1
|
Sulfikar Ali A, Bhat M, Palaniswamy HP, Ramachandran S, Kumaran SD. Does Action Observation of the Whole Task Influence Mirror Neuron System and Upper Limb Muscle Activity Better Than Part Task in People With Stroke? Stroke Res Treat 2024; 2024:9967369. [PMID: 39399483 PMCID: PMC11470815 DOI: 10.1155/2024/9967369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/13/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
Background: Task-based action observation and imitation (AOI) is a promising intervention to enhance upper limb (UL) motor function poststroke. However, whether whole/part task must be trained in the AOI therapy needs further substantiation. Objective: The objective of this study is to assess and compare the mirror neuron activity and UL muscle activity during AOI of reaching task in terms of whole task (complete movement) and part task (proximal arm movements and distal arm movements). Methods: In this cross-sectional study, 26 participants with first-time unilateral stroke were asked to observe the prerecorded videos of a reaching task in terms of a whole task and proximal and distal components, followed by imitation of the task, respectively. Electroencephalographic (EEG) mu rhythm suppression and electromyographic amplitude of six UL muscles were measured during the task. Results: The analysis of EEG revealed a statistically significant mu suppression score, indicating mirror neuron system activity, during AOI of the whole task in C3 (p = <0.001) and C4 (p = <0.001) electrodes compared to the part task. Percentage maximum voluntary contraction amplitudes of the deltoid (p = 0.002), supraspinatus (p = <0.001), triceps brachii (p = 0.002), brachioradialis (p = 0.006), and extensor carpi radialis (p = <0.001) muscles showed a significant increase in muscle activity during AOI of the whole task. Also, there seems to be a task observation-specific activation of muscles following AOI of proximal or distal tasks. Conclusion: The practice of the whole task should be given emphasis while framing the AOI treatment module to enhance reaching in people with stroke. Trial registration: Clinical Trials Registry-India (CTRI) identifier: CTRI/2018/04/013466.
Collapse
Affiliation(s)
- A. Sulfikar Ali
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
- Department of Physiotherapy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Mayur Bhat
- Department of Audiology and Speech Language Pathology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Hari Prakash Palaniswamy
- Department of Speech and Hearing, Manipal College of Health Professions, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Selvam Ramachandran
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Senthil D. Kumaran
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
- Department of Medical Rehabilitation-Physical Therapy Program, School of Rehabilitation and Medical Sciences, College of Health Sciences, University of Nizwa, Nizwa, Oman
| |
Collapse
|
2
|
Ren C, Li X, Gao Q, Pan M, Wang J, Yang F, Duan Z, Guo P, Zhang Y. The effect of brain-computer interface controlled functional electrical stimulation training on rehabilitation of upper limb after stroke: a systematic review and meta-analysis. Front Hum Neurosci 2024; 18:1438095. [PMID: 39391265 PMCID: PMC11464471 DOI: 10.3389/fnhum.2024.1438095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Several clinical studies have demonstrated that brain-computer interfaces (BCIs) controlled functional electrical stimulation (FES) facilitate neurological recovery in patients with stroke. This review aims to evaluate the effectiveness of BCI-FES training on upper limb functional recovery in stroke patients. Methods PubMed, Embase, Cochrane Library, Science Direct and Web of Science were systematically searched from inception to October 2023. Randomized controlled trials (RCTs) employing BCI-FES training were included. The methodological quality of the RCTs was assessed using the PEDro scale. Meta-analysis was conducted using RevMan 5.4.1 and STATA 18. Results The meta-analysis comprised 290 patients from 10 RCTs. Results showed a moderate effect size in upper limb function recovery through BCI-FES training (SMD = 0.50, 95% CI: 0.26-0.73, I2 = 0%, p < 0.0001). Subgroup analysis revealed that BCI-FES training significantly enhanced upper limb motor function in BCI-FES vs. FES group (SMD = 0.37, 95% CI: 0.00-0.74, I2 = 21%, p = 0.05), and the BCI-FES + CR vs. CR group (SMD = 0.61, 95% CI: 0.28-0.95, I2 = 0%, p = 0.0003). Moreover, BCI-FES training demonstrated effectiveness in both subacute (SMD = 0.56, 95% CI: 0.25-0.87, I2 = 0%, p = 0.0004) and chronic groups (SMD = 0.42, 95% CI: 0.05-0.78, I2 = 45%, p = 0.02). Subgroup analysis showed that both adjusting (SMD = 0.55, 95% CI: 0.24-0.87, I2 = 0%, p = 0.0006) and fixing (SMD = 0.43, 95% CI: 0.07-0.78, I2 = 46%, p = 0.02). BCI thresholds before training significantly improved motor function in stroke patients. Both motor imagery (MI) (SMD = 0.41 95% CI: 0.12-0.71, I2 = 13%, p = 0.006) and action observation (AO) (SMD = 0.73, 95% CI: 0.26-1.20, I2 = 0%, p = 0.002) as mental tasks significantly improved upper limb function in stroke patients. Discussion BCI-FES has significant immediate effects on upper limb function in subacute and chronic stroke patients, but evidence for its long-term impact remains limited. Using AO as the mental task may be a more effective BCI-FES training strategy. Systematic review registration Identifier: CRD42023485744, https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023485744.
