1
|
El-Battrawy I, Mügge A, Akin I, Nguyen HP, Milting H, Aweimer A. Ion Channel Diseases as a Cause of Sudden Cardiac Death in Young People: Aspects of Their Diagnosis, Treatment, and Pathogenesis. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:665-672. [PMID: 38961815 DOI: 10.3238/arztebl.m2024.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Sudden cardiac death (SCD) is the death of an apparently healthy person within one hour of the onset of symptoms, or within 24 hours of last being seen alive and well-with no evidence of an extra-cardiac cause. In autopsied cases, SCD is defined as the natural unexpected death of unknown or cardiac cause. The reported incidence figures for SCD vary widely. METHODS This review is based on clinical registry studies, metaanalyses, randomized controlled trials, systematic reviews, and current guidelines that were retrieved by a selective search in PubMed employing the key words "channelopathy," "Brugada syndrome," "long QT syndrome," "catecholaminergic polymorphic ventricular tachycardia," "short QT syndrome," and "early repolarization." RESULTS Approximately 18% of cases of SCD in young persons are associated with cardiac channelopathy. The most common ion channel diseases affecting the heart are long QT syndrome and Brugada syndrome. The diagnosis is established by specific ECG abnormalities in the absence of structural heart disease. These can be unmasked by various maneuvers, e.g., the administration of sodium-channel blockers in Brugada syndrome. Imaging studies such as echocardiography, coronary angiography, and computed tomography are used to rule out structural heart disease and coro nary artery disease. Long-term ECG and risk stratification scores can be useful aids to therapeutic decision-making. For some of these diseases, it is advisable for the patient to avoid particular triggers of ECG changes and cardiac arrhythmias in his or her everyday life. The near relatives of persons with congenital ion channel diseases should undergo clinical and gen etic screening to protect them from SCD. CONCLUSION The affected families should be investigated systematically so that appropriate diagnoses and treatments can be established.
Collapse
Affiliation(s)
- Ibrahim El-Battrawy
- Institut für Forschung und Lehre (IFL), Department of Molecular and Experimental Cardiology, Research Group Molecular Cardiology Ruhr-Universität Bochum, Germany; Department of Cardiology, St. Josef-Hospital,Ruhr-Universität-Bochum; First Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Human Genetics, Faculty of Medicine Ruhr-Universität Bochum, Germany; Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Verkerk L, Verkerk AO, Wilders R. Zebrafish as a Model System for Brugada Syndrome. Rev Cardiovasc Med 2024; 25:313. [PMID: 39355588 PMCID: PMC11440409 DOI: 10.31083/j.rcm2509313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 10/03/2024] Open
Abstract
Brugada syndrome (BrS) is an inheritable cardiac arrhythmogenic disease, associated with an increased risk of sudden cardiac death. It is most common in males around the age of 40 and the prevalence is higher in Asia than in Europe and the United States. The pathophysiology underlying BrS is not completely understood, but several hypotheses have been proposed. So far, the best effective treatment is the implantation of an implantable cardioverter-defibrillator (ICD), but device-related complications are not uncommon. Therefore, there is an urgent need to improve diagnosis and risk stratification and to find new treatment options. To this end, research should further elucidate the genetic basis and pathophysiological mechanisms of BrS. Several experimental models are being used to gain insight into these aspects. The zebrafish (Danio rerio) is a widely used animal model for the study of cardiac arrhythmias, as its cardiac electrophysiology shows interesting similarities to humans. However, zebrafish have only been used in a limited number of studies on BrS, and the potential role of zebrafish in studying the mechanisms of BrS has not been reviewed. Therefore, the present review aims to evaluate zebrafish as an animal model for BrS. We conclude that zebrafish can be considered as a valuable experimental model for BrS research, not only for gene editing technologies, but also for screening potential BrS drugs.
