1
|
Flam E, Haas JT, Staels B. Liver metabolism in human MASLD: A review of recent advancements using human tissue metabolomics. Atherosclerosis 2025; 400:119054. [PMID: 39586140 DOI: 10.1016/j.atherosclerosis.2024.119054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Global incidence of Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is on the rise while treatments remain elusive. MASLD is a disease of dysregulated systemic and hepatic metabolism. Current understanding of disease pathophysiology as it relates to metabolome changes largely comes from studies on animal models and human plasma. However, human tissue data are crucial for transitioning from mechanisms to clinical therapies. The close relationship between MASLD and comorbidities like obesity, type 2 diabetes and dyslipidemia make it difficult to determine the contribution from liver disease itself. Here, we review recent metabolomics studies in liver tissue from human MASLD patients, which have predominately focused on lipid metabolism, but also include bile acid, tricarboxylic acid (TCA) cycle, and branched chain amino acid (BCAA) metabolism. Several clinical trials are underway to target various of these lipid-related pathways in MASLD. Although only the β-selective thyroid hormone receptor agonist resmetirom has so far been approved for use, many metabolism-targeting pharmaceuticals show promising results for halting disease progression, if not promoting outright reversal. Ultimately, the scarcity of human tissue data and the variability of confounding factors, like obesity, within and between cohorts are impediments to the pathophysiological understanding required for efficient development of metabolic treatments.
Collapse
Affiliation(s)
- Emily Flam
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Joel T Haas
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
2
|
Maliha A, Tahsin M, Fabia TZ, Rahman SM, Rahman MM. Pro-resolving metabolites: Future of the fish oil supplements. J Funct Foods 2024; 121:106439. [DOI: 10.1016/j.jff.2024.106439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
3
|
Kumakura H, Funada R, Matsuo Y, Iwasaki T, Nakashima K, Tsuboi E, Ichikawa S. Eicosapentaenoic Acid Level Predicts Long-Term Survival and Cardiovascular or Limb Event in Peripheral Arterial Disease. Ann Vasc Dis 2024; 17:135-141. [PMID: 38919321 PMCID: PMC11196169 DOI: 10.3400/avd.oa.23-00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/08/2024] [Indexed: 06/27/2024] Open
Abstract
Objectives: We examined the relationship between plasma eicosapentaenoic acid (EPA) level and long-term all-cause death (ACD) and cardiovascular or limb events in patients with peripheral arterial disease (PAD). Method: We performed a prospective cohort study on 637 PAD patients. The endpoints were ACD, major adverse cardiovascular events (MACEs), and lower extremity arterial events (LEAEs). Results: The incidences of ACD, MACEs, and LEAEs had correlation with EPA levels (p <0.05). Plasma EPA level had significant positive correlations with high-density lipoprotein cholesterol, triglyceride, and estimated glomerular filtration rate (eGFR), and negative correlation with C-reactive protein (CRP). In Cox stepwise multivariate analysis, lower EPA (hazard ratio [HR]: 0.996, 95% confidence interval [CI]: 0.993-1.000, p = 0.034), ankle brachial pressure index (ABI), body mass index, serum albumin, eGFR, age, CRP, D-dimer, critical limb ischemia, diabetes, cerebrovascular disease (CVD), and statin were related to ACD (p <0.05); lower EPA (HR: 0.997, 95% CI: 0.994-1.000, p = 0.038), ABI, serum albumin, eGFR, age, diabetes, coronary heart disease, CVD, and statin were related to MACEs (p <0.05); and lower EPA (HR: 0.988, 95% CI: 0.982-0.993, p <0.001), ABI, and low-density lipoprotein cholesterol were related to LEAEs (p <0.05). Conclusions: Low plasma EPA level was a significant risk factor for ACD, MACEs, and LEAEs in patients with PAD.
Collapse
Affiliation(s)
- Hisao Kumakura
- Department of Cardiovascular Medicine, Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Shibukawa, Gunma, Japan
| | - Ryuichi Funada
- Department of Cardiovascular Medicine, Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Shibukawa, Gunma, Japan
| | - Yae Matsuo
- Department of Cardiovascular Medicine, Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Shibukawa, Gunma, Japan
| | - Toshiya Iwasaki
- Department of Cardiovascular Medicine, Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Shibukawa, Gunma, Japan
| | - Kuniki Nakashima
- Department of Cardiovascular Surgery, Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Shibukawa, Gunma, Japan
| | - Eitoshi Tsuboi
- Department of Cardiovascular Surgery, Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Shibukawa, Gunma, Japan
| | - Shuichi Ichikawa
- Department of Cardiovascular Medicine, Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Shibukawa, Gunma, Japan
| |
Collapse
|
4
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|
5
|
Tutor A, O'Keefe EL, Lavie CJ, Elagizi A, Milani R, O'Keefe J. Omega-3 fatty acids in primary and secondary prevention of cardiovascular diseases. Prog Cardiovasc Dis 2024; 84:19-26. [PMID: 38547956 PMCID: PMC11423875 DOI: 10.1016/j.pcad.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Even with substantial progress in primary and secondary prevention, cardiovascular disease (CVD) persists as a major cause of mortality and morbidity globally. Omega-3 polyunsaturated fatty acids (Ω-3 PUFAs) have gained considerable attention for their ability to improve CV health and prognosis. Metanalyses of randomized controlled trials have demonstrated Ω-3 PUFAs' positive impact on CVD outcomes for both primary and secondary prevention endpoints. Marine Ω-3 PUFAs also improve CVD risk factors including blood pressure, lipids, and inflammation; however, many physicians do not recommend Ω-3 PUFAs, largely due to inconsistent results in randomized trials. In this comprehensive review article, we evaluate both historic and current data concerning primary and secondary prevention of CVD with use of Ω-3 PUFAs, delve into the potential causes for the varied results, and examine the most current recommendations on the usage of Ω-3 PUFAs.
Collapse
Affiliation(s)
- Austin Tutor
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, USA
| | - Evan L O'Keefe
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, USA; University of Missouri-Kansas City, Kansas City, MO, USA
| | - Carl J Lavie
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, USA.
| | - Andrew Elagizi
- Department of Cardiovascular Diseases, Southlake Regional Health Centre, 596 Davis Drive, Newmarket, ON L3Y 2P9, Canada
| | - Richard Milani
- Center for Clinical Innovation, Sutter Health, Pier One, Bay 1A, San Francisco, CA 94111, USA
| | - James O'Keefe
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, USA; University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
6
|
Wen J, Satyanarayanan SK, Li A, Yan L, Zhao Z, Yuan Q, Su KP, Su H. Unraveling the impact of Omega-3 polyunsaturated fatty acids on blood-brain barrier (BBB) integrity and glymphatic function. Brain Behav Immun 2024; 115:335-355. [PMID: 37914102 DOI: 10.1016/j.bbi.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023] Open
Abstract
Alzheimer's disease (AD) and other forms of dementia represent major public health challenges but effective therapeutic options are limited. Pathological brain aging is associated with microvascular changes and impaired clearance systems. The application of omega-3 polyunsaturated fatty acids (n-3 or omega-3 PUFAs) is one of the most promising nutritional interventions in neurodegenerative disorders from epidemiological data, clinical and pre-clinical studies. As essential components of neuronal membranes, n-3 PUFAs have shown neuroprotection and anti-inflammatory effects, as well as modulatory effects through microvascular pathophysiology, amyloid-beta (Aβ) clearance and glymphatic pathways. This review meticulously explores these underlying mechanisms that contribute to the beneficial effects of n-3 PUFAs against AD and dementia, synthesizing evidence from both animal and interventional studies.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Ziai Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong
| | - Kuan-Pin Su
- An-Nan Hospital, China Medical University, Tainan, Taiwan; Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan; Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
7
|
Ishikawa T, Yamaguchi K, Funatsu T, Okada Y, Kawamata T. Association and Implications of Blood and Plaque n-3 Polyunsaturated Fatty Acid Composition in Patients Treated with Oral Eicosapentaenoic Acid before Carotid Endarterectomy. Int J Angiol 2023; 32:238-242. [PMID: 37927834 PMCID: PMC10624539 DOI: 10.1055/s-0041-1731088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Long-chain n-3 polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA), have been shown to prevent atherosclerosis-related cardiovascular disease, including stroke. Recently, the ratio of serum EPA to arachidonic acid (AA; EPA/AA ratio) has been reported to be a biomarker to prevent cardiovascular disease. In this study, we evaluate whether the serum EPA/AA ratio would be a useful biomarker for determining the efficacy of orally administered EPA in preventing stroke by investigating tissue and serum EPA/AA ratios, serum inflammatory markers, and carotid artery intimamedia thickness (IMT). Patients with dyslipidemia, as the primary illness scheduled for carotid endarterectomy (CEA), were included and randomly assigned to the EPA group (EPA: 1,800 mg/day plus statin; 10 patients) or non-EPA group (statin only; 15 patients). PUFA fraction was evaluated in the tissue (post-CEA) and serum (pre-CEA and 6 months thereafter). As for the tissue PUFA fraction in the plaque, the EPA group had a significantly higher EPA/AA ratio (EPA group, 0.46; non-EPA group, 0.28; p = 0.01). At 6 months postoperatively, the EPA group had a significantly higher serum EPA/AA ratio (baseline, 0.83; follow-up, 1.60; p = 0.05). No significant differences were found for inflammatory markers and IMT. Both serum and tissue EPA/AA ratios were higher in patients treated with oral EPA. Serum EPA/AA ratio might be a useful biomarker for the efficacy of orally administered EPA.
Collapse
Affiliation(s)
- Tatsuya Ishikawa
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Koji Yamaguchi
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Takayuki Funatsu
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yoshikazu Okada
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
8
|
Serum Fatty Acids Are Associated with a Higher Risk of Ischemic Stroke. Nutrients 2023; 15:nu15030585. [PMID: 36771293 PMCID: PMC9921638 DOI: 10.3390/nu15030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Stroke prevention, a significant public-health concern, begins with recognizing and addressing risk factors. Interventions targeted at modifiable risk factors can effectively prevent ischemic stroke, while Omega-3 fatty acids have been shown to improve stroke outcomes. Our study aimed to investigate the relationship between ischemic-stroke risk factors and fatty acids using a prospective observational study with 274 patients. We collected clinical data on risk factors and measured fatty-acid levels using high-performance liquid chromatography coupled with mass spectrometry. We found that several risk factors, including age, sex, smoking, atrial fibrillation, dyslipidemia, and previous stroke history, had a direct relationship with fatty acids. Of these, smoking had the most significant impact, negatively impacting levels of docosahexaenoic and eicosapentaenoic acid. Conversely, dyslipidemia and atrial fibrillation positively correlated with fatty acids, particularly in female patients and those with recurrent strokes. Age was found to directly correlate with other risk factors and variations in fatty-acid ratios. The stroke rate was higher in males than females before the age of 70, but this trend reversed. Our findings suggest that better management of risk factors, particularly modifiable lifestyle factors, could improve fatty-acid profiles and the balance of Omega-3 and Omega-6 in patients with ischemic stroke.
