1
|
Wang Y, Chen Y, Li Z, Tang L, Wen D, Wu Y, Guo Z. Electroacupuncture enhances cerebral blood perfusion by inhibiting HIF-1α in rat subarachnoid hemorrhage. Brain Res 2024; 1839:149010. [PMID: 38763503 DOI: 10.1016/j.brainres.2024.149010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE Cerebral blood perfusion (CBP) reduction is a prevalent complication following subarachnoid hemorrhage (SAH) in clinical practice, often associated with long-term cognitive impairment and prognosis. Electroacupuncture (EA), a widely utilized traditional Chinese therapy for central nervous system disorders, has demonstrated promising therapeutic effects. This study aims to investigate the therapeutic potential of EA in restoring CBP in SAH rats and to explore the mechanisms involving HIF-1α in this process. METHODS Rats were randomly assigned to one of five groups, including Sham, SAH, EA, EA + Saline, and EA + dimethyloxallyl glycine (DMOG) groups. EA treatment was administered for 10 min daily, while DMOG were intraperitoneally injected. Behavioral tests, cerebral blood flow monitoring, vascular thickness measurement, western blotting, and immunofluorescence staining were conducted to assess the therapeutic effects of EA on cerebral blood flow. RESULTS SAH resulted in elevated levels of HIF-1α, endothelin (ET), ICAM-1, P-SELECTIN, E-SELECTIN, and decreased level of eNOS in the brain. This led to cerebral vasospasm, decreased CBF, and cognitive deficits in the rat SAH model. EA intervention downregulated the expression of HIF-1α, ET, ICAM-1, P-SELECTIN, and E-SELECTIN, while increasing eNOS expression. This alleviated cerebral vasospasm, restored CBF, and improved cognitive function. However, the administration of the HIF-1α stabilizer (DMOG) counteracted the therapeutic effects of EA. CONCLUSION EA promotes the recovery of cerebral blood flow after SAH injury, attenuates cerebral vasospasm, and accelerates the recovery of cognitive dysfunction, and its mechanism of action may be related to the inhibition of the HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Chen
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhao Li
- Emergency Department, Chengdu First People's Hospital, Chengdu, Sichuan Province, China.
| | - Liuyang Tang
- Department of Neurosurgery, The People's Hospital of Qijiang District, 401420, China
| | - Daochen Wen
- Department of Neurosurgery, Xuanhan County People's Hospital, Dazhou, China.
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
El-Housiny S, Fouad AG, El-Bakry R, Zaki RM, Afzal O, El-Ela FIA, Ghalwash MM. In Vitro and in vivo characterization of nasal pH-Responsive in-situ hydrogel of Candesartan-loaded invasomes as a potential stroke treatment. Drug Deliv Transl Res 2024:10.1007/s13346-024-01700-z. [PMID: 39259459 DOI: 10.1007/s13346-024-01700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Candesartan (CDN) is a useful anti-stroke medication because it lowers blood pressure, inflammation, oxidative stress, angiogenesis and apoptosis. However, CDN has limited efficacy due to its low solubility and poor bioavailability. This study set out to develop nasal pH-responsive in situ hydrogel of CDN-loaded invasomes a (PRHCLI) for enhancing CDN's release, penetration, bioavailability, and effectiveness as a possible treatment for stroke. Based on the results of the pre-formulation investigation, the optimum CLI formulation for intravasomal delivery of CDN was determined to be 3% of phospholipid, 0.16% of cholesterol, 3% of ethanol, and 1% of cineole. The optimum formulation significantly enhanced CDN permeation and release by 2.06-fold and 59.06%, respectively. The CLI formulation was added to a mixture of chitosan (0.67%w/v) and glyceryl monooleate (0.27%v/v) to develop PRHCLI. The PRHCLI formulation enhanced the release and permeation of CDN relative to free CDN by 2.15 and 2.76 folds, respectively. An experimental rat stroke model was utilized for in vivo studies to evaluate the bioavailability, effectiveness, and toxicity of the PRHCLI formulation. The nasal PRHCLI drops increased the CDN's bioavailability by 3.20-fold compared to oral free CDN. Increased grip strength and decreased flexion, spontaneous motor activity, and Morris Water Maze scores in comparison to oral free CDN showed that nasal PRHCLI drops have better anti-stroke activity. The toxicity evaluation revealed the safety of nasal PRHCLI. Hence, nasal PRHCLI drops may represent a promising avenue as a stroke therapy.