Collapse
Affiliation(s)
- Leonie Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Vinod P, Patel H. Can Hyperthermia Unveil Brugada Pattern? J Med Cases 2024; 15:143-147. [PMID: 38993811 PMCID: PMC11236330 DOI: 10.14740/jmc4242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Brugada syndrome (BrS) is characterized by ST segment elevations in the right precordial leads, V1 - V3, with additional findings of ventricular arrhythmias and family history (FH) of sudden cardiac death (SCD) at a young age. Here, we describe a case of hyperthermia, unveiling the Brugada electrocardiography (EKG) pattern and the resolution of EKG findings with appropriate hyperthermia management. It is important to distinguish the Brugada EKG pattern from other causes of ST elevations and treat appropriately to prevent patients from developing ventricular fibrillation and SCD. It is key to identify environmental triggers in patients presenting with Brugada EKG pattern and closely monitor for ventricular fibrillation. Educating patients on prompt fever treatment with antipyretics and avoiding medications like sodium channel blockers during the febrile event is paramount to counter patients going into ventricular fibrillation. It is also crucial for close follow-up of these patients, offering them genetic testing for BrS and screening families of patients with BrS.
Collapse
Affiliation(s)
- Poornima Vinod
- Department of Internal Medicine, University of North Carolina Health at Southeastern, Lumberton, NC 28358, USA
| | - Hiten Patel
- Division of Interventional Cardiology, University of North Carolina Health at Southeastern, Lumberton, NC 28358, USA
| |
Collapse
|
4
|
Theisen B, Holtz A, Rajagopalan V. Noncoding RNAs and Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Cardiac Arrhythmic Brugada Syndrome. Cells 2023; 12:2398. [PMID: 37830612 PMCID: PMC10571919 DOI: 10.3390/cells12192398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Hundreds of thousands of people die each year as a result of sudden cardiac death, and many are due to heart rhythm disorders. One of the major causes of these arrhythmic events is Brugada syndrome, a cardiac channelopathy that results in abnormal cardiac conduction, severe life-threatening arrhythmias, and, on many occasions, death. This disorder has been associated with mutations and dysfunction of about two dozen genes; however, the majority of the patients do not have a definite cause for the diagnosis of Brugada Syndrome. The protein-coding genes represent only a very small fraction of the mammalian genome, and the majority of the noncoding regions of the genome are actively transcribed. Studies have shown that most of the loci associated with electrophysiological traits are located in noncoding regulatory regions and are expected to affect gene expression dosage and cardiac ion channel function. Noncoding RNAs serve an expanding number of regulatory and other functional roles within the cells, including but not limited to transcriptional, post-transcriptional, and epigenetic regulation. The major noncoding RNAs found in Brugada Syndrome include microRNAs; however, others such as long noncoding RNAs are also identified. They contribute to pathogenesis by interacting with ion channels and/or are detectable as clinical biomarkers. Stem cells have received significant attention in the recent past, and can be differentiated into many different cell types including those in the heart. In addition to contractile and relaxational properties, BrS-relevant electrophysiological phenotypes are also demonstrated in cardiomyocytes differentiated from stem cells induced from adult human cells. In this review, we discuss the current understanding of noncoding regions of the genome and their RNA biology in Brugada Syndrome. We also delve into the role of stem cells, especially human induced pluripotent stem cell-derived cardiac differentiated cells, in the investigation of Brugada syndrome in preclinical and clinical studies.