Collapse
|
9
|
Alvarez Campano CG, Macleod MJ, Aucott L, Thies F. Marine-derived n-3 fatty acids therapy for stroke. Cochrane Database Syst Rev 2022; 6:CD012815. [PMID: 35766825 PMCID: PMC9241930 DOI: 10.1002/14651858.cd012815.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Currently, with stroke burden increasing, there is a need to explore therapeutic options that ameliorate the acute insult. There is substantial evidence of a neuroprotective effect of marine-derived n-3 polyunsaturated fatty acids (PUFAs) in animal models of stroke, leading to a better functional outcome. OBJECTIVES To assess the effects of administration of marine-derived n-3 PUFAs on functional outcomes and dependence in people with stroke. SEARCH METHODS We searched the Cochrane Stroke Trials Register (last searched 31 May 2021), the Cochrane Central Register of Controlled Trials (CENTRAL; 2021, Issue 5), MEDLINE Ovid (from 1948 to 31 May 2021), Embase Ovid (from 1980 to 31 May 2021), CINAHL EBSCO (Cumulative Index to Nursing and Allied Health Literature; from 1982 to 31 May 2021), Science Citation Index Expanded ‒ Web of Science (SCI-EXPANDED), Conference Proceedings Citation Index-Science - Web of Science (CPCI-S), and BIOSIS Citation Index. We also searched ongoing trial registers, reference lists, relevant systematic reviews, and used the Science Citation Index Reference Search. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing marine-derived n-3 PUFAs to placebo or open control (no placebo) in people with a history of stroke or transient ischaemic attack (TIA), or both. DATA COLLECTION AND ANALYSIS At least two review authors independently selected trials for inclusion, extracted data, assessed risk of bias, and used the GRADE approach to assess the certainty of the body of evidence. We contacted study authors for clarification and additional information on stroke/TIA participants. We conducted random-effects meta-analysis or narrative synthesis, as appropriate. The primary outcome was efficacy (functional outcome) assessed using a validated scale, for example, the Glasgow Outcome Scale Extended (GOSE) dichotomised into poor or good clinical outcome, the Barthel Index (higher score is better; scale from 0 to 100), or the Rivermead Mobility Index (higher score is better; scale from 0 to 15). Our secondary outcomes were vascular-related death, recurrent events, incidence of other type of stroke, adverse events, quality of life, and mood. MAIN RESULTS We included 30 RCTs; nine of them provided outcome data (3339 participants). Only one study included participants in the acute phase of stroke (haemorrhagic). Doses of marine-derived n-3 PUFAs ranged from 400 mg/day to 3300 mg/day. Risk of bias was generally low or unclear in most trials, with a higher risk of bias in smaller studies. We assessed results separately for short (up to three months) and longer (more than three months) follow-up studies. Short follow-up (up to three months) Functional outcome was reported in only one pilot study as poor clinical outcome assessed with the GOSE (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.36 to 1.68, P = 0.52; 40 participants; very low-certainty evidence). Mood (assessed with the GHQ-30, lower score better) was reported by only one study and favoured control (mean difference (MD) 1.41, 95% CI 0.07 to 2.75, P = 0.04; 102 participants; low-certainty evidence). We found no evidence of an effect of the intervention for the remainder of the secondary outcomes: vascular-related death (two studies, not pooled due to differences in population, RR 0.33, 95% CI 0.01 to 8.00, P = 0.50, and RR 0.33, 95% CI 0.01 to 7.72, P = 0.49; 142 participants; low-certainty evidence); recurrent events (RR 0.41, 95% CI 0.02 to 8.84, P = 0.57; 18 participants; very low-certainty evidence); incidence of other type of stroke (two studies, not pooled due to different type of index stroke, RR 6.11, 95% CI 0.33 to 111.71, P = 0.22, and RR 0.63, 95% CI 0.25 to 1.58, P = 0.32; 58 participants; very low-certainty evidence); and quality of life (physical component, MD -2.31, 95% CI -4.81 to 0.19, P = 0.07, and mental component, MD -2.16, 95% CI -5.91 to 1.59, P = 0.26; 1 study; 102 participants; low-certainty evidence). Adverse events were reported by two studies (57 participants; very low-certainty evidence), one trial reporting extracranial haemorrhage (RR 0.25, 95% CI 0.04 to 1.73, P = 0.16) and the other one reporting bleeding complications (RR 0.32, 95% CI 0.01 to 7.35, P = 0.47). Longer follow-up (more than three months) One small trial assessed functional outcome with both the Barthel Index for activities of daily living (MD 7.09, 95% CI -5.16 to 19.34, P = 0.26), and the Rivermead Mobility Index for mobility (MD 1.30, 95% CI -1.31 to 3.91, P = 0.33) (52 participants; very low-certainty evidence). We carried out meta-analysis for vascular-related death (RR 1.02, 95% CI 0.78 to 1.35, P = 0.86; 5 studies; 2237 participants; low-certainty evidence) and fatal recurrent events (RR 0.69, 95% CI 0.31 to 1.55, P = 0.37; 3 studies; 1819 participants; low-certainty evidence). We found no evidence of an effect of the intervention for mood (MD 1.00, 95% CI -2.07 to 4.07, P = 0.61; 1 study; 14 participants; low-certainty evidence). Incidence of other type of stroke and quality of life were not reported. Adverse events (all combined) were reported by only one study (RR 0.94, 95% CI 0.56 to 1.58, P = 0.82; 1455 participants; low-certainty evidence). AUTHORS' CONCLUSIONS We are very uncertain of the effect of marine-derived n-3 PUFAs therapy on functional outcomes and dependence after stroke as there is insufficient high-certainty evidence. More well-designed RCTs are needed, specifically in acute stroke, to determine the efficacy and safety of the intervention. Studies assessing functional outcome might consider starting the intervention as early as possible after the event, as well as using standardised, clinically relevant measures for functional outcomes, such as the modified Rankin Scale. Optimal doses remain to be determined; delivery forms (type of lipid carriers) and mode of administration (ingestion or injection) also need further consideration.
Collapse
Affiliation(s)
| | | | - Lorna Aucott
- Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | - Frank Thies
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
10
|
Khalid W, Gill P, Arshad MS, Ali A, Ranjha MMAN, Mukhtar S, Afzal F, Maqbool Z. Functional behavior of DHA and EPA in the formation of babies brain at different stages of age, and protect from different brain-related diseases. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2070642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Poonam Gill
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, China
| | | | - Shanza Mukhtar
- Department of Nutrition and Dietetics, The University of Faisalabad, Pakistan
| | - Fareed Afzal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
11
|
Sato T, Sakai K, Okumura M, Kitagawa T, Takatsu H, Tanabe M, Komatsu T, Sakuta K, Umehara T, Murakami H, Mitsumura H, Matsushima M, Iguchi Y. Low dihomo-γ-linolenic acid is associated with susceptibility vessel sign in cardioembolism. Thromb Res 2022; 213:84-90. [DOI: 10.1016/j.thromres.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
|
12
|
Mori T, Yoshioka K, Tanno Y, Kasakura S. Independent factors affecting hemorrhagic and ischemic stroke in patients aged 40-69 years: a cross-sectional study. BMC Cardiovasc Disord 2022; 22:189. [PMID: 35448966 PMCID: PMC9027078 DOI: 10.1186/s12872-022-02625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) and acute ischemic stroke (AIS) have common vascular risk factors; however, ICH often occurs in adults aged < 70 years. Intracerebral hemorrhage and AIS in adults aged < 70 years should be preventable; however, it is unclear why different subtypes of ICH or AIS occur among adults aged < 70 years with vascular risk factors. This study aimed to identify independent variables for ICH or AIS onset in patients aged < 70 years. Methods We included patients aged 40–69 years who experienced ICH or AIS between August 2016 and July 2019. Patients aged < 40 years were excluded because other diseases, rather than vascular risk factors, are often associated with stroke etiology in this age group. Data on age, systolic blood pressure (SBP), serum lipids, and serum fatty acid levels were compared between patients with ICH and those with AIS. In addition, we conducted multivariable logistic regression analyses to identify independent factors among the variables, such as blood pressure or biomarkers, with significant differences between the two groups. Results Of the 1252 acute stroke patients screened, 74 patients with ICH and 149 patients with AIS met the inclusion criteria. After excluding variables with multicollinearity, SBP, glycated hemoglobin (HbA1c), and eicosapentaenoic acid (EPA) proportion (%) of total fatty acids were identified as independent factors affecting ICH and AIS. The SBP and EPA% threshold values for ICH compared to AIS were ≥ 158 mmHg and ≤ 2.3%, respectively. The HbA1c threshold value for AIS compared to ICH was ≥ 6.1%. Conclusions Systolic blood pressure, HbA1c, and EPA%, were independent factors between ICH and AIS. Patients aged 40–69 years with high SBP and low EPA% were at a higher risk of ICH than AIS, and those with a high HbA1c were at a higher risk of AIS than ICH. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02625-6.
