jean-Christophe Bélanger
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Mélanie Welman
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
| | - David Busseuil
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
| | - Jean-Claude Tardif
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Medicine, Montreal Heart Institute, Montreal, QC, Canada
| | - Bianca D’Antono
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Department of Psychology, Faculty of Arts and Sciences, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Bianca D’Antono,
| | - Marie Lordkipanidzé
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
- Marie Lordkipanidzé,
| |
Collapse
|
13
|
Eggert S, Kins S, Endres K, Brigadski T. Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer's disease. Biol Chem 2022; 403:43-71. [PMID: 34619027 DOI: 10.1515/hsz-2021-0330] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an important modulator for a variety of functions in the central nervous system (CNS). A wealth of evidence, such as reduced mRNA and protein level in the brain, cerebrospinal fluid (CSF), and blood samples of Alzheimer's disease (AD) patients implicates a crucial role of BDNF in the progression of this disease. Especially, processing and subcellular localization of BDNF and its receptors TrkB and p75 are critical determinants for survival and death in neuronal cells. Similarly, the amyloid precursor protein (APP), a key player in Alzheimer's disease, and its cleavage fragments sAPPα and Aβ are known for their respective roles in neuroprotection and neuronal death. Common features of APP- and BDNF-signaling indicate a causal relationship in their mode of action. However, the interconnections of APP- and BDNF-signaling are not well understood. Therefore, we here discuss dimerization properties, localization, processing by α- and γ-secretase, relevance of the common interaction partners TrkB, p75, sorLA, and sortilin as well as shared signaling pathways of BDNF and sAPPα.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| |
Collapse
|
14
|
Cui N, Li H, Dun Y, Ripley-Gonzalez JW, You B, Li D, Liu Y, Qiu L, Li C, Liu S. Exercise inhibits JNK pathway activation and lipotoxicity via macrophage migration inhibitory factor in nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2022; 13:961231. [PMID: 36147562 PMCID: PMC9485555 DOI: 10.3389/fendo.2022.961231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
The macrophage migration inhibitory factor (MIF) expressed in hepatocytes can limit steatosis during obesity. Lipotoxicity in nonalcoholic fatty liver disease is mediated in part by the activation of the stress kinase JNK, but whether MIF modulates JNK in lipotoxicity is unknown. In this study, we investigated the role of MIF in regulating JNK activation and high-fat fostered liver lipotoxicity during simultaneous exercise treatment. Fifteen mice were equally divided into three groups: normal diet, high-fat diet, and high-fat and exercise groups. High-fat feeding for extended periods elicited evident hyperlipemia, liver steatosis, and cell apoptosis in mice, with inhibited MIF and activated downstream MAPK kinase 4 phosphorylation and JNK. These effects were then reversed following prescribed swimming exercise, indicating that the advent of exercise could prevent liver lipotoxicity induced by lipid overload and might correlate to the action of modulating MIF and its downstream JNK pathway. Similar detrimental effects of lipotoxicity were observed in in vitro HepG2 cells palmitic acid treatment. Suppressed JNK reduced the hepatocyte lipotoxicity by regulating the BCL family, and the excess JNK activation could also be attenuated through MIF supplementation or exacerbated by MIF siRNA administration. The results found suggest that exercise reduces lipotoxicity and inhibits JNK activation by modulating endogenous hepatic MIF in NAFLD. These findings have clinical implications for the prevention and intervention of patients with immoderate diet evoked NAFLD.
Collapse
Affiliation(s)
- Ni Cui
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Hui Li
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey W. Ripley-Gonzalez
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Baiyang You
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Dezhao Li
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Yuan Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Ling Qiu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Cui Li
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Suixin Liu,
| |
Collapse
|
15
|
Fang J, Wei Z, Zheng D, Ying T, Hong H, Hu D, Lin Y, Jiang X, Wu L, Lan T, Yang Z, Zhou X, Chen L. Recombinant Extracellular Domain (p75ECD) of the Neurotrophin Receptor p75 Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting the p-JNK/Caspase-3 Signaling Pathway in Rat Microvascular Pericytes. J Am Heart Assoc 2020; 9:e016047. [PMID: 32567476 PMCID: PMC7670530 DOI: 10.1161/jaha.119.016047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Pro-NTs (precursor of neurotrophins) and their receptor p75 are potential targets for preventing microvascular dysfunction induced by myocardial ischemia-reperfusion injury (IRI). p75ECD (ectodomain of neurotrophin receptor p75) may physiologically produce neurocytoprotective effects by scavenging pro-NTs. We therefore hypothesized that p75ECD may have a cardioprotective effect on IRI through microvascular mechanisms. Methods and Results Myocardial IRI was induced in Sprague-Dawley rats by occluding the left main coronary arteries for 45 minutes before a subsequent relaxation. Compared with the ischemia-reperfusion group, an intravenous injection of p75ECD (3 mg/kg) 5 minutes before reperfusion reduced the myocardial infarct area at 24 hours after reperfusion (by triphenyltetrazolium chloride, 44.9±3.9% versus 34.6±5.7%, P<0.05); improved the left ventricular ejection fraction (by echocardiography), with less myocardial fibrosis (by Masson's staining), and prevented microvascular dysfunction (by immunofluorescence) at 28 days after reperfusion; and reduced myocardial pro-NTs expression at 24 hours and 28 days after reperfusion (by Western blotting). A simulative IRI model using rat microvascular pericytes was established in vitro by hypoxia-reoxygenation (2/6 hours) combined with pro-NTs treatment (3 nmol/L) at R. p75ECD (3 μg/mL) given at R improved pericyte survival (by methyl thiazolyl tetrazolium assay) and attenuated apoptosis (by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling). In the reperfused hearts and hypoxia-reoxygenation +pro-NTs-injured pericytes, p75ECD inhibited the expression of p-JNK (phospho of c-Jun N-terminal kinase)/caspase-3 (by Western blotting). SP600125, an inhibitor of JNK, did not enhance the p75ECD-induced infarct-sparing effects and pericyte protection. Conclusions p75ECD may attenuate myocardial IRI via pro-NTs reduction-induced inhibition of p-JNK/caspase-3 pathway of microvascular pericytes in rats.
Collapse
Affiliation(s)
- Jun Fang
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - ZhiXiong Wei
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - DeDong Zheng
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - Teng Ying
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - HuaShan Hong
- Fujian Key Laboratory of Vascular Aging Department of Geriatrics Fujian Institute of Geriatrics Fujian Medical University Union Hospital Fuzhou P. R. China
| | - DanQing Hu
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - YunLing Lin
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - XiaoLiang Jiang
- Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medicine Centre, Peking Union Medical Collage, and Beijing Collaborative Innovation Center for Cardiovascular Disorders Beijing P. R. China
| | - LingZhen Wu
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - TingXiang Lan
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - ZhiWei Yang
- Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medicine Centre, Peking Union Medical Collage, and Beijing Collaborative Innovation Center for Cardiovascular Disorders Beijing P. R. China
| | - XinFu Zhou
- Neuroregeneration Laboratory Division of Health Sciences School of Pharmacy and Medical Sciences University of South Australia Adelaide South Australia Australia
| | - LiangLong Chen
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| |
Collapse
|