Collapse
Affiliation(s)
- Benjamin Theisen
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
| | - Austin Holtz
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
| | - Viswanathan Rajagopalan
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
- Arkansas Biosciences Institute, Jonesboro, AR 72401, USA
| |
Collapse
|
5
|
Patel KK, Venkatesan C, Abdelhalim H, Zeeshan S, Arima Y, Linna-Kuosmanen S, Ahmed Z. Genomic approaches to identify and investigate genes associated with atrial fibrillation and heart failure susceptibility. Hum Genomics 2023; 17:47. [PMID: 37270590 DOI: 10.1186/s40246-023-00498-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023] Open
Abstract
Atrial fibrillation (AF) and heart failure (HF) contribute to about 45% of all cardiovascular disease (CVD) deaths in the USA and around the globe. Due to the complex nature, progression, inherent genetic makeup, and heterogeneity of CVDs, personalized treatments are believed to be critical. To improve the deciphering of CVD mechanisms, we need to deeply investigate well-known and identify novel genes that are responsible for CVD development. With the advancements in sequencing technologies, genomic data have been generated at an unprecedented pace to foster translational research. Correct application of bioinformatics using genomic data holds the potential to reveal the genetic underpinnings of various health conditions. It can help in the identification of causal variants for AF, HF, and other CVDs by moving beyond the one-gene one-disease model through the integration of common and rare variant association, the expressed genome, and characterization of comorbidities and phenotypic traits derived from the clinical information. In this study, we examined and discussed variable genomic approaches investigating genes associated with AF, HF, and other CVDs. We collected, reviewed, and compared high-quality scientific literature published between 2009 and 2022 and accessible through PubMed/NCBI. While selecting relevant literature, we mainly focused on identifying genomic approaches involving the integration of genomic data; analysis of common and rare genetic variants; metadata and phenotypic details; and multi-ethnic studies including individuals from ethnic minorities, and European, Asian, and American ancestries. We found 190 genes associated with AF and 26 genes linked to HF. Seven genes had implications in both AF and HF, which are SYNPO2L, TTN, MTSS1, SCN5A, PITX2, KLHL3, and AGAP5. We listed our conclusion, which include detailed information about genes and SNPs associated with AF and HF.
Collapse
Affiliation(s)
- Kush Ketan Patel
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Cynthia Venkatesan
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Yuichiro Arima
- Developmental Cardiology Laboratory, International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Kumamoto City, Kumamoto, Japan
| | - Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Zeeshan Ahmed
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Ave, Farmington, CT, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
6
|
Salvarani N, Peretto G, Silvia C, Villatore A, Thairi C, Santoni A, Galli C, Carrera P, Sala S, Benedetti S, Di Pasquale E, Di Resta C. Functional Characterisation of the Rare SCN5A p.E1225K Variant, Segregating in a Brugada Syndrome Familial Case, in Human Cardiomyocytes from Pluripotent Stem Cells. Int J Mol Sci 2023; 24:ijms24119548. [PMID: 37298497 DOI: 10.3390/ijms24119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Brugada syndrome (BrS) is an inherited autosomal dominant cardiac channelopathy. Pathogenic rare mutations in the SCN5A gene, encoding the alpha-subunit of the voltage-dependent cardiac Na+ channel protein (Nav1.5), are identified in 20% of BrS patients, affecting the correct function of the channel. To date, even though hundreds of SCN5A variants have been associated with BrS, the underlying pathogenic mechanisms are still unclear in most cases. Therefore, the functional characterization of the SCN5A BrS rare variants still represents a major hurdle and is fundamental to confirming their pathogenic effect. Human cardiomyocytes (CMs) differentiated from pluripotent stem cells (PSCs) have been extensively demonstrated to be reliable platforms for investigating cardiac diseases, being able to recapitulate specific traits of disease, including arrhythmic events and conduction abnormalities. Based on this, in this study, we performed a functional analysis of the BrS familial rare variant NM_198056.2:c.3673G>A (NP_932173.1:p.Glu1225Lys), which has been never functionally characterized before in a cardiac-relevant context, as the human cardiomyocyte. Using a specific lentiviral vector encoding a GFP-tagged SCN5A gene carrying the specific c.3673G>A variant and CMs differentiated from control PSCs (PSC-CMs), we demonstrated an impairment of the mutated Nav1.5, thus suggesting the pathogenicity of the rare BrS detected variant. More broadly, our work supports the application of PSC-CMs for the assessment of the pathogenicity of gene variants, the identification of which is increasing exponentially due to the advances in next-generation sequencing methods and their massive use in genetic testing.