Collapse
Affiliation(s)
- Takahisa Mori
- Department of Stroke Treatment, Shonan Kamakura General Hospital, Okamoto 1370-1, Kamakura City, Kanagawa, 247-8533, Japan.
| | - Kazuhiro Yoshioka
- Department of Stroke Treatment, Shonan Kamakura General Hospital, Okamoto 1370-1, Kamakura City, Kanagawa, 247-8533, Japan
| | - Yuhei Tanno
- Department of Stroke Treatment, Shonan Kamakura General Hospital, Okamoto 1370-1, Kamakura City, Kanagawa, 247-8533, Japan
| | - Shigen Kasakura
- Department of Stroke Treatment, Shonan Kamakura General Hospital, Okamoto 1370-1, Kamakura City, Kanagawa, 247-8533, Japan
| |
Collapse
|
13
|
Hira K, Ueno Y, Miyamoto N, Nakajima S, Kijima C, Hattori N. Association of blood eicosapentaenoic acid levels with intracerebral hemorrhage during the COVID-19 pandemic: preliminary experience from a single-center in Japan. BMC Neurol 2022; 22:128. [PMID: 35382754 PMCID: PMC8980204 DOI: 10.1186/s12883-022-02657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
Background The COVID-19 pandemic has forced lockdowns and declarations of states of emergency, resulting in marked changes to daily life such as dietary habits in many countries. Though serum omega-3 polyunsaturated fatty acids levels have been shown to be useful markers for recurrent vascular events or worse prognosis in cardiovascular diseases and ischemic stroke, the relationship between serum omega-3 PUFA levels and the occurrence of intracerebral hemorrhage has essentially been unknown. We explored the association of serum omega-3 polyunsaturated fatty acids with intracerebral hemorrhage during the COVID-19 pandemic. Methods Participants comprised patients admitted to Juntendo University Hospital (Tokyo, Japan) with intracerebral hemorrhage between January 1, 2016 and April 30, 2020. Clinical characteristics including serum omega-3 polyunsaturated fatty acid levels were compared between patients developing intracerebral hemorrhage during the period from January 1, 2016 to February 29, 2020, and the subsequent COVID-19 pandemic period (March 1 to April 30, 2020). Clinical characteristics independently related to intracerebral hemorrhage during the COVID-19 pandemic were analyzed by comparing these two cohorts of intracerebral hemorrhage patients in different periods. Results A total of 103 patients (age, 67.0 ± 13.9 years; 67 males) with intracerebral hemorrhage were enrolled. Intracerebral hemorrhage developed in 91 patients before and 12 patients during the COVID-19 pandemic. Monthly averages of intracerebral hemorrhage patients admitted to our hospital during and before the COVID-19 pandemic were 6 and 1.82, respectively. Serum eicosapentaenoic acid levels were significantly lower in intracerebral hemorrhage patients during the COVID-19 pandemic than before (31.87 ± 12.93 μg/ml vs. 63.74 ± 43.29 μg/ml, p = 0.007). Multiple logistic regression analysis showed that, compared to before the COVID-19 pandemic, dyslipidemia (odds ratio 0.163, 95% confidence interval 0.031–0.852; p = 0.032) and eicosapentaenoic acid levels (odds ratio 0.947, 95% confidence interval 0.901–0.994; p = 0.029) were associated with intracerebral hemorrhage during the COVID-19 pandemic. Conclusions From our preliminary results, low eicosapentaenoic acid levels were linked with intracerebral hemorrhage during the COVID-19 pandemic. Low levels of eicosapentaenoic acid might be an endogenous surrogate marker for intracerebral hemorrhage during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Kenichiro Hira
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuji Ueno
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Nobukazu Miyamoto
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Sho Nakajima
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Chikage Kijima
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
14
|
Hu SH, He XD, Nie J, Hou JL, Wu J, Liu XY, Wei Y, Tang HR, Sun WX, Zhou SX, Yuan YY, An YP, Yan GQ, Lin Y, Lin PC, Zhao JJ, Ye ML, Zhao JY, Xu W, Zhao SM. Methylene-bridge tryptophan fatty acylation regulates PI3K-AKT signaling and glucose uptake. Cell Rep 2022; 38:110509. [PMID: 35294873 DOI: 10.1016/j.celrep.2022.110509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/15/2021] [Accepted: 02/16/2022] [Indexed: 12/01/2022] Open
Abstract
Protein fatty acylation regulates numerous cell signaling pathways. Polyunsaturated fatty acids (PUFAs) exert a plethora of physiological effects, including cell signaling regulation, with underlying mechanisms to be fully understood. Herein, we report that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) regulate PI3K-AKT signaling by modifying PDK1 and AKT2. DHA-administered mice exhibit altered phosphorylation of proteins in signaling pathways. Methylene bridge-containing DHA/EPA acylate δ1 carbon of tryptophan 448/543 in PDK1 and tryptophan 414 in AKT2 via free radical pathway, recruit both the proteins to the cytoplasmic membrane, and activate PI3K signaling and glucose uptake in a tryptophan acylation-dependent but insulin-independent manner in cultured cells and in mice. DHA/EPA deplete cytosolic PDK1 and AKT2 and induce insulin resistance. Akt2 knockout in mice abrogates DHA/EPA-induced PI3K-AKT signaling. Our results identify PUFA's methylene bridge tryptophan acylation, a protein fatty acylation that regulates cell signaling and may underlie multifaceted effects of methylene-bridge-containing PUFAs.
Collapse
Affiliation(s)
- Song-Hua Hu
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Xia-Di He
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Ji Nie
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai 200438, P.R. China
| | - Jiang Wu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Xiao-Yan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Yun Wei
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Hui-Ru Tang
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China
| | - Wen-Xing Sun
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Shu-Xian Zhou
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Yi-Yuan Yuan
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Yan-Peng An
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China
| | - Guo-Quan Yan
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Peng-Cheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining 810007, P. R. China
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ming-Liang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.
| | - Jian-Yuan Zhao
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China.
| | - Wei Xu
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China.
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China; Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining 810007, P. R. China.
| |
Collapse
|
15
|
Siroma TK, Machate DJ, Zorgetto-Pinheiro VA, Figueiredo PS, Marcelino G, Hiane PA, Bogo D, Pott A, Cury ERJ, Guimarães RDCA, Vilela MLB, Ferreira RDS, do Nascimento VA. Polyphenols and ω-3 PUFAs: Beneficial Outcomes to Obesity and Its Related Metabolic Diseases. Front Nutr 2022; 8:781622. [PMID: 35111795 PMCID: PMC8802753 DOI: 10.3389/fnut.2021.781622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
Obesity is associated with the leading causes of death in the worldwide. On the other hand, the intake of vegetables, fruits and fish is related to the reduction of obesity and other metabolic syndromes. This review aims to highlight the role of ingestion of polyphenols and omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in reducing obesity and related metabolic diseases (RMDs). The consumption of vegetables, fish and by-products rich in polyphenols and α-linolenic acid (ALA), as well as oils rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with a decrease in obesity and its RMDs in consumers. Furthermore, we discussed the adequate amount of extracts, powder, polyphenols, ω-3 PUFAs administrated in animal models and human subjects, and the relevant outcomes obtained. Thus, we appeal to the research institutions and departments of the Ministries of Health in each country to develop a food education joint project to help schools, businesses and families with the aim of reducing obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Thais Keiko Siroma
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - David Johane Machate
- Spectroscopy and Bioinformatics Applied Biodiversity and Health - GEBABS, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
- Graduate Program in Materials Science, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | - Priscila Silva Figueiredo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Arnildo Pott
- Graduate Program in Biotechnology and Biodiversity in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Elenir Rose Jardim Cury
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | | | | | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
- Spectroscopy and Bioinformatics Applied Biodiversity and Health - GEBABS, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| |
Collapse
|
16
|
The effect of omega-3 polyunsaturated fatty acids on stroke treatment and prevention: a systematic review and meta-analysis. NUTR HOSP 2022; 39:924-935. [DOI: 10.20960/nh.04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Tsankof A, Tziomalos K. The Role of Lipid-Lowering Treatment in the Secondary Prevention of Ischemic Stroke. Diseases 2021; 10:3. [PMID: 35076490 PMCID: PMC8788422 DOI: 10.3390/diseases10010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 01/03/2023] Open
Abstract
Dyslipidemia is a major modifiable risk factor for ischemic stroke. Treatment with statins reduces the incidence of recurrent ischemic stroke and also reduces coronary events in patients with a history of ischemic stroke. Therefore, statins represent an important component of secondary prevention of ischemic stroke. In patients who do not achieve low-density lipoprotein cholesterol (LDL-C) targets despite treatment with the maximal tolerated dose of a potent statin, ezetimibe should be added to their lipid-lowering treatment and also appears to reduce the risk of cardiovascular events. Selected patients who do not achieve LDL-C targets despite statin/ezetimibe combination are candidates for receiving proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Finally, it appears that adding icosapent ethyl might also reduce cardiovascular morbidity in patients who have achieved LDL-C targets but have persistently elevated triglyceride levels.
Collapse
Affiliation(s)
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
| |
Collapse
|
18
|
Lee M, Ovbiagele B, Saver JL. Intensive Medical Management to Prevent Large and Small Artery Atherothrombotic Stroke: Time to Expand the Horizon. JAMA 2021; 326:217-218. [PMID: 34196657 DOI: 10.1001/jama.2021.9917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Meng Lee
- Department of Neurology, Chang Gung University College of Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Puzi, Taiwan
| | - Bruce Ovbiagele
- Department of Neurology, University of California, San Francisco, San Francisco
| | - Jeffrey L Saver
- Department of Neurology and Stroke Center, University of California, Los Angeles, Los Angeles
- Associate Editor, JAMA
| |
Collapse
|
19
|
Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, Kamel H, Kernan WN, Kittner SJ, Leira EC, Lennon O, Meschia JF, Nguyen TN, Pollak PM, Santangeli P, Sharrief AZ, Smith SC, Turan TN, Williams LS. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Stroke 2021; 52:e364-e467. [PMID: 34024117 DOI: 10.1161/str.0000000000000375] [Citation(s) in RCA: 1476] [Impact Index Per Article: 369.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Nelson JR, Budoff MJ, Wani OR, Le V, Patel DK, Nelson A, Nemiroff RL. EPA's pleiotropic mechanisms of action: a narrative review. Postgrad Med 2021; 133:651-664. [PMID: 33900135 DOI: 10.1080/00325481.2021.1921491] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Treatment with icosapent ethyl 4 g/day, a highly purified and stable ethyl ester of eicosapentaenoic acid (EPA), demonstrated a significant reduction in atherosclerotic cardiovascular disease (ASCVD) events and death in REDUCE-IT. However, analyses of REDUCE-IT and meta-analyses have suggested that this clinical benefit is greater than can be achieved by triglyceride reduction alone. EPA therefore may have additional pleiotropic effects, including anti-inflammatory and anti-aggregatory mechanisms. EPA competes with arachidonic acid for cyclooxygenase and lipoxygenase, producing anti-inflammatory and anti-aggregatory metabolites rather than the more deleterious metabolites associated with arachidonic acid. Changing the EPA:arachidonic acid ratio may shift metabolic status from pro-inflammatory/pro-aggregatory to anti-inflammatory/anti-aggregatory. EPA also has antioxidant effects and increases synthesis of nitric oxide. Incorporation of EPA into phospholipid bilayers influences membrane structure and may help to prevent cardiac arrhythmias. Clinically, this may translate into improved vascular health, including regression of atherosclerotic plaque. Overall, EPA has a range of pleiotropic effects that contribute to a reduction in ASCVD.