Collapse
Affiliation(s)
- Shaimaa El-Housiny
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
- Faculty of Pharmacy, Beni-Suef University, El-Shahid/Shehata Ahmed Hijaz St, Beni-Suef, Egypt.
| | - Rana El-Bakry
- Department of Pharmacology and Toxicology, EL Saleheya EL Gadida University, EL Saleheya El Gadida, Sharkia, Egypt
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, Saudi Arabia
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Maha M Ghalwash
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
3
|
Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice. Eur J Pharmacol 2019; 856:172418. [DOI: 10.1016/j.ejphar.2019.172418] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
|
4
|
Zaghi GGD, Godinho J, Ferreira EDF, Ribeiro MHDM, Previdelli IS, de Oliveira RMW, Milani H. Robust and enduring atorvastatin-mediated memory recovery following the 4-vessel occlusion/internal carotid artery model of chronic cerebral hypoperfusion in middle-aged rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:179-87. [PMID: 26485403 DOI: 10.1016/j.pnpbp.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) is a common condition associated with the development and/or worsening of age-related dementia.We previously reported persistent memory loss and neurodegeneration after CCH in middle-aged rats. Statin-mediated neuroprotection has been reported after acute cerebral ischemia. Unknown, however, is whether statins can alleviate the outcome of CCH. The present study investigated whether atorvastatin attenuates the cognitive and neurohistological outcome of CCH. Rats (12–15 months old) were trained in a non-food-rewarded radial maze, and then subjected to CCH. Atorvastatin (10 mg/kg, p.o.) was administered for 42 days or 15 days, beginning 5 h after the first occlusion stage. Retrograde memory performance was assessed at 7, 14, 21, 28, and 35 days of CCH, and expressed by “latency,” “number of reference memory errors” and “number of working memory errors.” Neurodegeneration was then examined at the hippocampus and cerebral cortex. Compared to sham, CCH caused profound and persistent memory loss in the vehicle-treated groups, as indicated by increased latency (91.2% to 107.3%) and number of errors (123.5% to 2508.2%), effects from which the animals did not spontaneously recover across time. This CCH-induced retrograde amnesia was completely prevented by atorvastatin (latency: −4.3% to 3.3%; reference/working errors: −2.5% to 45.7%), regardless of the treatment duration. This effect was sustained during the entire behavioral testing period (5 weeks), even after discontinuing treatment. This robust and sustained memory-protective effect of atorvastatin occurred in the absence of neuronal rescue (39.58% to 56.45% cell loss). We suggest that atorvastatin may be promising for the treatment of cognitive sequelae associated with CCH.
Collapse
Affiliation(s)
| | - Jacqueline Godinho
- Department of Pharmacology and Therapeutics, Health Science Center, Brazil
| | | | - Matheus Henrique Dal Molin Ribeiro
- Department of Statistics, Exact Science Center, State University of Maringá, Maringá, Brazil; Federal Institute of Parana, Palmas, Paraná, Brazil
| | | | | | - Humberto Milani
- Department of Pharmacology and Therapeutics, Health Science Center, Brazil.
| |
Collapse
|
5
|
Potey C, Ouk T, Petrault O, Petrault M, Berezowski V, Salleron J, Bordet R, Gautier S. Early treatment with atorvastatin exerts parenchymal and vascular protective effects in experimental cerebral ischaemia. Br J Pharmacol 2015; 172:5188-98. [PMID: 26289767 DOI: 10.1111/bph.13285] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE From the clinical and experimental data available, statins appear to be interesting drug candidates for preventive neuroprotection in ischaemic stroke. However, their acute protective effect is, as yet, unconfirmed. EXPERIMENTAL APPROACH Male C57Bl6/JRj mice were subjected to middle cerebral artery occlusion and treated acutely with atorvastatin (10-20 mg·kg(-1) day(-1) ; 24 or 72 h). Functional recovery (neuroscore, forelimb gripping strength and adhesive removal test) was assessed during follow-up and lesion volume measured at the end. Vasoreactivity of the middle cerebral artery (MCA), type IV collagen and FITC-dextran distribution were evaluated to assess macrovascular and microvascular protection. Activated microglia, leucocyte adhesion and infiltration were chosen as markers of inflammation. KEY RESULTS Acute treatment with atorvastatin provided parenchymal and cerebral protection only at the higher dose of 20 mg·kg(-1) ·day(-1) . In this treatment group, functional recovery was ameliorated, and lesion volumes were reduced as early as 24 h after experimental stroke. This was associated with vascular protection as endothelial function of the MCA and the density and patency of the microvascular network were preserved. Acute atorvastatin administration also induced an anti-inflammatory effect in association with parenchymal and vascular mechanisms; it reduced microglial activation, and decreased leucocyte adhesion and infiltration. CONCLUSIONS AND IMPLICATIONS Acute atorvastatin provides global cerebral protection, but only at the higher dose of 20 mg·kg(-1) ·day(-1) ; this was associated with a reduction in inflammation in both vascular and parenchymal compartments. Our results suggest that atorvastatin could also be beneficial when administered early after stroke.