Collapse
Affiliation(s)
- Nicolò Salvarani
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Giovanni Peretto
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Crasto Silvia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Andrea Villatore
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Cecilia Thairi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Anna Santoni
- Genomic Unit for the Diagnosis of Human Pathologies, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Camilla Galli
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Paola Carrera
- Genomic Unit for the Diagnosis of Human Pathologies, IRCCS San Raffaele Hospital, 20132 Milan, Italy
- Laboratory of Clinical Molecular Biology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Simone Sala
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Benedetti
- Genomic Unit for the Diagnosis of Human Pathologies, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Elisa Di Pasquale
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Chiara Di Resta
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Genomic Unit for the Diagnosis of Human Pathologies, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| |
Collapse
|
7
|
Penttinen K, Prajapati C, Shah D, Rajan DK, Cherian RM, Swan H, Aalto-Setälä K. HiPSC-derived cardiomyocyte to model Brugada syndrome: both asymptomatic and symptomatic mutation carriers reveal increased arrhythmogenicity. BMC Cardiovasc Disord 2023; 23:208. [PMID: 37098502 PMCID: PMC10131315 DOI: 10.1186/s12872-023-03234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/11/2023] [Indexed: 04/27/2023] Open
Abstract
Brugada syndrome is an inherited cardiac arrhythmia disorder that is mainly associated with mutations of the cardiac voltage-gated sodium channel alpha subunit 5 (SCN5A) gene. The clinical symptoms include ventricular fibrillation and an increased risk of sudden cardiac death. Human-induced pluripotent stem cell (hiPSC) lines were derived from symptomatic and asymptomatic individuals carrying the R1913C mutation in the SCN5A gene. The present work aimed to observe the phenotype-specific differences in hiPSC-derived cardiomyocytes (CMs) obtained from symptomatic and asymptomatic mutation carriers. In this study, CM electrophysiological properties, beating abilities and calcium parameters were measured. Mutant CMs exhibited higher average sodium current densities than healthy CMs, but the differences were not statistically significant. Action potential durations were significantly shorter in CMs from the symptomatic individual, and a spike-and-dome morphology of action potential was exclusively observed in CMs from the symptomatic individual. More arrhythmias occurred in mutant CMs at single cell and cell aggregate levels compared with those observed in wild-type CMs. Moreover, there were no major differences in ionic currents or intracellular calcium dynamics between the CMs of asymptomatic and symptomatic individuals after the administration of adrenaline and flecainide.In conclusion, mutant CMs were more prone to arrhythmia than healthy CMs but did not explain why only one of the mutation carriers was symptomatic.
Collapse
Affiliation(s)
- Kirsi Penttinen
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33520, Finland
| | - Chandra Prajapati
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33520, Finland.
| | - Disheet Shah
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33520, Finland
| | - Dhanesh Kattipparambil Rajan
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33520, Finland
| | - Reeja Maria Cherian
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33520, Finland
| | - Heikki Swan
- Helsinki University Hospital, Helsinki, 00290, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33520, Finland
- Heart Hospital, Tampere University Hospital, Tampere, 33520, Finland
| |
Collapse
|
8
|
Melgari D, Calamaio S, Frosio A, Prevostini R, Anastasia L, Pappone C, Rivolta I. Automated Patch-Clamp and Induced Pluripotent Stem Cell-Derived Cardiomyocytes: A Synergistic Approach in the Study of Brugada Syndrome. Int J Mol Sci 2023; 24:ijms24076687. [PMID: 37047659 PMCID: PMC10095337 DOI: 10.3390/ijms24076687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
The development of high-throughput automated patch-clamp technology is a recent breakthrough in the field of Brugada syndrome research. Brugada syndrome is a heart disorder marked by abnormal electrocardiographic readings and an elevated risk of sudden cardiac death due to arrhythmias. Various experimental models, developed either in animals, cell lines, human tissue or computational simulation, play a crucial role in advancing our understanding of this condition, and developing effective treatments. In the perspective of the pathophysiological role of ion channels and their pharmacology, automated patch-clamp involves a robotic system that enables the simultaneous recording of electrical activity from multiple single cells at once, greatly improving the speed and efficiency of data collection. By combining this approach with the use of patient-derived cardiomyocytes, researchers are gaining a more comprehensive view of the underlying mechanisms of heart disease. This has led to the development of more effective treatments for those affected by cardiovascular conditions.