Collapse
Affiliation(s)
- John R Nelson
- California Cardiovascular Institute, Fresno, California, USA
| | - Matthew J Budoff
- Department of Medicine, Lundquist Institute, Torrance, California, USA
| | - Omar R Wani
- Northern Arizona Healthcare Medical Group - Flagstaff, Flagstaff, AZ, USA
| | - Viet Le
- Cardiovascular Research, Intermountain Heart Institute/CV Research, Intermountain Healthcare, Murray, Utah, and Rocky Mountain University of Health Professions, Provo, USA
| | - Dhiren K Patel
- Department of Pharmacy Practice, MCPHS University, Boston, MA, USA
| | - Ashley Nelson
- Department of Internal Medicine, Saint Agnes Medical Center, Fresno, California, USA
| | - Richard L Nemiroff
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
21
|
Ishikawa T, Yamazaki T, Sato M, Kato N, Ishikawa E, Matsumaru Y, Matsumura A. Endovascular Stent Grafting for Recurrent Strokes Due to Fragile Innominate Artery Plaque: A Case Report. NMC Case Rep J 2021; 8:21-25. [PMID: 34012744 PMCID: PMC8116917 DOI: 10.2176/nmccrj.cr.2020-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/13/2020] [Indexed: 11/30/2022] Open
Abstract
Here we describe a case of recurrent ischemic strokes due to fragile innominate artery plaque successfully treated using endovascular stent grafting. An 80-year-old man presented with a history of recurrent strokes that were refractory to medical treatment. Computed tomography and magnetic resonance images of the thorax revealed a gross intramural plaque in the innominate artery. He was successfully treated using endovascular stent grafting. An AFX stent graft device was used to prevent further embolic strokes. The AFX stent graft has a unique endoskeleton design with a thin-walled expanded polytetrafluoroethylene fabric—known as active sealing structure—attached to the implant. Postoperatively, the patient has experienced no recurrent strokes in over 2 years of follow-up. The stent grafting procedure could be an optimal treatment option for treating fragile innominate artery plaques.
Collapse
Affiliation(s)
- Takaaki Ishikawa
- Department of Neurosurgery, National Hospital Organization, Mito Medical Center, Ibaraki, Ibaraki, Japan
| | - Tomosato Yamazaki
- Department of Neurosurgery, National Hospital Organization, Mito Medical Center, Ibaraki, Ibaraki, Japan
| | - Masataka Sato
- Department of Cardiovascular Surgery, National Hospital Organization, Mito Medical Center, Ibaraki, Ibaraki, Japan
| | - Noriyuki Kato
- Department of Neurosurgery, National Hospital Organization, Mito Medical Center, Ibaraki, Ibaraki, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuji Matsumaru
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Mizuma A, Yenari MA. Clinical perspectives on ischemic stroke. Exp Neurol 2021; 338:113599. [PMID: 33440204 PMCID: PMC7904589 DOI: 10.1016/j.expneurol.2021.113599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/13/2020] [Accepted: 01/07/2021] [Indexed: 01/01/2023]
Abstract
Treatments for acute stroke have improved over the past years, but have largely been limited to revascularization strategies. The topic of neuroprotection, or strategies to limit brain tissue damage or even reverse it, has remained elusive. Thus, the clinical mainstays for stroke management have focused on prevention. The lack of clinical translation of neuroprotective therapies which have shown promise in the laboratory may, in part, be due to a historic inattention to comorbidities suffered by a majority of stroke patients. With the advent of more stroke models that include one or more relevant comorbidities, it may be possible to identify effective treatments that may translate into new treatments at the clinical level. In the meantime, we review comorbidities in stroke patients, modification of stroke risk factors and available acute stroke treatments in the clinic.
Collapse
Affiliation(s)
- Atsushi Mizuma
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
23
|
Role of polyunsaturated fatty acids in ischemic stroke - A perspective of specialized pro-resolving mediators. Clin Nutr 2021; 40:2974-2987. [PMID: 33509668 DOI: 10.1016/j.clnu.2020.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have been proposed as beneficial for cardiovascular health. However, results from both epidemiological studies and clinical trials have been inconsistent, whereas most of the animal studies showed promising benefits of PUFAs in the prevention and treatment of ischemic stroke. In recent years, it has become clear that PUFAs are metabolized into various types of bioactive derivatives, including the specialized pro-resolving mediators (SPMs). SPMs exert multiple biofunctions, such as to limit excessive inflammatory responses, regulate lipid metabolism and immune cell functions, decrease production of pro-inflammatory factors, increase anti-inflammatory mediators, as well as to promote tissue repair and homeostasis. Inflammation has been recognised as a key contributor to the pathophysiology of acute ischemic stroke. Owing to their potent pro-resolving actions, SPMs are potential for development of novel anti-stroke therapy. In this review, we will summarize current knowledge of epidemiological studies, basic research and clinical trials concerning PUFAs in stroke prevention and treatment, with special attention to SPMs as the unsung heroes behind PUFAs.
Collapse
|
24
|
Efficacy of Polyunsaturated Fatty Acids (PUFAs) on Impulsive Behaviours and Aggressiveness in Psychiatric Disorders. Int J Mol Sci 2021; 22:ijms22020620. [PMID: 33435512 PMCID: PMC7826871 DOI: 10.3390/ijms22020620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/08/2023] Open
Abstract
It is the focus of increasing interest to investigate the effects of long-chain n-3 and long-chain n-6 polyunsaturated fatty acids (LC n-3 PUFAs; LC n-6 PUFAs) on psychiatric symptoms in a transdiagnostic perspective. There is some evidence that low levels of LC n-3 PUFAs and a higher ratio of LC n-6 to LC n-3 PUFAs in plasma and blood cells are associated with aggressive and impulsive behaviours. Therefore, implementation of LC n-3 PUFAs may produce positive effects on hostility, aggression, and impulsivity in both psychiatric and non-psychiatric samples across different stages of life. A possible mechanism of action of LC n-3 PUFAs in conditions characterized by a high level of impulsivity and aggression is due to the effect of these compounds on the serotonin system and membrane stability. Studies that evaluated the effects of LC n-3 PUFAs on impulsivity and aggressiveness indicated that addition of rather low doses of these agents to antipsychotic treatment might reduce agitation and violent behaviours in psychosis, attention deficit hyperactivity disorder, personality disorders, and impulsive control and conduct disorders. The present review is aimed at examining and discussing available data from recent trials on this topic.
Collapse
|
25
|
Watanabe Y, Tatsuno I. Omega-3 polyunsaturated fatty acids focusing on eicosapentaenoic acid and docosahexaenoic acid in the prevention of cardiovascular diseases: a review of the state-of-the-art. Expert Rev Clin Pharmacol 2020; 14:79-93. [PMID: 33306922 DOI: 10.1080/17512433.2021.1863784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION : An epidemiological study of Greenlandic Inuit suggested the importance of omega-3 polyunsaturated fatty acids (PUFAs) in preventing ischemic heart disease. After this landmark study, large-scale epidemiological studies have examined the benefits of omega-3 PUFAs in the prevention of cardiovascular diseases. AREAS COVERED : This article reviews studies on omega-3 PUFAs, and identifies issues relevant to cardiovascular risk. EXPERT OPINION : Recent studies have focused on the anti-inflammatory effects of omega-3 PUFAs and specialized pro-resolving mediators. High-purity eicosapentaenoic acid (EPA) ethyl ester and EPA/docosahexaenoic acid (DHA) preparations have been developed primarily for the treatment of hypertriglyceridemia. Various trials on the cardiovascular protective effects of omega-3 PUFAs have been reported, but the results have not been consistent. Some issues of the trials have been suggested, such as using low-dose omega-3 PUFAs and not including hypertriglyceridemia in subject selection criteria. REDUCE-IT study that used a high dose of high-purity EPA preparation showed a relative reduction in cardiovascular events, but, the STRENGTH study that used a high dose of EPA/DHA preparation did not support this benefit. This article reviews the roles of omega-3 PUFAs in cardiovascular diseases, including progress in understanding the molecular mechanisms and recent large-scale clinical trials.
Collapse
Affiliation(s)
- Yasuhiro Watanabe
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center , Chiba, Japan
| | - Ichiro Tatsuno
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center , Chiba, Japan
| |
Collapse
|
26
|
Tanideh R, Delavari S, Farshad O, Irajie C, Javad Yavari Barhaghtalab M, Koohpeyma F, Koohi-Hosseinabadi O, Jamshidzadeh A, Tanideh N, Iraji A. Effect of flaxseed oil on biochemical parameters, hormonal indexes and stereological changes in ovariectomized rats. Vet Med Sci 2020; 7:521-533. [PMID: 33103380 PMCID: PMC8025639 DOI: 10.1002/vms3.372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
The ovariectomized rat is a widely used preclinical model for studying postmenopausal and its complications. In this study, the therapeutic effect of flaxseed oil on the ovariectomized adult rats was investigated. Our results showed that biochemical parameters including calcium, oestrogen and progesterone levels increase 8 weeks after ovariectomy in rats. Also, the amount of alkaline phosphatase decreased significantly after 8 weeks compared with the OVX rat. The healing potential of flaxseed oil was proven by successfully recovering the affected tissue and preventing the unpleasant symptoms of ovariectomized rats. The biological effects of flaxseed oil may be due to high amounts of fatty acids, phytoestrogens and an array of antioxidants. The results suggest that flaxseed oil can mimic the action of oestrogen and can be a potential treatment for hormone replacement therapy (HRT).
Collapse
Affiliation(s)
- Romina Tanideh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Delavari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.,Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Casula M, Olmastroni E, Gazzotti M, Galimberti F, Zambon A, Catapano AL. Omega-3 polyunsaturated fatty acids supplementation and cardiovascular outcomes: do formulation, dosage, and baseline cardiovascular risk matter? An updated meta-analysis of randomized controlled trials. Pharmacol Res 2020; 160:105060. [DOI: 10.1016/j.phrs.2020.105060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/25/2022]
|
28
|
Liang WL, Wen Y, Huang F, Hu Q, Li XJ, Zhang WK, Yang X. Chrysanthemum ethanol extract induced loss of Kupffer cells via the mitochondria-dependent apoptotic pathway. Food Funct 2020; 11:8866-8877. [PMID: 32985639 DOI: 10.1039/d0fo00695e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chrysanthemum has been viewed as an important traditional Chinese medicine (TCM) with a long history. Research studies indicated many potential pharmaceutical effects of chrysanthemum extract. However, hardly any investigation has been performed to describe its toxicity. In this study, acute application of chrysanthemum ethanol extract (CEE, 300 mg kg-1) was found to induce apoptosis of hepatic Kupffer cells in vivo. CEE was also observed to induce apoptosis of RAW264.7 cells in a dose- and time-dependent manner. Further analysis using flow cytometry and western blotting revealed that CEE induced apoptosis of RAW264.7 cells via a mitochondria-dependent pathway. After a HPLC combined screening assay, we narrowed down the toxicity caused by the petroleum extract of CEE (CEE-PE, 66 μg mL-1). In vivo effects of CEE-PE were also tested in mice. Additionally, nine potential toxic compounds were isolated and identified from CEE-PE. In all, we found that components with small polarities in CEE could induce apoptosis of Kupffer cells and macrophages via a mitochondrial dependent pathway, which might draw attention to the safety issues of everyday use of chrysanthemum.