Collapse
Affiliation(s)
- C Potey
- U1171 - Medical Pharmacology Department, Faculty of Medicine, University of Lille 2 - Lille University Hospital, Lille, France
| | - T Ouk
- U1171 - Medical Pharmacology Department, Faculty of Medicine, University of Lille 2 - Lille University Hospital, Lille, France
| | - O Petrault
- U1171 - Medical Pharmacology Department, Faculty of Medicine, University of Lille 2 - Lille University Hospital, Lille, France
| | - M Petrault
- U1171 - Medical Pharmacology Department, Faculty of Medicine, University of Lille 2 - Lille University Hospital, Lille, France
| | - V Berezowski
- U1171 - Medical Pharmacology Department, Faculty of Medicine, University of Lille 2 - Lille University Hospital, Lille, France
| | - J Salleron
- EA2694 - Biostatistics Department, Faculty of Medicine, University of Lille 2 - Lille University Hospital, Lille, France
| | - R Bordet
- U1171 - Medical Pharmacology Department, Faculty of Medicine, University of Lille 2 - Lille University Hospital, Lille, France
| | - S Gautier
- U1171 - Medical Pharmacology Department, Faculty of Medicine, University of Lille 2 - Lille University Hospital, Lille, France
| |
Collapse
|
6
|
Yang M, Wu M, Xia P, Wang C, Yan P, Gao Q, Liu J, Wang H, Duan X, Yang X. The role of microtubule-associated protein 1B in axonal growth and neuronal migration in the central nervous system. Neural Regen Res 2015; 7:842-8. [PMID: 25737712 PMCID: PMC4342712 DOI: 10.3969/j.issn.1673-5374.2012.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/08/2012] [Indexed: 01/22/2023] Open
Abstract
In this review, we discuss the role of microtubule-associated protein 1B (MAP1B) and its phosphorylation in axonal development and regeneration in the central nervous system. MAP1B exhibits similar functions during axonal development and regeneration. MAP1B and phosphorylated MAP1B in neurons and axons maintain a dynamic balance between cytoskeletal components, and regulate the stability and interaction of microtubules and actin to promote axonal growth, neural connectivity and regeneration in the central nervous system.
Collapse
Affiliation(s)
- Maoguang Yang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Minfei Wu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Peng Xia
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Chunxin Wang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Peng Yan
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Qi Gao
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Jian Liu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Haitao Wang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xingwei Duan
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaoyu Yang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
7
|
Sato N. [Neurological common diseases in the super-elder society. Topics: III. Dementia; 1. Prevention of dementia by the control of non-genetic risk factors]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2014; 103:1815-1822. [PMID: 25654875 DOI: 10.2169/naika.103.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
8
|
Konno K, Shiotani Y, Itano N, Ogawa T, Hatakeyama M, Shioya K, Kasai N. Visible, safe and certain endotracheal intubation using endoscope system and inhalation anesthesia for rats. J Vet Med Sci 2014; 76:1375-81. [PMID: 25030602 PMCID: PMC4221171 DOI: 10.1292/jvms.14-0146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anesthesia strongly influences
laboratory animals, and it can also greatly affect the experimental data. Rats rank only
second to mice in the number used in research fields, such as organ transplantation,
regenerative medicine and imaging. Therefore, appropriate and effective anesthesia,
including the protocol of the endotracheal intubation and inhalation anesthesia, is
crucial. Hence, we evaluated these methods in this study. Twelve Wistar rats were
intraperitoneally injected with M/M/B: 0.3/4/5, comprising of medetomidine, midazolam and
butorphanol at a dose of 0.3 mg/kg + 4.0 mg/kg + 5.0 mg/kg body weight/rat, respectively.
An endotracheal tube was then intubated into the trachea. After intubation, the rats were
connected to the inhalation anesthesia circuit using isoflurane, and vital signs were
measured until 30 min after connection. All intubations were successfully finished within
1 min, and the values of the vital signs were normal and stable. In addition,
histopathological observation of the trachea and lungs showed no trauma. These results
suggest that this visible endotracheal intubation method is simple, reliable, safe and
favorable with regard to the rats’ welfare.
