1
|
Yang PJ, Ting KH, Tsai PY, Su SC, Yang SF. Association of long noncoding RNA GAS5 gene polymorphism with progression of diabetic kidney disease. Int J Med Sci 2024; 21:2201-2207. [PMID: 39239549 PMCID: PMC11373544 DOI: 10.7150/ijms.99545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/04/2024] [Indexed: 09/07/2024] Open
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes, whose complex etiology involves a genetic component. Growth arrest-specific 5 (GAS5), a long noncoding RNA (lncRNA) gene, has been recently shown to regulate renal fibrosis. Here, we aimed to explore the potential role of GAS5 gene polymorphisms in the predisposition to DKD. One single-nucleotide (rs55829688) and one insertion/deletion polymorphism (rs145204276) of GAS5 gene were surveyed in 778 DKD cases and 788 DKD-free diabetic controls. We demonstrated that diabetic subjects who are heterozygous at rs55829688 (TC; AOR, 1.737; 95% CI, 1.028-2.937; p=0.039) are more susceptible to advanced DKD but not early-staged DKD, as compared to diabetic subjects who are homozygous for the major allele of rs55829688 (TT). Carriers of at least one minor allele (C) of rs55829688 (TC and CC; AOR, 1.317; 95% CI, 1.023-1.696; p=0.033) more frequently suffer from advanced DKD than do those homozygotes for the major allele (TT). Furthermore, in comparison to those who do not carry the minor allele of rs55829688 (TT), advanced DKD patients possessing at least one minor allele of rs55829688 (TC and CC) exhibited a lower glomerular filtration rate, revealing an impact of rs55829688 on renal co-morbidities of diabetes. In conclusion, our data indicate an association of GAS5 gene polymorphisms with the progression of DKD.
Collapse
Affiliation(s)
- Po-Jen Yang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ke-Hsin Ting
- Division of Cardiology, Department of Internal Medicine, Changhua Christian Hospital, Yunlin Branch, Yunlin, Taiwan
- Department of Medicine and Nursing, Hungkuang University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Yu Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Ren Y, Zhao X. Bone marrow mesenchymal stem cells-derived exosomal lncRNA GAS5 mitigates heart failure by inhibiting UL3/Hippo pathway-mediated ferroptosis. Eur J Med Res 2024; 29:303. [PMID: 38812041 PMCID: PMC11137962 DOI: 10.1186/s40001-024-01880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Exosomes (Exos) are involved in the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) on heart failure (HF). We investigated the molecular mechanisms underlying the involvement of BMSC-Exos in ferroptosis on HF. METHODS A rat model of HF and cellular model of hypoxia were established. BMSC-Exos were injected into model rats or co-cultured with model cells. In model rats, the cardiac function (echocardiography), oxidative stress (commercial kits), pathological damage (HE staining), fibrosis (MASSON staining), iron deposition (Prussian blue staining), and cell apoptosis (TUNEL staining) were examined. Viability (cell counting kit-8; CCK-8), cell cycle (flow cytometry), oxidative stress, and Fe2+ levels were detected in the model cells. GAS5, UL3, YAP, and TAZ expression were detected using qRT-PCR, western blotting, and immunohistochemistry analyses. RESULTS BMSC-Exos restored cardiac function and inhibited oxidative stress, apoptosis, pathological damage, fibrosis, and iron deposition in myocardial tissues of HF rats. In hypoxic cells, BMSC-Exos increased cell viability, decreased the number of G1 phase cells, decreased Fe2+ levels, and inhibited oxidative stress. Ferrostatin-1 (a ferroptosis inhibitor) exhibited a synergistic effect with BMSC-Exos. Additionally, GAS5 was upregulated in BMSC-Exos, further upregulating its target UL3 and Hippo pathway effectors (YAP and TAZ). The relieving effects of BMSC-Exos on HF or hypoxia-induced injury were enhanced by GAS5 overexpression, but weakened by UL3 silencing or verteporfin (a YAP inhibitor). CONCLUSIONS GAS5-harbouring BMSC-Exos inhibited ferroptosis by regulating the UL3/Hippo pathway, contributing to HF remission in vivo and in vitro.