Collapse
Affiliation(s)
- Wan-Li Liang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, No. 182, Minyuan Road, Wuhan 430074, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Mori T, Yoshioka K, Tanno Y, Kasakura S. Association of Serum Fatty Acids at Admission with the Age of Onset of Intracerebral Hemorrhage. Nutrients 2020; 12:nu12102903. [PMID: 32977415 PMCID: PMC7598177 DOI: 10.3390/nu12102903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
Dietary triglycerides influence the serum concentrations of fatty acids (FA) and their weight percentages (wt%), which might be associated with the age of onset of intracerebral hemorrhage (ICH). We investigated the correlation between serum FA levels and proportions at admission, and the age at onset of ICH. We included patients admitted between 2016 and 2019 within 24 h of the onset of ICH, and calculated the correlation coefficients between their age, serum FA concentration, and FA wt%. We performed multiple linear regression analysis to identify individual FAs related to the age at onset of ICH. Furthermore, we estimated the threshold values of FAs that were independently associated with the age at onset of ICH <65 years, using receiver operating characteristic curves by logistic regression. Our inclusion criteria were met by 141 patients (mean age, 67 years). The concentration of dihomo-gamma-linolenic acid (DGLA) and the wt% of eicosapentaenoic acid (EPA) were significant independent variables for the age at onset of ICH. The ROC curves for the age of onset <65 years were ≥108.6 µmol/L for DGLA and ≤1.7% for EPA. Increased DGLA concentration and decreased EPA wt% were significantly associated with young-onset ICH.
Collapse
|
30
|
Zirpoli H, Chang CL, Carpentier YA, Michael-Titus AT, Ten VS, Deckelbaum RJ. Novel Approaches for Omega-3 Fatty Acid Therapeutics: Chronic Versus Acute Administration to Protect Heart, Brain, and Spinal Cord. Annu Rev Nutr 2020; 40:161-187. [PMID: 32966188 DOI: 10.1146/annurev-nutr-082018-124539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article reviews novel approaches for omega-3 fatty acid (FA) therapeutics and the linked molecular mechanisms in cardiovascular and central nervous system (CNS) diseases. In vitro and in vivo research studies indicate that omega-3 FAs affect synergic mechanisms that include modulation of cell membrane fluidity, regulation of intracellular signaling pathways, and production of bioactive mediators. We compare how chronic and acute treatments with omega-3 FAs differentially trigger pathways of protection in heart, brain, and spinal cord injuries. We also summarize recent omega-3 FA randomized clinical trials and meta-analyses and discuss possible reasons for controversial results, with suggestions on improving the study design for future clinical trials. Acute treatment with omega-3 FAs offers a novel approach for preserving cardiac and neurological functions, and the combinations of acute treatment with chronic administration of omega-3 FAs might represent an additional therapeutic strategy for ameliorating adverse cardiovascular and CNS outcomes.
Collapse
Affiliation(s)
- Hylde Zirpoli
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Chuchun L Chang
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Yvon A Carpentier
- Clinical Nutrition Unit, Université Libre de Bruxelles, 1050 Brussels, Belgium.,Nutrition Lipid Developments, SPRL, 1050 Brussels, Belgium
| | - Adina T Michael-Titus
- Center for Neuroscience, Surgery, and Trauma, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Vadim S Ten
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; .,Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
31
|
Mori T, Yoshioka K, Tanno Y, Kasakura S. Features of Serum Fatty Acids at Acute Ischemic Stroke Onset in Statin-Treated Patients with Hypercholesterolemia. Nutrients 2020; 12:nu12092833. [PMID: 32947895 PMCID: PMC7551419 DOI: 10.3390/nu12092833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
In addition to diet therapy, statins are used to prevent cardiovascular disease in patients with hypercholesterolemia (HC). However, acute ischemic stroke (AIS) still occurs in statin-treated patients. How strictly statin-treated patients follow diet therapy before they experience AIS and whether they increase seafood consumption remains unknown. We investigated the serum concentrations and proportions (weight percentages: wt %) of fatty acids (FAs) at AIS onset in statin-treated patients (statin group), compared to those in non-treated patients with HC (6.465 mmol/L or higher) as controls (non-treated group). We included patients with AIS admitted between 2016 and 2019 within 24 h of AIS onset who underwent analysis of serum FAs. During the study period, 188 patients met the inclusion criteria: 133 in the statin group and 55 in the non-treated group. Interestingly, serum FA concentrations in the statin group were lower than those in the non-treated group. However, serum FA wt % in the statin group was almost identical to that in the non-treated group. In conclusion, statin-treated AIS patients had low FA concentrations and identical FA wt %, compared to non-treated AIS patients with HC.
Collapse
|
32
|
Mori T, Yoshioka K, Tanno Y, Kasakura S. Association of Serum Fatty Acids at Admission with the Age of Onset of Acute Ischemic Stroke. Nutrients 2020; 12:nu12082411. [PMID: 32806540 PMCID: PMC7468942 DOI: 10.3390/nu12082411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/23/2022] Open
Abstract
Dietary triglycerides influence fatty acid (FA) serum concentrations and weight percentages (wt %), which may be associated with the age of onset of acute ischemic stroke (AIS). We investigated the correlations between serum FA levels and proportions at admission and the age of onset of AIS. We evaluated patients with AIS admitted between 2016 and 2019 within 24 h of AIS onset and calculated the correlation coefficients between their ages, serum FA concentrations, and FA wt % values. Multiple linear regression analysis was performed to identify independent FAs indicating AIS age of onset. Furthermore, we estimated the threshold values of independent FAs for age of onset <60 years using receiver operating characteristic curves by logistic regression. A total of 525 patients (median age: 75 years) met the inclusion criteria. The concentration of dihomo-gamma-linolenic acid (DGLA) and wt % of docosahexaenoic acid (DHA) were significant independent variables for age of onset of AIS, and receiver operating characteristic curves for age of onset <60 years showed thresholds of ≥117.7 µmol/L for DGLA and ≤3.7% for DHA. An increased DGLA concentration and decreased DHA wt % were significantly associated with onset of AIS at a younger age.
Collapse
|
33
|
Laura AP, Múzquiz de la Garza AR, Elena PM, Gutiérrez-Uribe JA, Armando TC, Cruz-Suárez LE, Serna-Saldívar SO. Effects of Ecklonia arborea or Silvetia compressa algae intake on serum lipids and hepatic fat accumulation in Wistar rats fed hyperlipidic diets. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Kloska A, Malinowska M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. Lipids and Lipid Mediators Associated with the Risk and Pathology of Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21103618. [PMID: 32443889 PMCID: PMC7279232 DOI: 10.3390/ijms21103618] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Stroke is a severe neurological disorder in humans that results from an interruption of the blood supply to the brain. Worldwide, stoke affects over 100 million people each year and is the second largest contributor to disability. Dyslipidemia is a modifiable risk factor for stroke that is associated with an increased risk of the disease. Traditional and non-traditional lipid measures are proposed as biomarkers for the better detection of subclinical disease. In the central nervous system, lipids and lipid mediators are essential to sustain the normal brain tissue structure and function. Pathways leading to post-stroke brain deterioration include the metabolism of polyunsaturated fatty acids. A variety of lipid mediators are generated from fatty acids and these molecules may have either neuroprotective or neurodegenerative effects on the post-stroke brain tissue; therefore, they largely contribute to the outcome and recovery from stroke. In this review, we provide an overview of serum lipids associated with the risk of ischemic stroke. We also discuss the role of lipid mediators, with particular emphasis on eicosanoids, in the pathology of ischemic stroke. Finally, we summarize the latest research on potential targets in lipid metabolic pathways for ischemic stroke treatment and on the development of new stroke risk biomarkers for use in clinical practice.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
- Correspondence: (M.G.-C.); (J.J.-B.); Tel.: +48-585-236-046 (M.G.-C.); +48-585-236-043 (J.J.-B.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
- Correspondence: (M.G.-C.); (J.J.-B.); Tel.: +48-585-236-046 (M.G.-C.); +48-585-236-043 (J.J.-B.)
| |
Collapse
|
35
|
Nishizaki Y, Daida H. Optimal Dose of n-3 Polyunsaturated Fatty Acids for Cardiovascular Event Prevention. Circ Rep 2020; 2:260-264. [PMID: 33693239 PMCID: PMC7921353 DOI: 10.1253/circrep.cr-20-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The n-3 polyunsaturated fatty acids (PUFA), represented by eicosapentaenoic acid (EPA) and docosahexaenoic acid, have anti-atherogenic effects (e.g., neutral fat-lowering effects) and other beneficial effects such as antiplatelet, anti-inflammatory, plaque stabilizing, vascular endothelial function ameliorative, antihypertensive, and anti-arrhythmic effects. Epidemiological studies and clinical trials have assessed the inhibitory effects of n-3 PUFA on cardiovascular events. Methods and Results: Studies that reported positive outcomes, such as the Japan EPA Lipid intervention Study (JELIS) and the Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia (REDUCE-IT), noted a tendency toward the use of high-dose n-3 PUFA (1.8-4 g/day). The Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico-Prevenzione (GISSI-Prevenzione) trial and the JELIS had high EPA/arachidonic acid (AA) baseline ratios. In contrast, negative outcome studies, such as the Outcome Reduction with an Initial Glargine Intervention (ORIGIN) trial, Risk and Prevention study, A Study of Cardiovascular Events in Diabetes (ASCEND), and the Vitamin D and Omega-3 Trial (VITAL) had participants who tended to use low-dose n-3 PUFA (0.84-1 g/day) and to have low baseline EPA/AA. Conclusions: Differences in baseline EPA/AA ratio and the EPA/AA ratio threshold for the prevention of cardiovascular events seem to contribute to the different outcomes, together with the dose of n-3 PUFA.