Collapse
Affiliation(s)
- Chunlin Ren
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinmin Li
- School of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qian Gao
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Mengyang Pan
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Wang
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Fangjie Yang
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenfei Duan
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Pengxue Guo
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yasu Zhang
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
4
|
Mangos N, Forgaard CJ, Gribble PL. Durability of motor learning by observing. J Neurophysiol 2024; 132:1025-1037. [PMID: 39163022 DOI: 10.1152/jn.00425.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Information about another person's movement kinematics obtained through visual observation activates brain regions involved in motor learning. Observation-related changes in these brain areas are associated with adaptive changes to feedforward neural control of muscle activation and behavioral improvements in limb movement control. However, little is known about the stability of these observation-related effects over time. Here, we used force channel trials to probe changes in lateral force production at various time points (1 min, 10 min, 30 min, 60 min, 24 h) after participants either physically performed, or observed another individual performing upper limb reaching movements that were perturbed by novel, robot-generated forces (a velocity-dependent force-field). Observers learned to predictively generate directionally and temporally specific compensatory forces during reaching, consistent with the idea that they acquired an internal representation of the novel dynamics. Participants who physically practiced in the force-field showed adaptation that was detectable at all time points, with some decay detected after 24 h. Observation-related adaptation was less temporally stable in comparison, decaying slightly after 1 h and undetectable at 24 h. Observation induced less adaptation overall than physical practice, which could explain differences in temporal stability. Visually acquired representations of movement dynamics are retained and continue to influence behavior for at least 1 h after observation.NEW & NOTEWORTHY We used force channel probes in an upper limb force-field reaching task in humans to compare the durability of learning-related changes that occurred through visual observation to those after physical movement practice. Visually acquired representations of movement dynamics continued to influence behavior for at least 1 h after observation. Our findings point to a 1-h window during which visual observation of another person could play a role in motor learning.