Collapse
Affiliation(s)
- Kenjiro Konno
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Sato N, Morishita R. Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: short- and long-term modification by non-genetic risk factors. Front Aging Neurosci 2013; 5:64. [PMID: 24204343 PMCID: PMC3817366 DOI: 10.3389/fnagi.2013.00064] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 10/08/2013] [Indexed: 01/09/2023] Open
Abstract
It is well known that a specific set of genetic and non-genetic risk factors contributes to the onset of Alzheimer disease (AD). Non-genetic risk factors include diabetes, hypertension in mid-life, and probably dyslipidemia in mid-life. This review focuses on the vascular and metabolic components of non-genetic risk factors. The mechanisms whereby non-genetic risk factors modify cognitive dysfunction are divided into four components, short- and long-term effects of vascular and metabolic factors. These consist of (1) compromised vascular reactivity, (2) vascular lesions, (3) hypo/hyperglycemia, and (4) exacerbated AD histopathological features, respectively. Vascular factors compromise cerebrovascular reactivity in response to neuronal activity and also cause irreversible vascular lesions. On the other hand, representative short-term effects of metabolic factors on cognitive dysfunction occur due to hypoglycemia or hyperglycemia. Non-genetic risk factors also modify the pathological manifestations of AD in the long-term. Therefore, vascular and metabolic factors contribute to aggravation of cognitive dysfunction in AD through short-term and long-term effects. β-amyloid could be involved in both vascular and metabolic components. It might be beneficial to support treatment in AD patients by appropriate therapeutic management of non-genetic risk factors, considering the contributions of these four elements to the manifestation of cognitive dysfunction in individual patients, though all components are not always present. It should be clarified how these four components interact with each other. To answer this question, a clinical prospective study that follows up clinical features with respect to these four components: (1) functional MRI or SPECT for cerebrovascular reactivity, (2) MRI for ischemic lesions and atrophy, (3) clinical episodes of hypoglycemia and hyperglycemia, (4) amyloid-PET and tau-PET for pathological features of AD, would be required.
Collapse
Affiliation(s)
- Naoyuki Sato
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University Osaka, Japan ; Department of Geriatric Medicine, Graduate School of Medicine, Osaka University Osaka, Japan
| | | |
Collapse
|
10
|
Russo E, Donato di Paola E, Gareri P, Siniscalchi A, Labate A, Gallelli L, Citraro R, De Sarro G. Pharmacodynamic potentiation of antiepileptic drugs' effects by some HMG-CoA reductase inhibitors against audiogenic seizures in DBA/2 mice. Pharmacol Res 2012; 70:1-12. [PMID: 23253428 DOI: 10.1016/j.phrs.2012.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 01/06/2023]
Abstract
It is known that the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are effective in both the primary and the secondary prevention of ischemic heart disease. Increasing evidence indicates that statins have protective effects in several neurological diseases including stroke, cerebral ischemia, Parkinson disease, multiple sclerosis, traumatic brain injury and epilepsy. The aim of the present research was to evaluate the effects of some HMG-CoA reductase inhibitors (i.e. lovastatin, simvastatin, atorvastatin, fluvastatin and pravastatin) commonly used for the treatment of hypercholesterolemia in the DBA/2 mice, an animal model of generalized tonic-clonic seizures. Furthermore, the co-administration of these compounds with some antiepileptic drugs (AEDs; i.e. carbamazepine, diazepam, felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, topiramate and valproate) was studied in order to identify possible positive pharmacological interactions. Simvastatin only was active against both the tonic and clonic phase of audiogenic seizures, whereas the other statins tested were only partially effective against the tonic phase with the following order of potency: lovastatin>fluvastatin>atorvastatin; pravastatin was completely ineffective up to the dose of 150mg/kg. The co-administration of ineffective doses of all statins with AEDs generally increased the potency of the latter reducing their ED50 values. In particular, simvastatin was the most active in potentiating the activity of AEDs and the combinations of statins with carbamazepine, diazepam, felbamate, lamotrigine, topiramate and valproate were the most favorable, whereas, the co-administrations with the other AEDs studied was in most cases neutral. The increase in potency was generally associated with an enhancement of motor impairment (TD50); however, the therapeutic index (TD50/ED50) of combined treatment of AEDs with statins was predominantly more favorable than control. Statins administration did not significantly affect the total plasma but, in some cases, it increased the free plasma levels and the brain concentrations of some of the AEDs studied (i.e. carbamazepine, diazepam, phenytoin and valproate); however, these alterations where not statistically significant. Therefore, with the exception of the latter compounds, we might exclude pharmacokinetic interactions and conclude that for the most of AEDs, potentiation was of pharmacodynamic nature. In conclusion, simvastatin, fluvastatin, lovastatin and atorvastatin showed an additive anticonvulsant effect when co-administered with some AEDs, most notably carbamazepine, diazepam, felbamate, lamotrigine, topiramate and valproate, implicating a possible therapeutic relevance of such drug combinations. The present results suggest that statins, besides the beneficial cardiovascular effects, might be able to affect brain areas, which might participate in the regulation of seizure susceptibility.