Collapse
Affiliation(s)
- Yu Ren
- Department of Scientific Research, Inner Mongolia People's Hospital, Hohhot, 010017, China
| | - Xingsheng Zhao
- Department of Cardiology, Inner Mongolia People's Hospital, No.20 Zhao Wuda Road, Hohhot, 010017, China.
| |
Collapse
|
3
|
Cheng H, Yang M, Hao J, Chen K, Tan Q, He S, Mao F, Yang M, Lin Y, Yang J. Lower Plasma miR-223 Level Is Associated with Clopidogrel Resistance in Acute Coronary Syndrome: A Systematic Review and Meta-Analysis. J Interv Cardiol 2023; 2023:9322188. [PMID: 37637249 PMCID: PMC10449589 DOI: 10.1155/2023/9322188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Objectives To evaluate the relationship between the plasma miR-223 expression level and clopidogrel resistance in acute coronary syndrome (ACS) patients. Methods We performed a search for publications using online databases including PubMed, EMBASE, Cochrane Library, and Chinese Databases (CNKI database, Weipu database, and Wanfang database) from the inception of the databases to June 18, 2023, to identify studies reporting the relationship between the plasma miR-223 level and clopidogrel resistance in ACS patients. Two researchers independently searched and screened to ensure the consistency of the results and assess the quality of the included studies according to the Newcastle-Ottawa scale. A fixed-effects model was used for pooling data with STATA 14.0. Results Four articles including 399 Chinese ACS patients were eligible for the meta-analysis. Low plasma miR-223 levels were independently correlated with clopidogrel resistance in Chinese ACS patients (OR 0.58, 95% CI: 0.33-1.04). Conclusion Lower plasma miR-223 levels are associated with clopidogrel resistance in Chinese ACS patients, suggesting that miR-223 may be a potential diagnostic biomarker of clopidogrel resistance.
Collapse
Affiliation(s)
- Hang Cheng
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Min Yang
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junli Hao
- School of Bioscience and Technology, Cengdu Medical College, Chengdu, China
| | - Kejie Chen
- School of Public Health, Cengdu Medical College, Chengdu, China
| | - Quandan Tan
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Song He
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Fengkai Mao
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ming Yang
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yapeng Lin
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- International Clinical Research Center, Cengdu Medical College, Chengdu, China
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Rakicevic L. DNA and RNA Molecules as a Foundation of Therapy Strategies for Treatment of Cardiovascular Diseases. Pharmaceutics 2023; 15:2141. [PMID: 37631355 PMCID: PMC10459020 DOI: 10.3390/pharmaceutics15082141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
There has always been a tendency of medicine to take an individualised approach to treating patients, but the most significant advances were achieved through the methods of molecular biology, where the nucleic acids are in the limelight. Decades of research of molecular biology resulted in setting medicine on a completely new platform. The most significant current research is related to the possibilities that DNA and RNA analyses can offer in terms of more precise diagnostics and more subtle stratification of patients in order to identify patients for specific therapy treatments. Additionally, principles of structure and functioning of nucleic acids have become a motive for creating entirely new therapy strategies and an innovative generation of drugs. All this also applies to cardiovascular diseases (CVDs) which are the leading cause of mortality in developed countries. This review considers the most up-to-date achievements related to the use of translatory potential of DNA and RNA in treatment of cardiovascular diseases, and considers the challenges and prospects in this field. The foundations which allow the use of translatory potential are also presented. The first part of this review focuses on the potential of the DNA variants which impact conventional therapies and on the DNA variants which are starting points for designing new pharmacotherapeutics. The second part of this review considers the translatory potential of non-coding RNA molecules which can be used to formulate new generations of therapeutics for CVDs.
Collapse
Affiliation(s)
- Ljiljana Rakicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| |
Collapse
|
5
|
Zapata-Martínez L, Águila S, de los Reyes-García AM, Carrillo-Tornel S, Lozano ML, González-Conejero R, Martínez C. Inflammatory microRNAs in cardiovascular pathology: another brick in the wall. Front Immunol 2023; 14:1196104. [PMID: 37275892 PMCID: PMC10233054 DOI: 10.3389/fimmu.2023.1196104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
The regulatory role of microRNAs (miRNAs) is mainly mediated by their effect on protein expression and is recognized in a multitude of pathophysiological processes. In recent decades, accumulating evidence has interest in these factors as modulatory elements of cardiovascular pathophysiology. Furthermore, additional biological processes have been identified as new components of cardiovascular disease etiology. In particular, inflammation is now considered an important cardiovascular risk factor. Thus, in the present review, we will focus on the role of a subset of miRNAs called inflamma-miRs that may regulate inflammatory status in the development of cardiovascular pathology. According to published data, the most representative candidates that play functional roles in thromboinflammation are miR-21, miR-33, miR-34a, miR-146a, miR-155, and miR-223. We will describe the functions of these miRNAs in several cardiovascular pathologies in depth, with specific emphasis on the molecular mechanisms related to atherogenesis. We will also discuss the latest findings on the role of miRNAs as regulators of neutrophil extracellular traps and their impact on cardiovascular diseases. Overall, the data suggest that the use of miRNAs as therapeutic tools or biomarkers may improve the diagnosis or prognosis of adverse cardiovascular events in inflammatory diseases. Thus, targeting or increasing the levels of adequate inflamma-miRs at different stages of disease could help mitigate or avoid the development of cardiovascular morbidities.