Collapse
Affiliation(s)
- Natalia Mangos
- Department of Psychology, Faculty of Social Science, Western University, London, Ontario, Canada
| | - Christopher J Forgaard
- Department of Psychology, Faculty of Social Science, Western University, London, Ontario, Canada
| | - Paul L Gribble
- Department of Psychology, Faculty of Social Science, Western University, London, Ontario, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Hong W, Liu Z, Zhang X, Li M, Yu Z, Wang Y, Wang M, Wu Y, Fang S, Yang B, Xu R, Zhao Z. Distance-related functional reorganization predicts motor outcome in stroke patients. BMC Med 2024; 22:247. [PMID: 38886774 PMCID: PMC11184708 DOI: 10.1186/s12916-024-03435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Analyzing distance-dependent functional connectivity density (FCD) yields valuable insights into patterns of brain activity. Nevertheless, whether alterations of FCD in non-acute stroke patients are associated with the anatomical distance between brain regions remains unclear. This study aimed to explore the distance-related functional reorganization in non-acute stroke patients following left and right hemisphere subcortical lesions, and its relationship with clinical assessments. METHODS In this study, we used resting-state fMRI to calculate distance-dependent (i.e., short- and long-range) FCD in 25 left subcortical stroke (LSS) patients, 22 right subcortical stroke (RSS) patients, and 39 well-matched healthy controls (HCs). Then, we compared FCD differences among the three groups and assessed the correlation between FCD alterations and paralyzed motor function using linear regression analysis. RESULTS Our findings demonstrated that the left inferior frontal gyrus displayed distance-independent FCD changes, while the bilateral supplementary motor area, cerebellum, and left middle occipital gyrus exhibited distance-dependent FCD alterations in two patient subgroups compared with HCs. Furthermore, we observed a positive correlation between increased FCD in the bilateral supplementary motor area and the motor function of lower limbs, and a negative correlation between increased FCD in the left inferior frontal gyrus and the motor function of both upper and lower limbs across all stroke patients. These associations were validated by using a longitudinal dataset. CONCLUSIONS The FCD in the cerebral and cerebellar cortices shows distance-related changes in non-acute stroke patients with motor dysfunction, which may serve as potential biomarkers for predicting motor outcomes after stroke. These findings enhance our comprehension of the neurobiological mechanisms driving non-acute stroke. TRIAL REGISTRATION All data used in the present study were obtained from a research trial registered with the ClinicalTrials.gov database (NCT05648552, registered 05 December 2022, starting from 01 January 2022).
Collapse
Affiliation(s)
- Wenjun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zaixing Liu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhixuan Yu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuxin Wang
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Minmin Wang
- School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310014, China
| | - Yanan Wu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shengjie Fang
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Bo Yang
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Rong Xu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Zhiyong Zhao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China.
| |
Collapse
|
6
|
Biswas A, Rao PD, Madhavan S, Natarajan M, Solomon JM. Video parameters for action observation training in stroke rehabilitation: a scoping review. Disabil Rehabil 2024; 46:1256-1265. [PMID: 37021345 DOI: 10.1080/09638288.2023.2191016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
PURPOSE Action observation training (AOT) is a therapeutic approach used in stroke rehabilitation. Videos form the core of AOT, and knowledge of constituent parameters is essential to make the intervention robust and generalizable. Currently, there is a dearth of available information on video parameters to be used for AOT. Our purpose was to identify and describe the parameters that constitute AOT videos for stroke rehabilitation. METHOD Electronic databases like PubMed, CINAHL, Scopus, Web of Science, ProQuest, and Ovid SP from inception to date according to PRISMA-ScR guidelines. Title, abstract, and full-text screening were done independently by two authors, with a third author for conflict resolution. Data on video parameters like length, quality, perspective, speed, screen size and distance, sound, and control videos were extracted. RESULTS Seventy studies were included in this review. The most-reported parameters were video length (85.71%) and perspective of view (62.85%). Movement speed (7.14%) and sound (8.57%) were the least reported. Static landscapes or geometrical patterns were found suitable as control videos. CONCLUSION Most video parameters except for length and perspective of view remain underreported in AOT protocols. Future studies with better descriptions of video parameters are required for comprehensive AOT interventions and result generalisation.