Collapse
Affiliation(s)
- Yuji Nishizaki
- Medical Technology Innovation Center, Juntendo University Tokyo Japan
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine Tokyo Japan
| | - Hiroyuki Daida
- Faculty of Health Science, Juntendo University Tokyo Japan
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine Tokyo Japan
| |
Collapse
|
36
|
Mori T, Yoshioka K. Features of serum fatty acids in acute ischaemic stroke patients aged 50 years or older. BMC Cardiovasc Disord 2020; 20:122. [PMID: 32156256 PMCID: PMC7063797 DOI: 10.1186/s12872-020-01408-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/02/2020] [Indexed: 12/05/2022] Open
Abstract
Background Serum fatty acid (s-FA) compositions and their correlation with serum lipids (s-LPs) such as total cholesterol (T-CHO) and triglycerides (TG) have been reported in healthy young subjects. However, little is known about such features in acute ischaemic stroke (AIS). The aim of our study was to investigate s-FA characteristics and their correlation with AIS in elderly patients. Methods We conducted a cross-sectional study of patients aged 50 years or older who were admitted between September 2015 and March 2017 within 24 h of the first AIS onset. We evaluated concentrations and compositions of s-FAs and their association with s-LPs, age, and ischaemic stroke subtypes, including large-artery atherosclerosis (LAA), small-vessel occlusion (SVO), and cardioembolism (CE) or others. Results One hundred ninety-one patients met our inclusion criteria. Their average age was 74.4 years, mean T-CHO and median TG were 203.4 and 94.5 mg/dl, respectively, and median or mean concentrations of palmitic acid (PA), oleic acid (OlA), linoleic acid (LiA), and docosahexaenoic acid (DHA) were 680.7, 602.5, 795.2, and 136.9 μg/ml, respectively, with mean compositions of 23.7, 21.3, 27.1, and 4.4%, respectively. PA, OlA, and LiA concentrations were weakly negatively associated with age and positively correlated with TG. In LAA or SVO (LAA_SVO) and CE or others (CE_O), mean age was 71.9 and 77.4 years (p < 0.001), mean T-CHO was 213.9 and 191.2 mg/dl (p < 0.0001), median TG was 106.5 and 88.5 mg/dl (p < 0.01), median PA was 717.2 and 648.4 μg/ml (p < 0.01), median OlA was 638.2 and 567.5 μg/ml (p < 0.01), and median LiA was 844.7 and 728.5 μg/ml (p < 0.01), respectively. DHA composition was weakly positively correlated with age. There were no differences in PA, OlA, LiA, and DHA compositions between LAA_SVO and CE_O. Conclusions In AIS elderly patients, concentrations, rather than compositions of PA, OlA, and LiA, correlated with age, TG, and ischaemic stroke subtypes. Patients with LAA_SVO were younger and had higher concentrations of PA, OlA, and LiA than those with CE_O. There were no differences in such compositions between LAA_SVO and CE_O.
Collapse
Affiliation(s)
- Takahisa Mori
- Department of Stroke Treatment, Shonan Kamakura General Hospital Stroke Centre, Okamoto 1370-1, Kamakura City, Kanagawa, 247-8533, Japan.
| | - Kazuhiro Yoshioka
- Department of Stroke Treatment, Shonan Kamakura General Hospital Stroke Centre, Okamoto 1370-1, Kamakura City, Kanagawa, 247-8533, Japan
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Energy dysfunction is increasingly recognized as a key factor in the pathogenesis of acute brain injury (ABI). This one characterized by a high metabolic rate and nitrogen loss is often associated with an undernutrition support. We review the metabolism evolution and nutritional status in brain injured patient and summarize evidence on nutritional support in this condition. RECENT FINDINGS The role of nutrition support for improving prognosis in brain injured patient has been underlined recently. A fast nutrition institution whatever the route is essential to prevent an imbalance in caloric support. Moreover, hypermetabolic state must be prevented with a sufficient nitrogen support. Glycemic control is particularly relevant in this group of patient, with the discovery of new fuel that could potentially improve cerebral metabolism and replace glucose. Few data support also the use of immunonutrition input in this group of patients. SUMMARY Nutritional support is a key parameter in brain injured patient and must be initiated quickly to counteract hypermetabolic state by caring to improve caloric and nitrogen input. Recent clinical data support the use of immunonutrition, glutamine and zinc in this particular setting.
Collapse
|
38
|
Watanabe Y, Tatsuno I. Prevention of Cardiovascular Events with Omega-3 Polyunsaturated Fatty Acids and the Mechanism Involved. J Atheroscler Thromb 2020; 27:183-198. [PMID: 31582621 PMCID: PMC7113138 DOI: 10.5551/jat.50658] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
An epidemiological study of Greenlandic Inuit suggested that fish oil, or omega-3 polyunsaturated fatty acids (PUFA), was important in preventing atherosclerotic disease. After this landmark study, many large-scale epidemiological studies and meta-analyses have examined the health benefits of omega-3 PUFA as part of a fatty acid-rich diet to demonstrate its beneficial roles in the prevention of cardiovascular diseases. Recent research has also focused attention on the anti-inflammatory effects of omega-3 PUFA and on specialized pro-resolving mediators. Findings of these studies have led to the development of omega-3 PUFA preparations for the treatment of dyslipidemia, including a highly purified eicosapentaenoic acid (EPA)-ethyl ester product (Epadel®) in Japan and an EPA/docosahexaenoic acid (DHA) preparation (Lotriga®) in the United States and Europe. Although various large-scale clinical trials on the cardiovascular preventive effect of omega-3 PUFA were conducted and reported, the results were not always consistent. The issues of not targeting subjects with hypertriglyceridemia and using low dose of omega-3 PUFA have been suggested to contribute to the failure of demonstrating the preventive effect of omega-3 PUFA in these clinical trials. Taking into account the above issues, the REDUCE-IT trial evaluated a highly purified EPA preparation at a high dose of 4 g/day in patients with hypertriglyceridemia and high cardiovascular risk, and demonstrated an extraordinary outcome of 25% relative reduction in cardiovascular events. This article reviews studies on omega-3 fatty acids during the last 50 years, including the progress in elucidating molecular mechanisms and recent large-scale clinical studies.
Collapse
Affiliation(s)
- Yasuhiro Watanabe
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center, Chiba, Japan
| | - Ichiro Tatsuno
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center, Chiba, Japan
| |
Collapse
|
39
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2020; 3:CD003177. [PMID: 32114706 PMCID: PMC7049091 DOI: 10.1002/14651858.cd003177.pub5] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3)), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) may benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess the effects of increased intake of fish- and plant-based omega-3 fats for all-cause mortality, cardiovascular events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to February 2019, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to August 2019, with no language restrictions. We handsearched systematic review references and bibliographies and contacted trial authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation or advice to increase LCn3 or ALA intake, or both, versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 86 RCTs (162,796 participants) in this review update and found that 28 were at low summary risk of bias. Trials were of 12 to 88 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most trials assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5 g a day to more than 5 g a day (19 RCTs gave at least 3 g LCn3 daily). Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (risk ratio (RR) 0.97, 95% confidence interval (CI) 0.93 to 1.01; 143,693 participants; 11,297 deaths in 45 RCTs; high-certainty evidence), cardiovascular mortality (RR 0.92, 95% CI 0.86 to 0.99; 117,837 participants; 5658 deaths in 29 RCTs; moderate-certainty evidence), cardiovascular events (RR 0.96, 95% CI 0.92 to 1.01; 140,482 participants; 17,619 people experienced events in 43 RCTs; high-certainty evidence), stroke (RR 1.02, 95% CI 0.94 to 1.12; 138,888 participants; 2850 strokes in 31 RCTs; moderate-certainty evidence) or arrhythmia (RR 0.99, 95% CI 0.92 to 1.06; 77,990 participants; 4586 people experienced arrhythmia in 30 RCTs; low-certainty evidence). Increasing LCn3 may slightly reduce coronary heart disease mortality (number needed to treat for an additional beneficial outcome (NNTB) 334, RR 0.90, 95% CI 0.81 to 1.00; 127,378 participants; 3598 coronary heart disease deaths in 24 RCTs, low-certainty evidence) and coronary heart disease events (NNTB 167, RR 0.91, 95% CI 0.85 to 0.97; 134,116 participants; 8791 people experienced coronary heart disease events in 32 RCTs, low-certainty evidence). Overall, effects did not differ by trial duration or LCn3 dose in pre-planned subgrouping or meta-regression. There is little evidence of effects of eating fish. Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20; 19,327 participants; 459 deaths in 5 RCTs, moderate-certainty evidence),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25; 18,619 participants; 219 cardiovascular deaths in 4 RCTs; moderate-certainty evidence), coronary heart disease mortality (RR 0.95, 95% CI 0.72 to 1.26; 18,353 participants; 193 coronary heart disease deaths in 3 RCTs; moderate-certainty evidence) and coronary heart disease events (RR 1.00, 95% CI 0.82 to 1.22; 19,061 participants; 397 coronary heart disease events in 4 RCTs; low-certainty evidence). However, increased ALA may slightly reduce risk of cardiovascular disease events (NNTB 500, RR 0.95, 95% CI 0.83 to 1.07; but RR 0.91, 95% CI 0.79 to 1.04 in RCTs at low summary risk of bias; 19,327 participants; 884 cardiovascular disease events in 5 RCTs; low-certainty evidence), and probably slightly reduces risk of arrhythmia (NNTB 91, RR 0.73, 95% CI 0.55 to 0.97; 4912 participants; 173 events in 2 RCTs; moderate-certainty evidence). Effects on stroke are unclear. Increasing LCn3 and ALA had little or no effect on serious adverse events, adiposity, lipids and blood pressure, except increasing LCn3 reduced triglycerides by ˜15% in a dose-dependent way (high-certainty evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and low-certainty evidence suggests that increasing LCn3 slightly reduces risk of coronary heart disease mortality and events, and reduces serum triglycerides (evidence mainly from supplement trials). Increasing ALA slightly reduces risk of cardiovascular events and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Teesside UniversitySchool of Social Sciences, Humanities and LawMiddlesboroughUKTS1 3BA
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Sciences42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthCoupland Building 3Oxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
40
|
Davinelli S, Intrieri M, Corbi G, Scapagnini G. Metabolic indices of polyunsaturated fatty acids: current evidence, research controversies, and clinical utility. Crit Rev Food Sci Nutr 2020; 61:259-274. [PMID: 32056443 DOI: 10.1080/10408398.2020.1724871] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The n-3 and n-6 polyunsaturated fatty acids (PUFA) are among the most studied nutrients in human metabolism. In the past few decades, prospective studies and controlled trials have supported the view that the effects of these essential fatty acids are clinically relevant. PUFA profiles in different blood compartments are reflections of both diet and metabolism, and their levels may be related to disease risk. Despite widespread interest, there is no consensus regarding which biomarkers best reflect PUFA status in the body. The measurement of PUFA levels is not straight-forward, and a wide variety of indices have been used in clinical studies, producing conflicting results. A major source of heterogeneity among studies is associated with research design, sampling, and laboratory analyses. To date, the n-3 index, n-6/n-3 ratio, and arachidonic acid (AA)/eicosapentaenoic acid (EPA) ratio are the most promising biomarkers associated with PUFA metabolism. Although hotly debated, these indices may be considered at least markers, if not risk factors, for several diseases, especially cardiovascular events and brain disorders. Here, we summarize the most updated evidence of n-3 and n-6 PUFA effects on human health, reviewing current controversies on the aforementioned indices and whether they can be considered valuable predictors of clinical outcomes.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
41
|
Shojima Y, Ueno Y, Tanaka R, Yamashiro K, Miyamoto N, Hira K, Kurita N, Nakajima S, Urabe T, Hattori N. Eicosapentaenoic-to-Arachidonic Acid Ratio Predicts Mortality and Recurrent Vascular Events in Ischemic Stroke Patients. J Atheroscler Thromb 2020; 27:969-977. [PMID: 31969533 PMCID: PMC7508728 DOI: 10.5551/jat.52373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aims: The ratio of eicosapentaenoic acid (EPA) to arachidonic acid (AA) is related to major adverse events and death in cardiovascular diseases. The association between long-term prognosis of ischemic stroke and EPA/AA ratio has not been clarified. Methods: Acute ischemic stroke patients who had undergone blood examinations for polyunsaturated fatty acids were enrolled. Major cardiovascular events, including recurrence of ischemic stroke, occurrence of cardiovascular and peripheral artery diseases and hemorrhagic stroke, and death, were analyzed, retrospectively. Cox proportional hazards regression analysis was used to explore factors, including clinical characteristics, laboratory data including EPA/AA ratio, and treatments associated with major cardiovascular events and death. Results: A total of 269 patients (mean age, 70 ± 13 years; 179 men) were enrolled. During follow-up (mean, 2.3 ± 1.0 years), 64 patients exhibited major cardiovascular events and death (annualized rate, 10.5% per person-year). Multivariate Cox analysis revealed that EPA/AA ratio (hazard ratio, 0.26; 95% confidence interval, 0.07–0.99; p = 0.048) and statin therapy (hazard ratio, 0.43; 95% confidence interval, 0.25–0.73; p = 0.002) correlated inversely with major cardiovascular events and death. In the Kaplan–Meier analysis, cumulative event-free rates were significantly lower among patients with EPA/AA ratio < 0.33 and patients without statin therapy (p = 0.006). Conclusions: Low EPA/AA ratio at baseline and treatment without statins could predict mortality, recurrent ischemic stroke, cardiovascular and peripheral artery diseases, and hemorrhagic stroke among patients with acute ischemic stroke. The combination of baseline EPA/AA ratio and statin therapy could be critical in predicting the long-term prognosis of ischemic stroke patients.