Collapse
Affiliation(s)
- Dario Melgari
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Serena Calamaio
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Anthony Frosio
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Rachele Prevostini
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Ilaria Rivolta
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, Italy
| |
Collapse
|
9
|
Li Y, Dinkel H, Pakalniskyte D, Busley AV, Cyganek L, Zhong R, Zhang F, Xu Q, Maywald L, Aweimer A, Huang M, Liao Z, Meng Z, Yan C, Prädel T, Rose L, Moscu‐Gregor A, Hohn A, Yang Z, Qiao L, Mügge A, Zhou X, Akin I, El‐Battrawy I. Novel insights in the pathomechanism of Brugada syndrome and fever-related type 1 ECG changes in a preclinical study using human-induced pluripotent stem cell-derived cardiomyocytes. Clin Transl Med 2023; 13:e1130. [PMID: 36881552 PMCID: PMC9990896 DOI: 10.1002/ctm2.1130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Brugada syndrome (BrS) is causing sudden cardiac death (SCD) mainly at young age. Studying the underlying mechanisms associated with BrS type I electrocardiogram (ECG) changes in the presence of fever and roles of autophagy for BrS remains lacking. OBJECTIVES We sought to study the pathogenic role of an SCN5A gene variant for BrS with fever-induced type 1 ECG phenotype. In addition, we studied the role of inflammation and autophagy in the pathomechanism of BrS. METHODS Human-induced pluripotent stem cell (hiPSC) lines from a BrS patient harboring a pathogenic variant (c.3148G>A/p. Ala1050Thr) in SCN5A and two healthy donors (non-BrS) and a CRISPR/Cas9 site-corrected cell line (BrS-corr) were differentiated into cardiomyocytes (hiPSC-CMs) for the study. RESULTS Reductions of Nav 1.5 expression, peak sodium channel current (INa ) and upstroke velocity (Vmax ) of action potentials with an increase in arrhythmic events were detected in BrS compared to non-BrS and BrS-corr cells. Increasing the cell culture temperature from 37 to 40°C (fever-like state) exacerbated the phenotypic changes in BrS cells. The fever-effects were enhanced by protein kinase A (PKA) inhibitor but reversed by PKA activator. Lipopolysaccharides (LPS) but not increased temperature up to 40°C enhanced the autophagy level in BrS-hiPSC-CMs by increasing reactive oxidative species and inhibiting PI3K/AKT signalling, and hence exacerbated the phenotypic changes. LPS enhanced high temperature-related effect on peak INa shown in BrS hiPSC-CMs. Effects of LPS and high temperature were not detected in non-BrS cells. CONCLUSIONS The study demonstrated that the SCN5A variant (c.3148G>A/p.Ala1050Thr) caused loss-of-function of sodium channels and increased the channel sensitivity to high temperature and LPS challenge in hiPSC-CMs from a BrS cell line with this variant but not in two non-BrS hiPSC-CM lines. The results suggest that LPS may exacerbate BrS phenotype via enhancing autophagy, whereas fever may exacerbate BrS phenotype via inhibiting PKA-signalling in BrS cardiomyocytes with but probably not limited to this variant.