Collapse
Affiliation(s)
- Arunima Biswas
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Prajna D Rao
- College of Physiotherapy, Srinivas University, Mangalore, India
| | - Sangeetha Madhavan
- Department of Physical Therapy, University of Illinois, Chicago, IL, USA
| | - Manikandan Natarajan
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
- Centre for Comprehensive Stroke Rehabilitation and Research, Manipal Academy of Higher Education, Manipal, India
| | - John M Solomon
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
- Centre for Comprehensive Stroke Rehabilitation and Research, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Zhang K, Ding L, Wang X, Zhuang J, Tong S, Jia J, Guo X. Evidence of mirror therapy for recruitment of ipsilateral motor pathways in stroke recovery: A resting fMRI study. Neurotherapeutics 2024; 21:e00320. [PMID: 38262102 PMCID: PMC10963941 DOI: 10.1016/j.neurot.2024.e00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Mirror therapy (MT) has been proposed to promote motor recovery post-stroke through activation of mirror neuron system, recruitment of ipsilateral motor pathways, or/and increasing attention toward the affected limb. However, neuroimaging evidence for these mechanisms is still lacking. To uncover the underlying mechanisms, we designed a randomized controlled study and used a voxel-based whole-brain analysis of resting-state fMRI to explore the brain reorganizations induced by MT. Thirty-five stroke patients were randomized to an MT group (n = 16) and a conventional therapy (CT) group (n = 19) for a 4-week intervention. Before and after the intervention, the Fugl-Meyer Assessment Upper Limb subscale (FMA-UL) and resting-state fMRI were collected. A healthy cohort (n = 16) was established for fMRI comparison. The changes in fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity were analyzed to investigate the impact of intervention. Results showed that greater FMA-UL improvement in the MT group was associated with the compensatory increase of fALFF in the contralesional precentral gyrus (M1) region and the re-establishment of functional connectivity between the bilateral M1 regions, which facilitate motor signals transmission via the ipsilateral motor pathways from the ipsilesional M1, contralesional M1, to the affected limb. A step-wise linear regression model revealed these two brain reorganization patterns collaboratively contributed to FMA-UL improvement. In conclusion, MT achieved motor rehabilitation primarily by recruitment of the ipsilateral motor pathways. Trial Registration Information: http://www.chictr.org.cn. Unique Identifier. ChiCTR-INR-17013644, submitted on December 2, 2017.
Collapse
Affiliation(s)
- Kexu Zhang
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Li Ding
- Department of Rehabilitation Medicine, Huashan Hospital Fudan University, Shanghai, China
| | - Xu Wang
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jinyang Zhuang
- Department of Rehabilitation Medicine, Huashan Hospital Fudan University, Shanghai, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China.
| | - Xiaoli Guo
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
8
|
Ramirez-Nava AG, Mercado-Gutierrez JA, Quinzaños-Fresnedo J, Toledo-Peral C, Vega-Martinez G, Gutierrez MI, Pacheco-Gallegos MDR, Hernández-Arenas C, Gutiérrez-Martínez J. Functional electrical stimulation therapy controlled by a P300-based brain-computer interface, as a therapeutic alternative for upper limb motor function recovery in chronic post-stroke patients. A non-randomized pilot study. Front Neurol 2023; 14:1221160. [PMID: 37669261 PMCID: PMC10470638 DOI: 10.3389/fneur.2023.1221160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Up to 80% of post-stroke patients present upper-limb motor impairment (ULMI), causing functional limitations in daily activities and loss of independence. UMLI is seldom fully recovered after stroke when using conventional therapeutic approaches. Functional Electrical Stimulation Therapy (FEST) controlled by Brain-Computer Interface (BCI) is an alternative that may induce neuroplastic changes, even in chronic post-stroke patients. The purpose of this work was to evaluate the effects of a P300-based BCI-controlled FEST intervention, for ULMI recovery of chronic post-stroke patients. Methods A non-randomized pilot study was conducted, including 14 patients divided into 2 groups: BCI-FEST, and Conventional Therapy. Assessments of Upper limb functionality with Action Research Arm Test (ARAT), performance impairment with Fugl-Meyer assessment (FMA), Functional Independence Measure (FIM) and spasticity through Modified Ashworth Scale (MAS) were performed at baseline and after carrying out 20 therapy sessions, and the obtained scores compared using Chi square and Mann-Whitney U statistical tests (𝛼 = 0.05). Results After training, we found statistically significant differences between groups for FMA (p = 0.012), ARAT (p < 0.001), and FIM (p = 0.025) scales. Discussion It has been shown that FEST controlled by a P300-based BCI, may be more effective than conventional therapy to improve ULMI after stroke, regardless of chronicity. Conclusion The results of the proposed BCI-FEST intervention are promising, even for the most chronic post-stroke patients often relegated from novel interventions, whose expected recovery with conventional therapy is very low. It is necessary to carry out a randomized controlled trial in the future with a larger sample of patients.
