1
|
Liu NW, Ke CC, Zhao Y, Chen YA, Chan KC, Tan DTW, Lee JS, Chen YY, Hsu TW, Hsieh YJ, Chang CW, Yang BH, Huang WS, Liu RS. Evolutional Characterization of Photochemically Induced Stroke in Rats: a Multimodality Imaging and Molecular Biological Study. Transl Stroke Res 2016; 8:244-256. [PMID: 27910074 PMCID: PMC5435782 DOI: 10.1007/s12975-016-0512-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022]
Abstract
Photochemically induced cerebral ischemia is an easy-manipulated, reproducible, relatively noninvasive, and lesion controllable model for translational study of ischemic stroke. In order to longitudinally investigate the characterization of the model, magnetic resonance imaging, 18F-2-deoxy-glucose positron emission tomography, fluorescence, and bioluminescence imaging system were performed in correlation with triphenyl tetrazolium chloride (TTC), hematoxylin-eosin staining, and immunohistochemistry examinations of glial fibrillary acidic protein, CD68, NeuN, von willebrand factor, and α-smooth muscle actin in the infarct zone. The results suggested that the number of inflammatory cells, astrocytes, and neovascularization significantly elevated in peri-infarct region from day 7 and a belt of macrophage/microglial and astrocytes was formed surrounding infarct lesion at day 14. Both vasogenic and cytotoxic edema, as well as blood brain-barrier leakage, occurred since day 1 after stroke induction and gradually attenuated with time. Numerous cells other than neuronal cells infiltrated into infarct lesion, which resulted in no visible TTC negative regional existence at day 14. Furthermore, recovery of cerebral blood flow and glucose utilization in peri-infarct zone were noted and more remarkably than that in infarct core following the stroke progression. In conclusion, these characterizations may be highly beneficial to the development of therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Nai-Wei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau
| | - Chien-Chih Ke
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau.
| | - Yi-An Chen
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kim-Chuan Chan
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - David Tat-Wei Tan
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jhih-Shian Lee
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Medical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Tun-Wei Hsu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ya-Ju Hsieh
- Department of Biomedical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Wei Chang
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ren-Shyan Liu
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan. .,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Engineering, National Yang-Ming University, Taipei, Taiwan. .,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan. .,Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Dietrich WD, Prado R, Pravia C, Zhao W, Ginsberg MD, Watson BD. Delayed hypovolemic hypotension exacerbates the hemodynamic and histopathologic consequences of thromboembolic stroke in rats. J Cereb Blood Flow Metab 1999; 19:918-26. [PMID: 10458599 DOI: 10.1097/00004647-199908000-00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abnormalities in cerebrovascular reactivity or hemodynamic reserve are risk factors for stroke. The authors determined whether hemodynamic reserve is reduced in an experimental model of thromboembolic stroke. Nonocclusive common carotid artery thrombosis (CCAT) was produced in rats by a rose bengal-mediated photochemical insult, and moderate hypotension (60 mm Hg/30 min) was induced 1 hour later by hemorrhage. Alterations in local cerebral blood flow (ICBF) were assessed immediately after the hypotensive period by 14C-iodoantipyrine autoradiography, and histopathologic outcome was determined 3 days after CCAT. Compared to normotensive CCAT rats (n = 5), induced hypotension after CCAT (n = 7) led to enlarged regions of severe ischemia (i.e., mean ICBF < 0.24 mL/g/min) in the ipsilateral hemisphere. For example, induced hypotension increased the volume of severely ischemic sites from 16 +/- 4 mm3 (mean +/- SD) to 126 +/- 99 mm3 (P < 0.05). Histopathologic data also showed a larger volume of ischemic damage with secondary hypotension (n = 7) compared to normotension (22 +/- 15 mm3 versus 5 +/- 5 mm3, P < .05). Both hypotension-induced decreases in ICBF and ischemic pathology were commonly detected within cortical anterior and posterior borderzone areas and within the ipsilateral striatum and hippocampus. In contrast to CCAT, mechanical ligation of the common carotid artery plus hypotension (n = 8) did not produce significant histopathologic damage. Nonocclusive CCAT with secondary hypotension therefore predisposes the post-thrombotic brain to hemodynamic stress and structural damage.
Collapse
Affiliation(s)
- W D Dietrich
- Department of Neurology, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | | | |
Collapse
|
3
|
Snape MF, Baldwin HA, Cross AJ, Green AR. The effects of chlormethiazole and nimodipine on cortical infarct area after focal cerebral ischaemia in the rat. Neuroscience 1993; 53:837-44. [PMID: 8487958 DOI: 10.1016/0306-4522(93)90628-s] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Focal ischaemia in the rat cerebral cortex was produced by means of a photochemically induced thrombosis of cerebral arteries. This was achieved by intravenous infusion of the photosensitive dye Rose Bengal and illumination of the skull with focused green light. Initial experiments justified the use of tetrazolium staining as an index of infarct damage. Using this technique it was demonstrated that chlormethiazole (200 mg/kg, i.p.) given 5 min post ischaemia markedly reduced the area of infarcted cortical tissue. A second experiment replicated this observation and showed that, in contrast, nimodipine (0.5 mg/kg, i.p.) given 5 min post infarct was without effect on infarct size. The pattern of Evans Blue extravasation indicated that the infarct developed over a 24-h period with the major damage occurring in the first 4.5 h. The spread of the infarct beyond the initial core of damage was decreased by an estimated value of almost 50% by injection of chlormethiazole (200 mg/kg, i.p.) 5 min after the light exposure. These data indicate that chlormethiazole is an effective drug in protecting against the effects of focal ischaemia in the rat and, taken with earlier observations that chlormethiazole protects against the effects of global ischaemia in the gerbil, suggest that the drug may be an effective treatment against the ischaemic cell death that can occur following a stroke or cardiac arrest.
Collapse
Affiliation(s)
- M F Snape
- Astra Neuroscience Research Unit, London, U.K
| | | | | | | |
Collapse
|