Collapse
Affiliation(s)
- Emilio Russo
- Science of Health Department, Clinical Pharmacology Unit, School of Medicine, University Magna Graecia of Catanzaro, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ma C, Wang Q, Man Y, Kemmner W. Cardiovascular medications in angiogenesis-How to avoid the sting in the tail. Int J Cancer 2012; 131:1249-59. [DOI: 10.1002/ijc.27576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 03/19/2012] [Indexed: 12/21/2022]
|
12
|
Wu H, Jiang H, Lu D, Qu C, Xiong Y, Zhou D, Chopp M, Mahmood A. Induction of angiogenesis and modulation of vascular endothelial growth factor receptor-2 by simvastatin after traumatic brain injury. Neurosurgery 2012; 68:1363-71; discussion 1371. [PMID: 21307798 DOI: 10.1227/neu.0b013e31820c06b9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Our previous studies demonstrated that simvastatin reduced neuronal death, increased neurogenesis, and promoted functional recovery after traumatic brain injury (TBI). OBJECTIVE To investigate the effect of simvastatin on angiogenesis after TBI and the related signaling pathways. METHODS Saline or simvastatin (1 mg/kg) was administered orally to rats starting at day 1 after TBI or sham surgery and then daily for 14 days. Rats were sacrificed at 3 and 14 days after treatment. Brain sections and tissues were prepared for immunohistochemical staining, enzyme-linked immunosorbent assay, and Western blot analysis. Cultured rat brain microvascular endothelial cells were subjected to oxygen-glucose deprivation followed by immunocytochemical staining with phallotoxins and vascular endothelial growth factor receptor-2 (VEGFR-2). Western blot analysis was carried out to examine the simvastatin-induced activation of the v-akt murine thymoma viral oncogene homolog (Akt) signaling pathway. The expression of VEGFR-2 was detected by enzyme-linked immunosorbent assay. RESULTS Simvastatin significantly increased the length of vascular perimeter, promoted the proliferation of endothelial cells, and improved the sensorimotor function after TBI. Simvastatin stimulated endothelial cell tube formation after oxygen-glucose deprivation in vitro. VEGFR-2 expression in both brain tissues and cultured rat brain microvascular endothelial cells was enhanced after simvastatin treatment, which may be modulated by activation of Akt. Akt-dependent endothelial nitric oxide synthase phosphorylation was also induced by simvastatin in vivo and in vitro. CONCLUSION Simvastatin augments TBI-induced angiogenesis in the lesion boundary zone and hippocampus and improves functional recovery. Simvastatin also promotes angiogenesis in vitro. These beneficial effects on angiogenesis may be related to simvastatin-induced activation of the VEGFR-2/Akt/endothelial nitric oxide synthase signaling pathway.