Collapse
Affiliation(s)
- Ana G. Ramirez-Nava
- Neurological Rehabilitation Division, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Tlalpan, Mexico
| | - Jorge A. Mercado-Gutierrez
- Medical Engineering Research Division, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Tlalpan, Mexico
| | - Jimena Quinzaños-Fresnedo
- Neurological Rehabilitation Division, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Tlalpan, Mexico
| | - Cinthya Toledo-Peral
- Medical Engineering Research Division, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Tlalpan, Mexico
| | - Gabriel Vega-Martinez
- Medical Engineering Research Division, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Tlalpan, Mexico
| | - Mario Ibrahin Gutierrez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías - Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Tlalpan, Mexico
| | | | - Claudia Hernández-Arenas
- Neurological Rehabilitation Division, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Tlalpan, Mexico
| | - Josefina Gutiérrez-Martínez
- Medical Engineering Research Division, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Tlalpan, Mexico
| |
Collapse
|
9
|
Binks JA, Emerson JR, Scott MW, Wilson C, van Schaik P, Eaves DL. Enhancing upper-limb neurorehabilitation in chronic stroke survivors using combined action observation and motor imagery therapy. Front Neurol 2023; 14:1097422. [PMID: 36937513 PMCID: PMC10017546 DOI: 10.3389/fneur.2023.1097422] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction For people who have had a stroke, recovering upper-limb function is a barrier to independence. When movement is difficult, mental practice can be used to complement physical therapy. In this within-participants study we investigated the effects of combined action observation and motor imagery (AO + MI) therapy on upper-limb recovery in chronic stroke survivors. Methods A Graeco-Latin Square design was used to counterbalance four mental practice conditions (AO + MI, AO, MI, Control) across four cup-stacking tasks of increasing complexity. Once a week, for five consecutive weeks, participants (n = 10) performed 16 mental practice trials under each condition. Each trial displayed a 1st person perspective of a cup-stacking task performed by an experienced model. For AO, participants watched each video and responded to an occasional color cue. For MI, participants imagined the effort and sensation of performing the action; cued by a series of still-images. For combined AO + MI, participants observed a video of the action while they simultaneously imagined performing the same action in real-time. At three time points (baseline; post-test; two-week retention test) participants physically executed the three mentally practiced cup-stacking tasks, plus a fourth unpractised sequence (Control), as quickly and accurately as possible. Results Mean movement execution times were significantly reduced overall in the post-test and the retention test compared to baseline. At retention, movement execution times were significantly shorter for combined AO + MI compared to both MI and the Control. Individual participants reported clinically important changes in quality of life (Stroke Impact Scale) and positive qualitative experiences of AO + MI (social validation). Discussion These results indicate that when physical practice is unsuitable, combined AO + MI therapy could offer an effective adjunct for neurorehabilitation in chronic stroke survivors.
Collapse
Affiliation(s)
- Jack Aaron Binks
- Department of Psychology, School of Social Sciences, Humanities and Law, Teesside University, Middlesbrough, United Kingdom
| | - Jonathan Reyes Emerson
- School of Health and Life Sciences, Allied Health Professions, Teesside University, Middlesbrough, United Kingdom
| | | | - Christopher Wilson
- Department of Psychology, School of Social Sciences, Humanities and Law, Teesside University, Middlesbrough, United Kingdom
| | - Paul van Schaik
- Department of Psychology, School of Social Sciences, Humanities and Law, Teesside University, Middlesbrough, United Kingdom
| | - Daniel Lloyd Eaves
- Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Craighero L, Mele S, Gaifas V, Bonaguri E, Straudi S. Evidence of motor resonance in stroke patients with severe upper limb function impairments. Cortex 2023; 159:16-25. [PMID: 36603404 DOI: 10.1016/j.cortex.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022]
Abstract
For the past fifteen years, observation of actions has proved to be effective in the motor rehabilitation of stroke. Despite this, no evidence has ever been provided that this practice is able to activate the efferent motor system of a limb unable to perform the observed action due to stroke. In fact, transcranial magnetic stimulation cannot easily be used in these patients, and the fMRI evidence is inconclusive. This creates a logical problem, as the effectiveness of action observation in functional recovery is attributed to its ability to evoke action simulation, up to sub-threshold muscle activation (i.e., motor resonance), in healthy individuals. To provide the necessary proof-of-concept, patients with severe upper limb function impairments and matched control participants were submitted to a verified action prediction paradigm. They were asked to watch videos showing gripping movements towards a graspable or an ungraspable object, and to press a button the instant the agent touched the object. The presence of more accurate responses for the graspable object trials is considered an indirect evidence of motor resonance. Participants were required to perform the task in two sessions which differed in the hand used to respond. Despite the serious difficulty of movement, 8 out of 18 patients were able to perform the task with their impaired hand. We found that the responses given by the paretic hand showed a modulation of the action prediction time no different from that showed by the non-paretic hand, which, in turn, did not differ from that showed by the matched control participants. The present proof-of-concept study shows that action observation involves the efferent motor system even when the hand used to respond is unable to perform the observed action due to a cortical lesion, providing the missing evidence to support the already established use of Action Observation Training (AOT) in motor rehabilitation of stroke.
