1
|
Liu Y, Lyons CJ, Ayu C, O’Brien T. Enhancing endothelial colony-forming cells for treating diabetic vascular complications: challenges and clinical prospects. Front Endocrinol (Lausanne) 2024; 15:1396794. [PMID: 39076517 PMCID: PMC11284052 DOI: 10.3389/fendo.2024.1396794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia, leading to various vascular complications. Accumulating evidence indicates that endothelial colony-forming cells (ECFCs) have attractive prospects for repairing and restoring blood vessels. Thus, ECFCs may be a novel therapeutic option for diabetic patients with vascular complications who require revascularization therapy. However, it has been reported that the function of ECFCs is impaired in DM, which poses challenges for the autologous transplantation of ECFCs. In this review, we summarize the molecular mechanisms that may be responsible for ECFC dysfunction and discuss potential strategies for improving the therapeutic efficacy of ECFCs derived from patients with DM. Finally, we discuss barriers to the use of ECFCs in human studies in light of the fact that there are no published reports using these cells in humans.
Collapse
Affiliation(s)
| | | | | | - Timothy O’Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Liu Y, Lyons CJ, Ayu C, O'Brien T. Recent advances in endothelial colony-forming cells: from the transcriptomic perspective. J Transl Med 2024; 22:313. [PMID: 38532420 PMCID: PMC10967123 DOI: 10.1186/s12967-024-05108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Endothelial colony-forming cells (ECFCs) are progenitors of endothelial cells with significant proliferative and angiogenic ability. ECFCs are a promising treatment option for various diseases, such as ischemic heart disease and peripheral artery disease. However, some barriers hinder the clinical application of ECFC therapeutics. One of the current obstacles is that ECFCs are dysfunctional due to the underlying disease states. ECFCs exhibit dysfunctional phenotypes in pathologic states, which include but are not limited to the following: premature neonates and pregnancy-related diseases, diabetes mellitus, cancers, haematological system diseases, hypoxia, pulmonary arterial hypertension, coronary artery diseases, and other vascular diseases. Besides, ECFCs are heterogeneous among donors, tissue sources, and within cell subpopulations. Therefore, it is important to elucidate the underlying mechanisms of ECFC dysfunction and characterize their heterogeneity to enable clinical application. In this review, we summarize the current and potential application of transcriptomic analysis in the field of ECFC biology. Transcriptomic analysis is a powerful tool for exploring the key molecules and pathways involved in health and disease and can be used to characterize ECFC heterogeneity.
Collapse
Affiliation(s)
- Yaqiong Liu
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Christine Ayu
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Raíssa-Oliveira B, Lara-Ribeiro AC, Rezende-Ribeiro J, Bahia ABQ, Verano-Braga T. Cardioproteomics: Insights on Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:159-171. [PMID: 38409420 DOI: 10.1007/978-3-031-50624-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Cardiovascular diseases (CVDs) remain a global health challenge and are the leading cause of deaths worldwide. Proteomics has emerged as a valuable tool for unraveling the complex molecular mechanisms underlying CVDs, offering insights into biomarker discovery, drug targets, and personalized medicine. This review explores key breakthroughs in proteomic applications related to CVDs, mainly coronary artery disease (CAD), ischemic heart diseases such as myocardial infarction (MI), and cardiomyopathies. Notable findings include potential biomarkers, therapeutic targets, and insights into disease pathogenesis. The review highlights the importance of proteomics in advancing our understanding of CVDs and shaping future therapeutic approaches.
Collapse
Affiliation(s)
- Brenda Raíssa-Oliveira
- Núcleo de Proteômica Funcional (NPF), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT-Nanobiofar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Carolina Lara-Ribeiro
- Núcleo de Proteômica Funcional (NPF), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT-Nanobiofar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Júlia Rezende-Ribeiro
- Núcleo de Proteômica Funcional (NPF), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT-Nanobiofar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Beatriz Queiroz Bahia
- Núcleo de Proteômica Funcional (NPF), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT-Nanobiofar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago Verano-Braga
- Núcleo de Proteômica Funcional (NPF), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- INCT-Nanobiofar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Luo L, Sun X, Tang M, Wu J, Qian T, Chen S, Guan Z, Jiang Y, Fu Y, Zheng Z. Secreted Protein Acidic and Rich in Cysteine Mediates the Development and Progression of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:869519. [PMID: 35721704 PMCID: PMC9205223 DOI: 10.3389/fendo.2022.869519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUNDS Diabetic retinopathy (DR) is one of the most severe microvascular complications of diabetes mellitus (DM). Secreted protein acidic and rich in cysteine (SPARC) has been found to play an important role in many diseases, but its role and mechanism in DR remain unknown. METHODS We studied the role of SPARC and integrin β1 in vascular pathophysiology and identified potential therapeutic translation. The SPARC levels were tested in human serum and vitreous by ELISA assay, and then the Gene Expression Omnibus (GEO) dataset was used to understand the key role of the target gene in DR. In human retinal capillary endothelial cells (HRCECs), we analyzed the mRNA and protein level by RT-PCR, immunohistochemistry, and Western blotting. The cell apoptosis, cell viability, and angiogenesis were analyzed by flow cytometry, CCK-8, and tube formation. RESULTS In this study, we investigated the role of SPARC in the development and progression of human DR and high glucose-induced HRCEC cells and found that the SPARC-ITGB1 signaling pathway mimics early molecular and advanced neurovascular pathophysiology complications of DR. The result revealed that DR patients have a high-level SPARC expression in serum and vitreous. Knockdown of SPARC could decrease the expressions of inflammatory factors and VEGFR, inhibit cell apoptosis and angiogenesis, and increase cell viability by regulating integrin β1 in HRCECs. CONCLUSION SPARC promotes diabetic retinopathy via the regulation of integrin β1. The results of this study can provide a potential therapeutic application for the treatment of DR.
Collapse
Affiliation(s)
- Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Liying Luo, ; Zhi Zheng, ; Yang Fu, ; Yanyun Jiang, ; Zhiyuan Guan, gzy:
| | - Xi Sun
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Tang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jiahui Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Tianwei Qian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
- *Correspondence: Liying Luo, ; Zhi Zheng, ; Yang Fu, ; Yanyun Jiang, ; Zhiyuan Guan, gzy:
| | - Yanyun Jiang
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Liying Luo, ; Zhi Zheng, ; Yang Fu, ; Yanyun Jiang, ; Zhiyuan Guan, gzy:
| | - Yang Fu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- *Correspondence: Liying Luo, ; Zhi Zheng, ; Yang Fu, ; Yanyun Jiang, ; Zhiyuan Guan, gzy:
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- *Correspondence: Liying Luo, ; Zhi Zheng, ; Yang Fu, ; Yanyun Jiang, ; Zhiyuan Guan, gzy:
| |
Collapse
|