Collapse
Affiliation(s)
- Hongtao Wu
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Moazzami K, Emamzadeh-Fard S, Shabani M. Anticonvulsive effect of atorvastatin on pentylenetetrazole-induced seizures in mice: the role of nitric oxide pathway. Fundam Clin Pharmacol 2012; 27:387-92. [DOI: 10.1111/j.1472-8206.2012.01038.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Hayashi H, Nakagami H, Takeichi M, Shimamura M, Koibuchi N, Oiki E, Sato N, Koriyama H, Mori M, Gerardo Araujo R, Maeda A, Morishita R, Tamai K, Kaneda Y. HIG1, a novel regulator of mitochondrial γ-secretase, maintains normal mitochondrial function. FASEB J 2012; 26:2306-17. [PMID: 22355194 DOI: 10.1096/fj.11-196063] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The γ-secretase complex (which contains presenilins, nicastrin, anterior pharynx defective-1, and presenilin enhancer-2) cleaves type I transmembrane proteins, including Notch and amyloid precursor protein. Dysregulated γ-secretase activity has been implicated in the pathogenesis of Alzheimer's disease, stroke, atherosclerosis, and cancer. Tight regulation of γ-secretase activity is required for normal physiology. Here, we isolated HIG1 (hypoxia inducible gene 1, domain member 1A) from a functional screen of γ-secretase inhibitory genes. HIG1 was highly expressed in the brain. Interestingly, HIG1 was localized to the mitochondria and was directly bound to γ-secretase components on the mitochondrial membrane in SK-N-SH neuroblastoma cells. Overexpresssion of HIG1 attenuated hypoxia-induced γ-secretase activation on the mitochondrial membrane and the accumulation of intracellular amyloid β. This accumulation was accompanied by hypoxia-induced mitochondrial dysfunction. The latter half domain of HIG1 was required for binding to the γ-secretase complex and suppression of γ-secretase activity. Moreover, depletion of HIG1 increased γ-secretase activation and enhanced hypoxia-induced mitochondrial dysfunction. In summary, HIG1 is a novel modulator of the mitochondrial γ-secretase complex, and may play a role in the maintenance of normal mitochondrial function.
Collapse
Affiliation(s)
- Hiroki Hayashi
- Division of Gene Therapy Science, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Baryan HK, Allan SM, Vail A, Smith CJ. Systematic Review and Meta-Analysis of the Efficacy of Statins in Experimental Stroke. Int J Stroke 2012; 7:150-6. [DOI: 10.1111/j.1747-4949.2011.00740.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background and purpose Statins are postulated as candidate drugs for the treatment of acute stroke. The aim of this study was to critically appraise the evidence for the efficacy of statins administered after the onset of experimental focal cerebral ischemia. Methods We undertook a systematic review and meta-analysis of animal studies reporting the efficacy of any statin administered following middle cerebral artery occlusion. The primary outcome measure was infarct volume. Assessment of study quality and range of evidence were undertaken, and prespecified sub-group analyses were performed. Results Eighteen published studies describing outcome in 472 animals were identified. Statins reduced infarct volume by 11·2% (95% confidence interval 8·1% to 14·3%, P < 0·001) and improved the neurological severity score by 0·7 points (95% confidence interval 0·4 to 1·1, P < 0·0001). Efficacy was evident up to three-hours post-middle cerebral artery occlusion. Median study quality score was 7 of 13 (interquartile range, 4 to 11). No studies tested efficacy in aged, female, or hypertensive animals; or in species other than rodents. Conclusions These findings suggest that statins administered after middle cerebral artery occlusion have modest efficacy. Effects of potential sources of bias are considered likely to reduce the estimated effect from this review.
Collapse
Affiliation(s)
- Hardaman K. Baryan
- Brain Injury Research Group, School of Biomedicine, University of Manchester, Manchester, UK
| | - Stuart M. Allan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Andy Vail
- Health Sciences Research Group, University of Manchester, Manchester, UK
| | - Craig J. Smith
- Brain Injury Research Group, School of Biomedicine, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Sato N. [Alzheimer disease and non-genetic risk factors]. Nihon Ronen Igakkai Zasshi 2012; 49:311-313. [PMID: 23268971 DOI: 10.3143/geriatrics.49.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
17
|
A Clinically Relevant Rabbit Embolic Stroke Model for Acute Ischemic Stroke Therapy Development: Mechanisms and Targets. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
The effects of atorvastatin on memory deficit and seizure susceptibility in pentylentetrazole-kindled rats. Epilepsy Behav 2010; 19:284-9. [PMID: 20888302 DOI: 10.1016/j.yebeh.2010.07.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/21/2010] [Accepted: 07/26/2010] [Indexed: 11/22/2022]
Abstract
Deficits in memory function have been observed in pentylentetrazole (PTZ)-kindled rats. In the present study we examined the effects of atorvastatin ((3-hydroxy-3-methylglutaryl-coenzyme A [HMG-CoA] reductase inhibitor) on PTZ kindling and related memory deficits in rats trained with the passive avoidance test. Subconvulsive PTZ doses rendered a gradual increase in seizure activity. PTZ kindling caused long-term memory to deteriorate. Atorvastatin per se and in PTZ-kindled rats improved learning and memory functions. It also prolonged latency (time to appearance of spike potentials) and diminished the amplitude and frequency of spike potentials, which indicate epileptic discharges. These novel findings suggest that the favorable effect of the atorvastatin on memory deficits provoked by PTZ kindling might be of clinical utility.
