Effective management of patients with acute ischemic stroke based on lean production on thrombolytic flow optimization.
AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016;
39:987-996. [PMID:
27094731 DOI:
10.1007/s13246-016-0442-1]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
Abstract
The efficacy of thrombolytic therapy for acute ischemic stroke (AIS) decreases when the administration of tissue plasminogen activator (tPA) is delayed. Derived from Toyota Production System, lean production aims to create top-quality products with high-efficiency procedures, a concept that easily applies to emergency medicine. In this study, we aimed to determine whether applying lean principles to flow optimization could hasten the initiation of thrombolysis. A multidisciplinary team (Stroke Team) was organized to implement an ongoing, continuous loop of lean production that contained the following steps: decomposition, recognition, intervention, reengineering and assessment. The door-to-needle time (DNT) and the percentage of patients with DNT ≤ 60 min before and after the adoption of lean principles were used to evaluate the efficiency of our flow optimization. Thirteen patients with AIS in the pre-lean period and 43 patients with AIS in the lean period (23 in lean period I and 20 patients in lean period II) were consecutively enrolled in our study. After flow optimization, we reduced DNT from 90 to 47 min (p < 0.001¤). In addition, the percentage of patients treated ≤60 min after hospital arrival increased from 38.46 to 75.0 % (p = 0.015¤). Adjusted analysis of covariance confirmed a significant influence of optimization on delay of tPA administration (p < 0.001). The patients were more likely to have a good prognosis (mRS ≤ 2 at 90 days) after the flow optimization (30.77-75.00 %, p = 0.012¤). Our study may offer an effective approach for optimizing the thrombolytic flow in the management of AIS.
Collapse