Collapse
Affiliation(s)
- Yingrui Li
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Hendrik Dinkel
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Dalia Pakalniskyte
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Alexandra Viktoria Busley
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
- Stem Cell UnitClinic for Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
- Stem Cell UnitClinic for Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
| | - Rujia Zhong
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Feng Zhang
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Qiang Xu
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouChina
| | - Lasse Maywald
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Assem Aweimer
- Department of Cardiology and AngiologyBergmannsheil University HospitalsRuhr University of BochumBochumGermany
| | - Mengying Huang
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Zhenxing Liao
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Zenghui Meng
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Chen Yan
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Timo Prädel
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Lena Rose
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | | | - Alyssa Hohn
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Zhen Yang
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Lin Qiao
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Andreas Mügge
- Department of Cardiology and AngiologyBergmannsheil University HospitalsRuhr University of BochumBochumGermany
| | - Xiaobo Zhou
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouChina
| | - Ibrahim Akin
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Ibrahim El‐Battrawy
- Department of Cardiology and AngiologyBergmannsheil University HospitalsRuhr University of BochumBochumGermany
| |
Collapse
|
10
|
Yi D, Li L, Han M, Qiu R, Tao L, Liu L, Liu C. Case report: Mechanical-electric feedback and atrial fibrillation-Revelation from the treatment of a rare atrial fibrillation caused by annular constrictive pericarditis. Front Cardiovasc Med 2023; 10:1100425. [PMID: 36760571 PMCID: PMC9905231 DOI: 10.3389/fcvm.2023.1100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Atrial fibrillation (AF) is one of the most common arrhythmias encountered in clinical practice. The pathophysiological mechanisms responsible for its development are complex, vary amongst individuals, and associated with predisposing factors. Here, we report a case of AF caused by annular constrictive pericarditis (ACP), which is extremely rare due to its unusual anatomical form. In our patient, AF was refractory to multiple antiarrhythmic medications; however, spontaneous conversion to sinus rhythm occurred when the ring encircling the right and left ventricular (RV and LV) cavities along the atrioventricular (AV) groove was severed. This suggests that atrial stretch due to atrial enlargement and increased left atrial (LA) pressure may contribute to the initiation and maintenance of AF. This report highlights the importance of the careful investigation of rare predisposing factors for AF using non-invasive diagnostic approaches and mechanical-electric feedback (MEF) as a pathophysiological mechanism for AF initiation and maintenance.
Collapse
Affiliation(s)
- Dong Yi
- Division of Cardiac Care Unit, Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, Hubei, China
| | - Lei Li
- Division of Cardiac Care Unit, Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, Hubei, China
| | - Min Han
- Division of Cardiac Care Unit, Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, Hubei, China
| | - Rujie Qiu
- Division of Cardiac Care Unit, Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, Hubei, China
| | - Liang Tao
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, Hubei, China
| | - Li Liu
- Division of Cardiac Care Unit, Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, Hubei, China,*Correspondence: Li Liu,
| | - Chengwei Liu
- Division of Cardiac Care Unit, Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, Hubei, China,Chengwei Liu,
| |
Collapse
|
11
|
iPSC-Derived Cardiomyocytes in Inherited Cardiac Arrhythmias: Pathomechanistic Discovery and Drug Development. Biomedicines 2023; 11:biomedicines11020334. [PMID: 36830871 PMCID: PMC9953535 DOI: 10.3390/biomedicines11020334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
With the discovery of induced pluripotent stem cell (iPSCs) a wide range of cell types, including iPSC-derived cardiomyocytes (iPSC-CM), can now be generated from an unlimited source of somatic cells. These iPSC-CM are used for different purposes such as disease modelling, drug discovery, cardiotoxicity testing and personalised medicine. The 2D iPSC-CM models have shown promising results, but they are known to be more immature compared to in vivo adult cardiomyocytes. Novel approaches to create 3D models with the possible addition of other (cardiac) cell types are being developed. This will not only improve the maturity of the cells, but also leads to more physiologically relevant models that more closely resemble the human heart. In this review, we focus on the progress in the modelling of inherited cardiac arrhythmias in both 2D and 3D and on the use of these models in therapy development and drug testing.