Collapse
|
19
|
Lapchak PA, Han MK. Simvastatin improves clinical scores in a rabbit multiple infarct ischemic stroke model: synergism with a ROCK inhibitor but not the thrombolytic tissue plasminogen activator. Brain Res 2010; 1344:217-25. [PMID: 20493175 DOI: 10.1016/j.brainres.2010.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 01/09/2023]
Abstract
Statins have pleiotropic neuroprotective effects in the central nervous system. In this study, we assessed the pharmacological effects of simvastatin on measures of behavior in New Zealand white rabbits embolized using a suspension of small-sized blood clots. For these studies, simvastatin was administered up to 3 hours following embolization, and behavior was measured 48 hours following embolization to calculate the dose of emboli (P(50) in mg) that produces neurological deficits in 50% of the rabbits. A treatment is considered neuroprotective if it significantly increases the P(50) compared to control. Simvastatin treatment (20mg/kg, bolus subcutaneous injection) significantly improved clinical function and increased the P(50) by 143% when administered 1 hour following embolization but was ineffective at 3 hours. In combination studies with the thrombolytic, tissue plasminogen activator (tPA) using a standard intravenous dose of 3.3mg/kg (20% bolus, 80% infused), we found that simvastatin could be safely administered with tPA to improve clinical scores; however, the maximum behavioral improvement with the combination treatment was similar to either monotherapy alone, both of which significantly improved behavior (p<0.05). It has been proposed that Simvastatin neuroprotection may be related to a variety of signaling pathways including Rho-kinase (ROCK). To determine if a ROCK mechanism is involved in simvastatin-induced neuroprotection following embolic strokes, we used pharmacological intervention with the ROCK inhibitor, fasudil. When fasudil was administered 30 minutes before simvastatin (given at 1 hour), there was an additional significant (p=0.0217) synergistic increase in behavioral function. However, fasudil as a monotherapy did not affect behavioral function in embolized rabbits. The study suggests that there may be an interaction between simvastatin treatment and the ROCK signaling pathway that should be further explored. Our results suggest that simvastatin treatment may have clinical benefit when used alone or in the presence of tPA, but the therapeutic window using a single-dose regimen is narrow.
Collapse
Affiliation(s)
- Paul A Lapchak
- Department of Neurology, Cedars-Sinai Medical Center, 8730 Alden Drive, Thalians E216, Los Angeles, CA 90048, USA.
| | | |
Collapse
|
20
|
Müller HD, Berger C, Schwab S, Sommer C. Pravastatin treatment causes a shift in the balance of hippocampal neurotransmitter binding densities towards inhibition. Brain Res 2009; 1316:17-26. [PMID: 20026313 DOI: 10.1016/j.brainres.2009.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 12/11/2009] [Accepted: 12/13/2009] [Indexed: 01/29/2023]
Abstract
Since pravastatin, a HMG-CoA reductase inhibitor, has recently been shown to reduce infarct volumes and glutamate release in a rat model of ischemic stroke, the aim of the present study was to investigate whether this neuroprotective effect may be due to a modulation of excitatory and inhibitory neurotransmitter receptors. Therefore, Wistar rats were treated six times in 4 days with pravastatin or saline and allowed to survive for 6 hours or 5 days (n=10 per time point and group), respectively. Using quantitative receptor autoradiography, ligand binding densities of [(3)H]MK-801, [(3)H]AMPA, and [(3)H]muscimol for labeling of NMDA, AMPA, and GABA(A) receptors were analyzed in sensorimotor cortices Par1 and Par2, the striatum, and the hippocampus. Statin therapy induced complex alterations of ligand binding densities in different brain regions. Labeling of NMDA receptors was significantly increased in Par2, both after 6 hours and 5 days, respectively. Within the striatum, AMPA as well as GABA(A) receptor binding values were significantly increased on day 5. Furthermore, a marked and significant increase of [(3)H]muscimol ligand binding to GABA(A) receptors throughout all hippocampal subfields was seen after 6 hours. This complexity could easily be unraveled when focusing on the balance between excitatory glutamate and inhibitory GABA(A) receptors, in which case only the increase of hippocampal [(3)H]muscimol ligand binding 6 hours after the first application of pravastatin was accompanied by a net shift towards inhibition. Consequently, our data suggest an additional regulatory pathway induced by statins, namely modification of the abundance of excitatory and inhibitory neurotransmitter receptors.