Collapse
Affiliation(s)
- Yuri Shojima
- Department of Neurology, Juntendo University School of Medicine
| | - Yuji Ueno
- Department of Neurology, Juntendo University School of Medicine
| | - Ryota Tanaka
- Department of Neurology, Juntendo University School of Medicine.,Stroke Center and Division of Neurology, Department of Medicine, Jichi Medical University
| | - Kazuo Yamashiro
- Department of Neurology, Juntendo University School of Medicine
| | | | - Kenichiro Hira
- Department of Neurology, Juntendo University School of Medicine
| | - Naohide Kurita
- Department of Neurology, Juntendo University School of Medicine
| | - Sho Nakajima
- Department of Neurology, Juntendo University School of Medicine
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital
| | | |
Collapse
|
42
|
Imamura T, Nguyen A, Rodgers D, Kim G, Raikhelkar J, Kalantari S, Narang N, Juricek C, Ota T, Jeevanandam V, Sayer G, Uriel N. Omega-3 and hemocompatibility-related adverse events. J Card Surg 2019; 35:405-412. [PMID: 31850548 DOI: 10.1111/jocs.14384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Hemocompatibility-related clinical adverse events (HRAEs) are major causes of readmission in patients with left ventricular assist devices (LVADs). Omega-3 is an unsaturated fatty acid that possesses anti-inflammatory and antiangiogenic properties. We aimed to investigate the impact of omega-3 therapy on HRAEs during LVAD support. METHODS Consecutive LVAD patients who were followed for 6 months were enrolled, and stratified by the use of omega-3. Freedom from any HRAEs and net burden of HRAEs, which was calculated by using a hemocompatibility score (using 4 escalating tiers of hierarchal severity to derive a total score for events), were compared between those with and without omega-3 therapy. RESULTS Among 169 LVAD patients (57 years old and 124 males), 31 patients received 4 g/d of omega-3 therapy and 138 patients were in the control group. During the 6-month observational period, freedom from any HRAEs was 90% in the omega-3 group compared with 70% in the control group with a hazard ratio of 0.35 (95% confidence interval 0.11-0.87 and P = .042). The average hemocompatibility score in the omega-3 group was significantly lower compared with the control group (0.23 vs 0.91; P = .042), due to reduced Tier I scores (mild HRAE; P = .003) and Tier IIIB scores (severe HRAE; P < .001). The similar trends remained at propensity-matched populations. CONCLUSIONS Omega-3 therapy was associated with reduced HRAEs including both bleeding and thromboembolic events in LVAD patients.
Collapse
Affiliation(s)
- Teruhiko Imamura
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois.,Second Department of Medicine, University of Toyama, Toyama, Japan
| | - Ann Nguyen
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois
| | - Daniel Rodgers
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois
| | - Gene Kim
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois
| | - Jayant Raikhelkar
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois
| | - Sara Kalantari
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois
| | - Nikhil Narang
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois
| | - Colleen Juricek
- Department of Surgery, University of Chicago Medical Center, Chicago, Illinois
| | - Takeyoshi Ota
- Department of Surgery, University of Chicago Medical Center, Chicago, Illinois
| | | | - Gabriel Sayer
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois
| | - Nir Uriel
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
43
|
Dokalis N, Prinz M. Resolution of neuroinflammation: mechanisms and potential therapeutic option. Semin Immunopathol 2019; 41:699-709. [PMID: 31705317 DOI: 10.1007/s00281-019-00764-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
The central nervous system (CNS) is comprised by an elaborate neural network that is under constant surveillance by tissue-intrinsic factors for maintenance of its homeostasis. Invading pathogens or sterile injuries might compromise vitally the CNS integrity and function. A prompt anti-inflammatory response is therefore essential to contain and repair the local tissue damage. Although the origin of the insults might be different, the principles of tissue backlashes, however, share striking similarities. CNS-resident cells, such as microglia and astrocytes, together with peripheral immune cells orchestrate an array of events that aim to functional restoration. If the acute inflammatory event remains unresolved, it becomes toxic leading to progressive CNS degeneration. Therefore, the cellular, molecular, and biochemical processes that regulate inflammation need to be on a fine balance with the intrinsic CNS repair mechanisms that influence tissue healing. The purpose of this review is to highlight aspects that facilitate the resolution of CNS inflammation, promote tissue repair, and functional recovery after acute injury and infection that could potentially contribute as therapeutic interventions.
Collapse
Affiliation(s)
- Nikolaos Dokalis
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany. .,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
44
|
Ueno Y, Miyamoto N, Yamashiro K, Tanaka R, Hattori N. Omega-3 Polyunsaturated Fatty Acids and Stroke Burden. Int J Mol Sci 2019; 20:ijms20225549. [PMID: 31703271 PMCID: PMC6888676 DOI: 10.3390/ijms20225549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022] Open
Abstract
Stroke is a major leading cause of death and disability worldwide. N-3 polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid and docosahexaenoic acid have potent anti-inflammatory effects, reduce platelet aggregation, and regress atherosclerotic plaques. Since the discovery that the Greenland Eskimo population, whose diet is high in marine n-3 PUFAs, have a lower incidence of coronary heart disease than Western populations, numerous epidemiological studies to explore the associations of dietary intakes of fish and n-3 PUFAs with cardiovascular diseases, and large-scale clinical trials to identify the benefits of treatment with n-3 PUFAs have been conducted. In most of these studies the incidence and mortality of stroke were also evaluated mainly as secondary endpoints. Thus, a systematic literature review regarding the association of dietary intake of n-3 PUFAs with stroke in the epidemiological studies and the treatment effects of n-3 PUFAs in the clinical trials was conducted. Moreover, recent experimental studies were also reviewed to explore the molecular mechanisms of the neuroprotective effects of n-3 PUFAs after stroke.
Collapse
Affiliation(s)
- Yuji Ueno
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (N.M.); (K.Y.); (N.H.)
- Correspondence: ; Tel.: +81-3-3813-3111; Fax: +81-3-5800-0547
| | - Nobukazu Miyamoto
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (N.M.); (K.Y.); (N.H.)
| | - Kazuo Yamashiro
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (N.M.); (K.Y.); (N.H.)
| | - Ryota Tanaka
- Stroke Center and Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan;
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (N.M.); (K.Y.); (N.H.)
| |
Collapse
|
45
|
Harris WS. Understanding why REDUCE-IT was positive - Mechanistic overview of eicosapentaenoic acid. Prog Cardiovasc Dis 2019; 62:401-405. [PMID: 31666183 DOI: 10.1016/j.pcad.2019.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022]
Abstract
The REDUCE-IT study found that patients at elevated risk for cardiovascular disease (CVD) who were already taking statins obtained a marked benefit by taking 4 g/d of eicosapentaenoic acid ethyl esters (icosapent ethyl, IPE; Vascepa) over about 5 years. Although approved for triglyceride (TG) lowering, IPE had only a modest TG-lowering effect in REDUCE-IT, largely because median TG levels were relatively low already. Hence the question of what mechanisms IPE might be working through is of great interest. At present, it appears that the best mechanistic candidates would be anti-platelet effects and/or anti-inflammatory effects. Whatever the cause, the powerful effects of IPE on CVD risk have renewed interest in the clinical utility of omega-3 fatty acids.
Collapse
Affiliation(s)
- William S Harris
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, and OmegaQuant Analytics, LLC, Sioux Falls, SD, United States of America.
| |
Collapse
|
46
|
Bozzatello P, Rocca P, Mantelli E, Bellino S. Polyunsaturated Fatty Acids: What is Their Role in Treatment of Psychiatric Disorders? Int J Mol Sci 2019; 20:E5257. [PMID: 31652770 PMCID: PMC6862261 DOI: 10.3390/ijms20215257] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
In the central nervous system omega-3 fatty acids modulate cell signaling and affect dopaminergic and serotonergic pathways. On this basis, a new application for omega-3 fatty acids has been proposed, concerning the treatment of several psychiatric disorders. The present article is an update of a previous systematic review and is aimed to provide a complete report of data published in the period between 1980 and 2019 on efficacy and tolerability of omega-3 fatty acids in psychiatric disorders. In July 2019, an electronic search on PUBMED, Medline and PsychINFO of all RCTs, systematic reviews and meta-analyses on omega-3 fatty acids and psychiatric disorders without any filter or MESH restriction was performed. After eligibility processes, the final number of records included in this review was 126. One hundred and two of these studies were RCTs, while 24 were reviews and meta-analyses. The role of omega-3 fatty acids was studied in schizophrenia, major depression, bipolar disorder, anxiety disorders, obsessive-compulsive disorder, post-traumatic stress disorder, attention deficit hyperactivity disorder (ADHD), autism spectrum disorders, eating disorders, substance use disorder and borderline personality disorder. The main evidence of the efficacy of omega-3 fatty acids has been obtained in treating depressive symptoms in patients with major depression and, to a lesser degree, bipolar depression. Some efficacy was also found in early phases of schizophrenia in addition to antipsychotic treatment, but not in the chronic phases of psychosis. Small beneficial effects of omega-3 fatty acids were observed in ADHD and positive results were reported in a few trials on core symptoms of borderline personality disorder. For other psychiatric disorders results are inconsistent.