Collapse
|
12
|
Zhu K, Bao X, Wang Y, Lu T, Zhang L. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte modelling of cardiovascular diseases for natural compound discovery. Biomed Pharmacother 2023; 157:113970. [PMID: 36371854 DOI: 10.1016/j.biopha.2022.113970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Natural compounds extracted from medicinal plants characterized by diverse biological activities and low toxicity or side effects, are increasingly taking center stage in the search for new drugs. Currently, preclinical evaluation of natural products relies mainly on the use of immortalized cell lines of human origin or animal models. Increasing evidence indicates that cardiomyopathy models based on immortalized cell lines do not recapitulate pathogenic phenotypes accurately and a substantial physiological discrepancy between animals and humans casts doubt on the clinical relevance of animal models for these studies. The newly developed human induced pluripotent stem cell (hiPSC) technology in combination with highly-efficient cardiomyocyte differentiation methods provides an ideal tool for modeling human cardiomyopathies in vitro. Screening of drugs, especially screening of natural products, based on these models has been widely used and has shown that evaluation in such models can recapitulate important aspects of the physiological properties of drugs. The purpose of this review is to provide information on the latest developments in this area of research and to help researchers perform screening of natural products using the hiPSC-CM platform.
Collapse
Affiliation(s)
- Keyang Zhu
- Zhejiang Key Laboratory of Pathophysiology, School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xiaoming Bao
- Department of Cardiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China; Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ting Lu
- Clinical Research Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
13
|
El-Battrawy I, Roterberg G, Kowitz J, Aweimer A, Lang S, Mügge A, Zhou X, Akin I. Incidence, recurrence and management of electrical storm in Brugada syndrome. Front Cardiovasc Med 2022; 9:981715. [PMID: 36386327 PMCID: PMC9640734 DOI: 10.3389/fcvm.2022.981715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background Brugada syndrome (BrS) is associated with ventricular tachyarrhythmias. However, the presence of electrical strom (ES) and its management still debated. Objectives We present the outcome and management of 44 BrS patients suffering from ES. Methods A systematic literature review and pooled analysis Through database review including PubMed, Web of Science, Cochrane Libary and Cinahl studies were analyzed. Evidence from 7 reports of 808 BrS patients was identified. Results The mean age of patients suffering from ES was 34 ± 9.5 months (94.7% males, 65.8% spontaneous BrS type I). Using electrophysiological study ventricular tachycardia/ventricular fibrillation were inducible in 12/23 (52.2%). Recurrence of ES was documented in 6.1%. Death from ES was 8.2% after a follow-up of 83.5 ± 53.4. In up to 27 ES resolved without treatment. External shock was required in 35.6%, internal ICD shock in 13.3%, Overdrive pacing, left cardiac sympathetic block and atropin in 2.2%. Short-term antiarrhythmic management was as the following: Isopreterenol or Isopreterenol in combination with quinidine 35.5%, orciprenaline in 2.2%, quinidine 2.2%, disopyramide 2.2% or denopamide 2.2%. However, lidocaine, magensium sulfate, mexiletine and propanolol failed to control ES. Conclusion Although ES is rare in BrS, this entity challenges physicians. Despite its high mortality rate, spontaneous termination is possible. Short-term management using Isoproterenol and/or quinidine might be safe. Prospective studies on management of ES are warranted.
Collapse
Affiliation(s)
- Ibrahim El-Battrawy
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Mannheim, Germany
- Bergmannsheil Bochum, Medical Clinic II, Department of Cardiology and Angiology, Ruhr University, Bochum, Germany
| | - Gretje Roterberg
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Jacqueline Kowitz
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Assem Aweimer
- Bergmannsheil Bochum, Medical Clinic II, Department of Cardiology and Angiology, Ruhr University, Bochum, Germany
| | - Siegfried Lang
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Mannheim, Germany
| | - Andreas Mügge
- Bergmannsheil Bochum, Medical Clinic II, Department of Cardiology and Angiology, Ruhr University, Bochum, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Mannheim, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Mannheim, Germany
| |
Collapse
|