Collapse
Affiliation(s)
- Laila Craighero
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| | - Sonia Mele
- Department of Neuroscience, Biomedicine & Movement Sciences, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy.
| | - Valentina Gaifas
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| | - Emma Bonaguri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy; Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Via Aldo Moro, 8, 44124 Ferrara, Italy.
| |
Collapse
|
11
|
Avraham E, Sacher Y, Maaravi-Hesseg R, Karni A, Doron R. Skill-learning by observation-training with patients after traumatic brain injury. Front Hum Neurosci 2022; 16:940075. [PMID: 36118978 PMCID: PMC9471376 DOI: 10.3389/fnhum.2022.940075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in Western society, and often results in functional and neuropsychological abnormalities. Memory impairment is one of the most significant cognitive implications after TBI. In the current study we investigated procedural memory acquisition by observational training in TBI patients. It was previously found that while practicing a new motor skill, patients engage in all three phases of skill learning–fast acquisition, between-session consolidation, and long-term retention, though their pattern of learning is atypical compared to healthy participants. A different set of studies showed that training by observing a motor task, generally prompted effective acquisition and consolidation of procedural knowledge in healthy participants. The aim of our study was to (i) evaluate the potential benefit of action observation in TBI patients. (ii) Examine the possibility of general improvement in performance between the first (24 h post-training) and second (2 weeks post-training) stage of the study. (iii) Investigate the link between patients’ ability to benefit from observational learning (via performance gains–speed and accuracy) and common measures of injury (such as severity of injury, functional and cognitive measures).
Collapse
Affiliation(s)
- Einat Avraham
- School of Behavioral Science, The Academic College, Tel Aviv-Yafo, Israel
- The Loewenstein Rehabilitation Medical Center, Ra’anana, Israel
- *Correspondence: Einat Avraham,
| | - Yaron Sacher
- The Loewenstein Rehabilitation Medical Center, Ra’anana, Israel
- Sackler Medical Faculty, Tel Aviv University, Tel Aviv-Yafo, Israel
- Yaron Sacher,
| | - Rinatia Maaravi-Hesseg
- Sagol Department of Neurobiology, Faculty of Natural Sciences, Brain–Behavior Research Center, University of Haifa, Haifa, Israel
- Rinatia Maaravi-Hesseg,
| | - Avi Karni
- Sagol Department of Neurobiology, Faculty of Natural Sciences, Brain–Behavior Research Center, University of Haifa, Haifa, Israel
- Sheba Medical Center, Ramat Gan, Israel
| | - Ravid Doron
- Department of Education and Psychology, The Open University, Ra’anana, Israel
| |
Collapse
|
12
|
Franceschini M, Ottaviani M, Romano P, Goffredo M, Pournajaf S, Lofrumento M, Proietti S, Sterpi I, Tricomi E, Tropea P, Corbo M, Fadiga L, Infarinato F. The Reaching Phase of Feeding and Self-Care Actions Optimizes Action Observation Effects in Chronic Stroke Subjects. Neurorehabil Neural Repair 2022; 36:574-586. [PMID: 36000699 DOI: 10.1177/15459683221110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The Action Observation Therapy (AOT) is a well-established post-stroke rehabilitation treatment based on the theoretical framework of the Mirror Neuron System (MNS) activation. However, AOT protocols are still heterogeneous in terms of video contents of observed actions. OBJECTIVE The aim of this study was to analyze electroencephalographic (EEG) recordings in stroke patients during the observation of different videos of task-specific upper limb movements, and to define which category of actions can elicit a stronger cortical activation in the observer's brain. METHODS Signals were analyzed from 19 chronic stroke subjects observing customized videos that represented 3 different categories of upper limb actions: Finalized Actions, Non-Finalized Actions, and Control Videos. The Event-Related Desynchronization in the µ and β bands was chosen to identify the involvement of the cerebral cortex: the area of the normalized power spectral density was calculated for each category and, deepening, for the reaching and completion sub-phases of Finalized Actions. For descriptive purposes, the time course of averaged signal power was described. The Kruskal-Wallis test (P < .05) was applied. RESULTS The analysis showed a greater desynchronization when subjects observed Finalized Actions with respect to Non-Finalized in all recorded areas; Control videos provoked a synchronization in the same areas and frequency bands. The reaching phase of feeding and self-care actions evoked a greater suppression both in µ and β bands. CONCLUSIONS The observation of finalized arm movements seems to elicit the strongest activation of the MNS in chronic stroke patients. This finding may help the clinicians to design future AOT-based stroke rehabilitation protocols. CLINICAL TRIAL REGISTRATION Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT04047134.