Collapse
Affiliation(s)
- Paola Bozzatello
- Department of Neuroscience, University of Turin, 10125 Turin, Italy.
| | - Paola Rocca
- Department of Neuroscience, University of Turin, 10125 Turin, Italy.
| | - Emanuela Mantelli
- Department of Neuroscience, University of Turin, 10125 Turin, Italy.
| | - Silvio Bellino
- Department of Neuroscience, University of Turin, 10125 Turin, Italy.
| |
Collapse
|
47
|
Abstract
BACKGROUND Currently, with stroke burden increasing, there is a need to explore therapeutic options that ameliorate the acute insult. There is substantial evidence of a neuroprotective effect of marine-derived n-3 polyunsaturated fatty acids (PUFAs) in experimental stroke, leading to a better functional outcome. OBJECTIVES To assess the effects of administration of marine-derived n-3 PUFAs on functional outcomes and dependence in people with stroke.Our secondary outcomes were vascular-related death, recurrent events, incidence of other type of stroke, adverse events, quality of life, and mood. SEARCH METHODS We searched the Cochrane Stroke Group trials register (6 August 2018), the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 1, January 2019), MEDLINE Ovid (from 1948 to 6 August 2018), Embase Ovid (from 1980 to 6 August 2018), CINAHL EBSCO (Cumulative Index to Nursing and Allied Health Literature; from 1982 to 6 August 2018), Science Citation Index Expanded ‒ Web of Science (SCI-EXPANDED), Conference Proceedings Citation Index-Science - Web of Science (CPCI-S), and BIOSIS Citation Index. We also searched ongoing trial registers, reference lists, relevant systematic reviews, and used the Science Citation Index Reference Search. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing marine-derived n-3 PUFAs to placebo or open control (no placebo) in people with a history of stroke or transient ischaemic attack (TIA), or both. DATA COLLECTION AND ANALYSIS At least two review authors independently selected trials for inclusion, extracted data, assessed risk of bias, and used the GRADE approach to assess the quality of the body of evidence. We contacted study authors for clarification and additional information on stroke/TIA participants. We conducted random-effects meta-analysis or narrative synthesis, as appropriate. The primary outcome was efficacy (functional outcome) assessed using a validated scale e.g. Glasgow Outcome Scale Extended (GOSE) dichotomised into poor or good clinical outcome, Barthel Index (higher score is better; scale from 0 to 100) or Rivermead Mobility Index (higher score is better; scale from 0 to 15). MAIN RESULTS We included 29 RCTs; nine of them provided outcome data (3339 participants). Only one study included participants in the acute phase of stroke (haemorrhagic). Doses of marine-derived n-3 PUFAs ranged from 400 mg/day to 3300 mg/day. Risk of bias was generally low or unclear in most trials, with a higher risk of bias in smaller studies. We assessed results separately for short (up to three months) and longer (more than three months) follow-up studies.Short follow-up (up to three months)Functional outcome was reported in only one pilot study as poor clinical outcome assessed with GOSE (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.36 to 1.68; 40 participants; very low quality evidence). Mood (assessed with GHQ-30, lower score better), was reported by only one study and favoured control (mean difference (MD) 1.41, 95% CI 0.07 to 2.75; 102 participants; low-quality evidence).We found no evidence of an effect of the intervention for the remainder of the secondary outcomes: vascular-related death (two studies, not pooled due to differences in population, RR 0.33, 95% CI 0.01 to 8.00, and RR 0.33, 95% CI 0.01 to 7.72; 142 participants; low-quality evidence); recurrent events (RR 0.41, 95% CI 0.02 to 8.84; 18 participants; very low quality evidence); incidence of other type of stroke (two studies, not pooled due to different type of index stroke, RR 6.11, 95% CI 0.33 to 111.71, and RR 0.63, 95% CI 0.25 to 1.58; 58 participants; very low quality evidence); and quality of life (physical component mean difference (MD) -2.31, 95% CI -4.81 to 0.19, and mental component MD -2.16, 95% CI -5.91 to 1.59; one study; 102 participants; low-quality evidence).Adverse events were reported by two studies (57 participants; very low quality evidence), one trial reporting extracranial haemorrhage (RR 0.25, 95% CI 0.04 to 1.73) and the other one reporting bleeding complications (RR 0.32, 95% CI 0.01 to 7.35).Longer follow-up (more than three months)One small trial assessed functional outcome with both Barthel Index (MD 7.09, 95% CI -5.16 to 19.34) for activities of daily living, and Rivermead Mobility Index (MD 1.30, 95% CI -1.31 to 3.91) for mobility (52 participants; very low quality evidence). We carried out meta-analysis for vascular-related death (RR 1.02, 95% CI 0.78 to 1.35; five studies; 2237 participants; low-quality evidence) and fatal recurrent events (RR 0.69, 95% CI 0.31 to 1.55; three studies; 1819 participants; low-quality evidence).We found no evidence of an effect of the intervention for mood (MD 1.00, 95% CI -2.07 to 4.07; one study; 14 participants; low-quality evidence). Incidence of other type of stroke and quality of life were not reported.Adverse events (all combined) were reported by only one study (RR 0.94, 95% CI 0.56 to 1.58; 1455 participants; low-quality evidence). AUTHORS' CONCLUSIONS We are very uncertain of the effect of marine-derived n-3 PUFAs therapy on functional outcomes and dependence after stroke as there is insufficient high-quality evidence. More well-designed RCTs are needed, specifically in acute stroke, to determine the efficacy and safety of the intervention.Studies assessing functionality might consider starting the intervention as early as possible after the event, as well as using standardised clinically-relevant measures for functional outcomes, such as the modified Rankin Scale. Optimal doses remain to be determined; delivery forms (type of lipid carriers) and mode of administration (ingestion or injection) also need further consideration.
Collapse
|
48
|
Reduced intestinal FADS1 gene expression and plasma omega-3 fatty acids following Roux-en-Y gastric bypass. Clin Nutr 2019; 38:1280-1288. [DOI: 10.1016/j.clnu.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 12/29/2022]
|
49
|
Sezai A, Unosawa S, Taoka M, Osaka S, Obata K, Kanno S, Sekino H, Tanaka M. Long-Term Comparison of Ethyl Icosapentate vs. Omega-3-Acid Ethyl in Patients With Cardiovascular Disease and Hypertriglyceridemia (DEFAT Trial). Circ J 2019; 83:1368-1376. [PMID: 31006728 DOI: 10.1253/circj.cj-18-0764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
BACKGROUND Numerous studies have demonstrated a reduction in cardiovascular events when the low-density lipoprotein cholesterol (LDL) level is decreased by statin therapy. However, despite good control of LDL, cardiovascular events may increase if the triglyceride (TG) level is high. We conducted a long-term comparison of treatment of hypertriglyceridemia with ethyl icosapentate (EPA) vs. omega-3-acid ethyl (EPA+docosahexaenoic acid [DHA]). METHODS AND RESULTS Cardiac surgery patients with hypertriglyceridemia were randomized to an EPA group (1.8 g t.i.d.) or an EPA+DHA group (2 g s.i.d.) and observed for 3 years. The primary endpoints were the serum TG level and its percent change. Secondary endpoints included lipid markers, fatty acid parameters, serum creatinine, cystatin-C, oxidized LDL, high-sensitivity C-reactive protein, and MACCE. An interview to assess study drug adherence was conducted 6 months after completing the study. TG levels were significantly lower in the EPA+DHA group than in the EPA group. Levels of remnant-like particles-cholesterol, oxidized LDL, and cystatin-C were also significantly lower in the EPA+DHA group than in the EPA group. Compliance with treatment was significantly worse in the EPA group. CONCLUSIONS Better results were obtained in the EPA+DHA group, but more patients showed poor compliance with treatment in the EPA group, making detailed comparison of the 2 groups difficult. Even so, TG were reduced while EPA and DHA levels were increased in the EPA+DHA group, together with a reduction in oxidative stress and remnant-like particles-cholesterol. Decreased compliance with medication in the EPA group significantly affected the results of this study, clearly indicating the importance of good compliance.
Collapse
Affiliation(s)
- Akira Sezai
- Department of Cardiovascular Surgery, Nihon University School of Medicine
| | - Satoshi Unosawa
- Department of Cardiovascular Surgery, Nihon University School of Medicine
| | - Makoto Taoka
- Department of Cardiovascular Surgery, Nihon University School of Medicine
| | - Shunji Osaka
- Department of Cardiovascular Surgery, Nihon University School of Medicine
| | | | | | | | - Masashi Tanaka
- Department of Cardiovascular Surgery, Nihon University School of Medicine
| |
Collapse
|
50
|
Nelson JR, Raskin S. The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgrad Med 2019; 131:268-277. [PMID: 31063407 DOI: 10.1080/00325481.2019.1607414] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Eicosapentaenoic acid (EPA) is a key anti-inflammatory/anti-aggregatory long-chain polyunsaturated omega-3 fatty acid. Conversely, the omega-6 fatty acid, arachidonic acid (AA) is a precursor to a number of pro-inflammatory/pro-aggregatory mediators. EPA acts competitively with AA for the key cyclooxygenase and lipoxygenase enzymes to form less inflammatory products. As a result, the EPA:AA ratio may be a marker of chronic inflammation, with a lower ratio corresponding to higher levels of inflammation. It is now well established that inflammation plays an important role in cardiovascular disease. This review examines the role of the EPA:AA ratio as a marker of cardiovascular disease and the relationship between changes in the ratio (mediated by EPA intake) and changes in cardiovascular risk. Epidemiological studies have shown that a lower EPA:AA ratio is associated with an increased risk of coronary artery disease, acute coronary syndrome, myocardial infarction, stroke, chronic heart failure, peripheral artery disease, and vascular disease. Increasing the EPA:AA ratio through treatment with purified EPA has been shown in clinical studies to be effective in primary and secondary prevention of coronary artery disease and reduces the risk of cardiovascular events following percutaneous coronary intervention. The EPA:AA ratio is a valuable predictor of cardiovascular risk. Results from ongoing clinical trials will help to define thresholds for EPA treatment associated with better clinical outcomes.
Collapse
Affiliation(s)
- J R Nelson
- a California Cardiovascular Institute , Fresno , CA , USA
| | - S Raskin
- b Lipid Clinic , Sutter East Bay Medical Foundation , Oakland , CA , USA
| |
Collapse
|