1
|
Kianzad A, Baccelli A, Braams NJ, Andersen S, van Wezenbeek J, Wessels JN, Celant LR, Vos AE, Davies R, Lo Giudice F, Haji G, Rinaldo RF, Vigo B, Gopalan D, Symersky P, Winkelman JA, Boonstra A, Nossent EJ, Tim Marcus J, Vonk Noordegraaf A, Meijboom LJ, de Man FS, Andersen A, Howard LS, Bogaard HJ. Long-term effects of pulmonary endarterectomy on pulmonary hemodynamics, cardiac function, and exercise capacity in chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant 2024; 43:580-593. [PMID: 38000764 DOI: 10.1016/j.healun.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Long-term changes in exercise capacity and cardiopulmonary hemodynamics after pulmonary endarterectomy (PEA) for chronic thromboembolic pulmonary hypertension (CTEPH) have been poorly described. METHODS We analyzed the data from 2 prospective surgical CTEPH cohorts in Hammersmith Hospital, London, and Amsterdam UMC. A structured multimodal follow-up was adopted, consisting of right heart catheterization, cardiac magnetic resonance imaging, and cardiopulmonary exercise testing before and after PEA. Preoperative predictors of residual pulmonary hypertension (PH; mean pulmonary artery pressure >20 mm Hg and pulmonary vascular resistance ≥2 WU) and long-term exercise intolerance (VO2max <80%) at 18 months were analyzed. RESULTS A total of 118 patients (61 from London and 57 from Amsterdam) were included in the analysis. Both cohorts displayed a significant improvement of pulmonary hemodynamics, right ventricular (RV) function, and exercise capacity 6 months after PEA. Between 6 and 18 months after PEA, there were no further improvements in hemodynamics and RV function, but the proportion of patients with impaired exercise capacity was high and slightly increased over time (52%-59% from 6 to 18 months). Long-term exercise intolerance was common and associated with preoperative diffusion capacity for carbon monoxide (DLCO), preoperative mixed venous oxygen saturation, and postoperative PH and right ventricular ejection fraction (RVEF). Clinically significant RV deterioration (RVEF decline >3%; 5 [9%] of 57 patients) and recurrent PH (5 [14%] of 36 patients) rarely occurred beyond 6 months after PEA. Age and preoperative DLCO were predictors of residual PH post-PEA. CONCLUSIONS Restoration in exercise tolerance, cardiopulmonary hemodynamics, and RV function occurs within 6 months. No substantial changes occurred between 6 and 18 months after PEA in the Amsterdam cohort. Nevertheless, long-term exercise intolerance is common and associated with postoperative RV function.
Collapse
Affiliation(s)
- Azar Kianzad
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Andrea Baccelli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Respiratory Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Natalia J Braams
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Stine Andersen
- Aarhus University Hospital, Department of Cardiology, Aarhus, Denmark
| | - Jessie van Wezenbeek
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Jeroen N Wessels
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Lucas R Celant
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Anna E Vos
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands
| | - Rachel Davies
- National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Francesco Lo Giudice
- National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Gulammehdi Haji
- National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Rocco F Rinaldo
- Respiratory Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Beatrice Vigo
- Respiratory Unit, ASST Santi Paolo e Carlo, San Carlo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Deepa Gopalan
- Department of Radiology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Petr Symersky
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Cardiothoracic Surgery, Amsterdam, the Netherlands
| | - Jacobus A Winkelman
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Cardiothoracic Surgery, Amsterdam, the Netherlands
| | - Anco Boonstra
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Esther J Nossent
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - J Tim Marcus
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands; Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Anton Vonk Noordegraaf
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Lilian J Meijboom
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands; Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Frances S de Man
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Asger Andersen
- Aarhus University Hospital, Department of Cardiology, Aarhus, Denmark
| | - Luke S Howard
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Harm Jan Bogaard
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Sandeep B, Cheng H, Yan Y, Huang X, Wu Q, Gao K, Xiao Z. Right ventricle-pulmonary artery coupling in pulmonary artery hypertension its measurement and pharmacotherapy. Curr Probl Cardiol 2024; 49:102425. [PMID: 38311275 DOI: 10.1016/j.cpcardiol.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The right ventricular (RV) function correlates with prognosis in severe pulmonary artery hypertension (PAH) but which metric of it is most clinically relevant is still uncertain. Clinical methods to estimate RV function from simplified pressure volume loops correlate with disease severity but the clinical relevance has not been assessed. Evaluation of right ventricle pulmonary artery coupling in pulmonary hypertensive patients may help to elucidate the mechanisms of right ventricular failure and may also help to identify patients at risk or guide the timing of therapeutic interventions in pulmonary hypertension. Complete evaluation of RV failure requires echocardiographic or magnetic resonance imaging, and right heart catheterization measurements. Treatment of RV failure in PAH relies on decreasing afterload with drugs targeting pulmonary circulation; fluid management to optimize ventricular diastolic interactions; and inotropic interventions to reverse cardiogenic shock. The ability to relate quantitative metrics of RV function in pulmonary artery hypertension to clinical outcomes can provide a powerful tool for management. Such metrics could also be utilized in the future as surrogate endpoints for outcomes and evaluation of response to therapies. This review of literature gives an insight on RV-PA coupling associated with PAH, its types of measurement and pharmacological treatment.
Collapse
Affiliation(s)
- Bhushan Sandeep
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Han Cheng
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Yifan Yan
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Xin Huang
- Department of Anesthesiology, West China Hospital of Medicine, Sichuan University, Sichuan 610017, China
| | - Qinghui Wu
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Ke Gao
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China.
| | - Zongwei Xiao
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| |
Collapse
|