Collapse
Affiliation(s)
- Marco Franceschini
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy.,San Raffaele University, Rome, Italy
| | - Marco Ottaviani
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Paola Romano
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Michela Goffredo
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Sanaz Pournajaf
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Margherita Lofrumento
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico di Milano, Milano, Italy
| | | | - Irma Sterpi
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico di Milano, Milano, Italy
| | - Enrica Tricomi
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico di Milano, Milano, Italy
| | - Peppino Tropea
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico di Milano, Milano, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico di Milano, Milano, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy.,Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesco Infarinato
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| |
Collapse
|
13
|
Borges LR, Fernandes AB, Oliveira Dos Passos J, Rego IAO, Campos TF. Action observation for upper limb rehabilitation after stroke. Cochrane Database Syst Rev 2022; 8:CD011887. [PMID: 35930301 PMCID: PMC9354942 DOI: 10.1002/14651858.cd011887.pub3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Action observation (AO) is a physical rehabilitation approach that facilitates the occurrence of neural plasticity through the activation of the mirror-neural system, promoting motor recovery in people with stroke. OBJECTIVES To assess whether AO enhances upper limb motor function in people with stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register (last searched 18 May 2021), the Cochrane Central Register of Controlled Trials (18 May 2021), MEDLINE (1946 to 18 May 2021), Embase (1974 to 18 May 2021), and five additional databases. We also searched trial registries and reference lists. SELECTION CRITERIA Randomized controlled trials (RCTs) of AO alone or associated with physical practice in adults after stroke. The primary outcome was upper limb (arm and hand) motor function. Secondary outcomes included dependence on activities of daily living (ADL), motor performance, cortical activation, quality of life, and adverse effects. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials according to the predefined inclusion criteria, extracted data, assessed risk of bias using RoB 1, and applied the GRADE approach to assess the certainty of the evidence. The reviews authors contacted trial authors for clarification and missing information. MAIN RESULTS We included 16 trials involving 574 individuals. Most trials provided AO followed by the practice of motor actions. Training varied between 1 day and 8 weeks of therapy, 10 to 90 minutes per session. The time of AO ranged from 1 minute to 10 minutes for each motor action, task or movement observed. The total number of motor actions ranged from 1 to 3. Control comparisons included sham observation, physical therapy, and functional activity practice. PRIMARY OUTCOMES AO improved arm function (standardized mean difference (SMD) 0.39, 95% confidence interval (CI) 0.17 to 0.61; 11 trials, 373 participants; low-certainty evidence); and improved hand function (mean difference (MD) 2.76, 95% CI 1.04 to 4.49; 5 trials, 178 participants; low-certainty evidence). SECONDARY OUTCOMES AO did not improve ADL performance (SMD 0.37, 95% CI -0.34 to 1.08; 7 trials, 302 participants; very low-certainty evidence), or quality of life (MD 5.52, 95% CI -30.74 to 41.78; 2 trials, 30 participants; very low-certainty evidence). We were unable to pool the other secondary outcomes (motor performance and cortical activation). Only two trials reported adverse events without significant adverse effects. AUTHORS' CONCLUSIONS The effects of AO are small for arm function compared to any control group; for hand function the effects are large, but not clinically significant. For both, the certainty of evidence is low. There is no evidence of benefit or detriment from AO on ADL and quality of life of people with stroke; however, the certainty of evidence is very low. As such, our confidence in the effect estimate is limited because it will likely change with future research.