Collapse
|
6
|
Xiong Y, Xu J, Zhang D, Wu S, Li Z, Zhang J, Xia Z, Xia P, Xia C, Tang X, Liu X, Liu J, Yu P. MicroRNAs in Kawasaki disease: An update on diagnosis, therapy and monitoring. Front Immunol 2022; 13:1016575. [PMID: 36353615 PMCID: PMC9638168 DOI: 10.3389/fimmu.2022.1016575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/30/2022] [Indexed: 08/15/2023] Open
Abstract
Kawasaki disease (KD) is an acute autoimmune vascular disease featured with a long stage of febrile. It predominantly afflicts children under 5 years old and causes an increased risk of cardiovascular combinations. The onset and progression of KD are impacted by many aspects, including genetic susceptibility, infection, and immunity. In recent years, many studies revealed that miRNAs, a novel class of small non-coding RNAs, may play an indispensable role in the development of KD via differential expression and participation in the central pathogenesis of KD comprise of the modulation of immunity, inflammatory response and vascular dysregulation. Although specific diagnose criteria remains unclear up to date, accumulating clinical evidence indicated that miRNAs, as small molecules, could serve as potential diagnostic biomarkers and exhibit extraordinary specificity and sensitivity. Besides, miRNAs have gained attention in affecting therapies for Kawasaki disease and providing new insights into personalized treatment. Through consanguineous coordination with classical therapies, miRNAs could overcome the inevitable drug-resistance and poor prognosis problem in a novel point of view. In this review, we systematically reviewed the existing literature and summarized those findings to analyze the latest mechanism to explore the role of miRNAs in the treatment of KD from basic and clinical aspects retrospectively. Our discussion helps to better understand the pathogenesis of KD and may offer profound inspiration on KD diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yiyi Xiong
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiawei Xu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shuqin Wu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhongbin Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cai Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianping Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Circulating and Platelet MicroRNAs in Cardiovascular Risk Assessment and Antiplatelet Therapy Monitoring. J Clin Med 2022; 11:jcm11071763. [PMID: 35407371 PMCID: PMC8999342 DOI: 10.3390/jcm11071763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Micro-ribonucleic acids (microRNAs) are small molecules that take part in the regulation of gene expression. Their function has been extensively investigated in cardiovascular diseases (CVD). Most recently, miRNA expression levels have been suggested as potential biomarkers of platelet reactivity or response to antiplatelet therapy and tools for risk stratification for recurrence of ischemic evens. Among these, miR-126 and miR-223 have been found to be of particular interest. Despite numerous studies aimed at understanding the prognostic value of miRNA levels, no final conclusions have been drawn thus far regarding their utility in clinical practice. The aim of this review is to critically appraise the evidence on the association between miRNA expression, cardiovascular risk and on-treatment platelet reactivity as well as provide insights on future developments in the field.
Collapse
|
8
|
De Rosa S, Iaconetti C, Eyileten C, Yasuda M, Albanese M, Polimeni A, Sabatino J, Sorrentino S, Postula M, Indolfi C. Flow-Responsive Noncoding RNAs in the Vascular System: Basic Mechanisms for the Clinician. J Clin Med 2022; 11:jcm11020459. [PMID: 35054151 PMCID: PMC8777617 DOI: 10.3390/jcm11020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular system is largely exposed to the effect of changing flow conditions. Vascular cells can sense flow and its changes. Flow sensing is of pivotal importance for vascular remodeling. In fact, it influences the development and progression of atherosclerosis, controls its location and has a major influx on the development of local complications. Despite its importance, the research community has traditionally paid scarce attention to studying the association between different flow conditions and vascular biology. More recently, a growing body of evidence has been accumulating, revealing that ncRNAs play a key role in the modulation of several biological processes linking flow-sensing to vascular pathophysiology. This review summarizes the most relevant evidence on ncRNAs that are directly or indirectly responsive to flow conditions to the benefit of the clinician, with a focus on the underpinning mechanisms and their potential application as disease biomarkers.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Correspondence: (S.D.R.); (C.I.)
| | - Claudio Iaconetti
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Masakazu Yasuda
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Michele Albanese
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Alberto Polimeni
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Jolanda Sabatino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Sabato Sorrentino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
- Correspondence: (S.D.R.); (C.I.)
| |
Collapse
|