Collapse
Affiliation(s)
- Harald D Müller
- Department of Neuropathology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany.
| | | | | | | |
Collapse
|
21
|
Galectin-3 mediates post-ischemic tissue remodeling. Brain Res 2009; 1288:116-24. [DOI: 10.1016/j.brainres.2009.06.073] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/19/2009] [Accepted: 06/23/2009] [Indexed: 01/28/2023]
|
22
|
Beck H, Plate KH. Angiogenesis after cerebral ischemia. Acta Neuropathol 2009; 117:481-96. [PMID: 19142647 DOI: 10.1007/s00401-009-0483-6] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 01/19/2023]
Abstract
Though the vascular system of the adult brain is extremely stable under normal baseline conditions, endothelial cells start to proliferate in response to brain ischemia. The induction of angiogenesis, primarily in the ischemic boundary zone, enhances oxygen and nutrient supply to the affected tissue. Additionally, the generation of new blood vessels facilitates highly coupled neurorestorative processes including neurogenesis and synaptogenesis which in turn lead to improved functional recovery. To take advantage of angiogenesis as a therapeutic concept for stroke treatment, the knowledge of the precise molecular mechanisms is mandatory. Especially, since a couple of growth factors involved in post-ischemic angiogenesis may have detrimental adverse effects in the brain by increasing vascular permeability. This article summarizes the knowledge of molecular mechanisms of angiogenesis following cerebral ischemia. Finally, experimental pharmacological and cellular approaches to stimulate and enhance post-ischemic angiogenesis are discussed.
Collapse
Affiliation(s)
- Heike Beck
- Institute of Cardiovascular Physiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Marchioninistr. 27, 81377, Munich, Germany.
| | | |
Collapse
|
23
|
Statins: mechanisms of neuroprotection. Prog Neurobiol 2009; 88:64-75. [PMID: 19428962 DOI: 10.1016/j.pneurobio.2009.02.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 01/09/2009] [Accepted: 02/10/2009] [Indexed: 12/17/2022]
Abstract
Clinical trials report that the class of drugs known as statins may be neuroprotective in Alzheimer's and Parkinson's disease, and further trials are currently underway to test whether these drugs are also beneficial in multiple sclerosis and acute stroke treatment. Since statins are well tolerated and have relatively few side effects, they may be considered as viable drugs to ameliorate neurodegenerative diseases. However, the mechanism of their neuroprotective effects is only partly understood. In this article, we review the current data on the neuroprotective effects of statins and their underlying mechanisms. In the first section, we detail the mechanisms by which statins affect cellular signalling. The primary action of statins is to inhibit cellular cholesterol synthesis. However, the cholesterol synthesis pathway also has several by-products, the non-sterol isoprenoids that are also important in cellular functioning. Furthermore, reduced cholesterol levels may deplete the cholesterol-rich membrane domains known as lipid rafts, which in turn could affect cellular signalling. In the second section, we summarize how the effects on signalling translate into general neuroprotective effects through peripheral systems. Statins improve blood-flow, reduce coagulation, modulate the immune system and reduce oxidative damage. The final section deals with the effects of statins on the central nervous system, particularly during Alzheimer's and Parkinson's disease, stroke and multiple sclerosis.
Collapse
|
24
|
Use of a clinical MRI scanner for preclinical research on rats. Radiol Phys Technol 2009; 2:13-21. [DOI: 10.1007/s12194-008-0038-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 08/22/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
|
25
|
The development of stroke therapeutics: promising mechanisms and translational challenges. Neuropharmacology 2008; 56:329-41. [PMID: 19007799 DOI: 10.1016/j.neuropharm.2008.10.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/29/2008] [Accepted: 10/06/2008] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is the second most common cause of death worldwide and a major cause of disability. Intravenous thrombolysis with rt-PA remains the only available acute therapy in patients who present within 3h of stroke onset other than the recently approved mechanical MERCI device, substantiating the high unmet need in available stroke therapeutics. The development of successful therapeutic strategies remains challenging, as evidenced by the continued failures of new therapies in clinical trials. However, significant lessons have been learned and this knowledge is currently being incorporated into improved pre-clinical and clinical design. Furthermore, advancements in imaging technologies and continued progress in understanding biological pathways have established a prolonged presence of salvageable penumbral brain tissue and have begun to elucidate the natural repair response initiated by ischemic insult. We review important past and current approaches to drug development with an emphasis on implementing principles of translational research to achieve a rigorous conversion of knowledge from bench to bedside. We highlight current strategies to protect and repair brain tissue with the promise to provide longer therapeutic windows, preservation of multiple tissue compartments and improved clinical success.
Collapse
|