1
|
Goldstein DS. Linking the Extended Autonomic System with the Homeostat Theory: New Perspectives about Dysautonomias. J Pers Med 2024; 14:123. [PMID: 38276245 PMCID: PMC10817591 DOI: 10.3390/jpm14010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Dysautonomias are conditions in which altered functions of one or more components of the autonomic nervous system (ANS) adversely affect health. This essay is about how elucidating mechanisms of dysautonomias may rationalize personalized treatments. Emphasized here are two relatively new ideas-the "extended" autonomic system (EAS) and the "homeostat" theory as applied to the pathophysiology and potential treatments of dysautonomias. The recently promulgated concept of the EAS updates Langley's ANS to include neuroendocrine, immune/inflammatory, and central components. The homeostat theory builds on Cannon's theory of homeostasis by proposing the existence of comparators (e.g., a thermostat, glucostat, carbistat, barostat) that receive information about regulated variables (e.g., core temperature, blood glucose, blood gases, delivery of blood to the brain). Homeostats sense discrepancies between the information and response algorithms. The presentation links the EAS with the homeostat theory to understand pathophysiological mechanisms of dysautonomias. Feed-forward anticipatory processes shift input-output curves and maintain plateau levels of regulated variables within different bounds of values-"allostasis". Sustained allostatic processes increase long-term wear-and-tear on effectors and organs-allostatic load. They decreaseing thresholds for destabilizing and potentially fatal positive feedback loops. The homeostat theory enables mathematical models that define stress, allostasis, and allostatic load. The present discussion applies the EAS and homeostat concepts to specific examples of pediatric, adolescent/adult, and geriatric dysautonomias-familial dysautonomia, chronic orthostatic intolerance, and Lewy body diseases. Computer modeling has the potential to take into account the complexity and dynamics of allostatic processes and may yield testable predictions about individualized treatments and outcomes.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Goldstein DS, Holmes C, Sullivan P, Lopez G, Gelsomino J, Moore S, Isonaka R, Wu T, Sharabi Y. Cardiac noradrenergic deficiency revealed by 18F-dopamine positron emission tomography identifies preclinical central Lewy body diseases. J Clin Invest 2024; 134:e172460. [PMID: 37883190 PMCID: PMC10760969 DOI: 10.1172/jci172460] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND In Lewy body diseases (LBDs) Parkinson disease (PD), and dementia with Lewy bodies (DLB), by the time parkinsonism or cognitive dysfunction manifests clinically, substantial neurodegeneration has already occurred. Biomarkers are needed to identify central LBDs in a preclinical phase, when neurorescue strategies might forestall symptomatic disease. This phase may involve catecholamine deficiency in the autonomic nervous system. We analyzed data from the prospective, observational, long-term PDRisk study to assess the predictive value of low versus normal cardiac 18F-dopamine positron emission tomography (PET), an index of myocardial content of the sympathetic neurotransmitter norepinephrine, in at-risk individuals. METHODS Participants self-reported risk factor information (genetics, olfactory dysfunction, dream enactment behavior, and orthostatic intolerance or hypotension) at a protocol-specific website. Thirty-four with 3 or more confirmed risk factors underwent serial cardiac 18F-dopamine PET at 1.5-year intervals for up to 7.5 years or until PD was diagnosed. RESULTS Nine participants had low initial myocardial 18F-dopamine-derived radioactivity (<6,000 nCi-kg/cc-mCi) and 25 had normal radioactivity. At 7 years of follow-up, 8 of 9 with low initial radioactivity and 1 of 11 with normal radioactivity were diagnosed with a central LBD (LBD+) (P = 0.0009 by Fisher's exact test). Conversely, all 9 LBD+ participants had low 18F-dopamine-derived radioactivity before or at the time of diagnosis of a central LBD, whereas among 25 participants without a central LBD only 1 (4%) had persistently low radioactivity (P < 0.0001 by Fisher's exact test). CONCLUSION Cardiac 18F-dopamine PET highly efficiently distinguishes at-risk individuals who are diagnosed subsequently with a central LBD from those who are not. TRIAL REGISTRATION CLINICALTRIALS gov NCT00775853. FUNDING Division of Intramural Research, NIH, NINDS.
Collapse
Affiliation(s)
- David S. Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Courtney Holmes
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Patti Sullivan
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Grisel Lopez
- Molecular Neurogenetics Section, National Human Genome Research Institute, and
| | - Janna Gelsomino
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Sarah Moore
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Risa Isonaka
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Tianxia Wu
- Clinical Trials Unit, Office of the Clinical Director, DIR, NINDS, NIH, Bethesda, Maryland, USA
| | - Yehonatan Sharabi
- Chaim Sheba Medical Center, Tel-Aviv University, Tel-Hashomer, Israel
| |
Collapse
|
3
|
Khashab R, Gutman-Sharabi N, Shabtai Z, Landau R, Halperin R, Fay-Karmon T, Leibowitz A, Sharabi Y. Dihydroxyphenylacetaldehyde Lowering Treatment Improves Locomotor and Neurochemical Abnormalities in the Rat Rotenone Model: Relevance to the Catecholaldehyde Hypothesis for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:12522. [PMID: 37569897 PMCID: PMC10419703 DOI: 10.3390/ijms241512522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease centers on accumulation of 3,4-dihydroxyphenylacetaldehyde (DOPAL) in dopaminergic neurons. To test the hypothesis, it is necessary to reduce DOPAL and assess if this improves locomotor abnormalities. Systemic administration of rotenone to rats reproduces the motor and central neurochemical abnormalities characterizing Parkinson's disease. In this study, we used the monoamine oxidase inhibitor (MAOI) deprenyl to decrease DOPAL production, with or without the antioxidant N-acetylcysteine (NAC). Adult rats received subcutaneous vehicle, rotenone (2 mg/kg/day via a minipump), or rotenone with deprenyl (5 mg/kg/day i.p.) with or without oral NAC (1 mg/kg/day) for 28 days. Motor function tests included measures of open field activity and rearing. Striatal tissue was assayed for contents of dopamine, DOPAL, and other catechols. Compared to vehicle, rotenone reduced locomotor activity (distance, velocity and rearing); increased tissue DOPAL; and decreased dopamine concentrations and inhibited vesicular sequestration of cytoplasmic dopamine and enzymatic breakdown of cytoplasmic DOPAL by aldehyde dehydrogenase (ALDH), as indicated by DA/DOPAL and DOPAC/DOPAL ratios. The addition of deprenyl to rotenone improved all the locomotor indices, increased dopamine and decreased DOPAL contents, and corrected the rotenone-induced vesicular uptake and ALDH abnormalities. The beneficial effects were augmented when NAC was added to deprenyl. Rotenone evokes locomotor and striatal neurochemical abnormalities found in Parkinson's disease, including DOPAL buildup. Administration of an MAOI attenuates these abnormalities, and NAC augments the beneficial effects. The results indicate a pathogenic role of DOPAL in the rotenone model and suggest that treatment with MAOI+NAC might be beneficial for Parkinson's disease treatment.
Collapse
Affiliation(s)
- Rawan Khashab
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Naama Gutman-Sharabi
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zehava Shabtai
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Regev Landau
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Reut Halperin
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tsviya Fay-Karmon
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Avshalom Leibowitz
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yehonatan Sharabi
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|