Collapse
Affiliation(s)
- Lorenna Rdm Borges
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Aline Bgs Fernandes
- Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Tania F Campos
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
14
|
Rizzolatti G, Fabbri-Destro M, Nuara A, Gatti R, Avanzini P. The role of mirror mechanism in the recovery, maintenance, and acquisition of motor abilities. Neurosci Biobehav Rev 2021; 127:404-423. [PMID: 33910057 DOI: 10.1016/j.neubiorev.2021.04.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/12/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
While it is well documented that the motor system is more than a mere implementer of motor actions, the possible applications of its cognitive side are still under-exploited, often remaining as poorly organized evidence. Here, we will collect evidence showing the value of action observation treatment (AOT) in the recovery of impaired motor abilities for a vast number of clinical conditions, spanning from traumatological patients to brain injuries and neurodegenerative diseases. Alongside, we will discuss the use of AOT in the maintenance of appropriate motor behavior in subjects at risk for events with dramatic physical consequences, like fall prevention in elderly people or injury prevention in sports. Finally, we will report that AOT can help to tune existing motor competencies in fields requiring precise motor control. We will connect all these diverse dots into the neurophysiological scenario offered by decades of research on the human mirror mechanism, discussing the potentialities for individualization. Empowered by modern technologies, AOT can impact individuals' safety and quality of life across the whole lifespan.
Collapse
Affiliation(s)
- Giacomo Rizzolatti
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| | | | - Arturo Nuara
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy; Università di Modena e Reggio Emilia, Dipartimento di Scienze Biomediche, Metaboliche, e Neuroscienze, Modena, Italy
| | - Roberto Gatti
- Istituto Clinico Humanitas, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Pietro Avanzini
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy; Istituto Clinico Humanitas, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
15
|
Chen Z, Xia N, He C, Gu M, Xu J, Han X, Huang X. Action observation treatment-based exoskeleton (AOT-EXO) for upper extremity after stroke: study protocol for a randomized controlled trial. Trials 2021; 22:222. [PMID: 33743788 PMCID: PMC7981809 DOI: 10.1186/s13063-021-05176-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background Stroke produces multiple symptoms, including sensory, motor, cognitive and psychological dysfunctions, among which motor deficit is the most common and is widely recognized as a major contributor to long-term functional disability. Robot-assisted training is effective in promoting upper extremity muscle strength and motor impairment recovery after stroke. Additionally, action observation treatment can enhance the effects of physical and occupational therapy by increasing neural activation. The AOT-EXO trial aims to investigate whether action observation treatment coupled with robot-assisted training could enhance motor circuit activation and improve upper extremity motor outcomes. Methods The AOT-EXO trial is a multicentre, prospective, three-group randomized controlled trial (RCT). We will screen and enrol 132 eligible patients in the trial implemented in the Department of Rehabilitation Medicine of Tongji Hospital, Optical Valley Branch of Tongji Hospital and Hubei Province Hospital of Integrated Chinese & Western Medicine in Wuhan, China. Prior to study participation, written informed consent will be obtained from eligible patients in accordance with the Declaration of Helsinki. The enrolled stroke patients will be randomized to three groups: the CT group (conventional therapy); EXO group (exoskeleton therapy) and AOT-EXO group (action observation treatment-based exoskeleton therapy). The patients will undergo blinded assessments at baseline, post-intervention (after 4 weeks) and follow-up (after 12 weeks). The primary outcome will be the Fugl-Meyer Assessment for Upper Extremity (FMA-UE). Secondary outcomes will include the Action Research Arm Test (ARAT), modified Barthel Index (MBI), kinematic metrics assessed by inertial measurement unit (IMU), resting motor threshold (rMT), motor evoked potentials (MEP), functional magnetic resonance imaging (fMRI) and safety outcomes. Discussion This trial will provide evidence regarding the feasibility and efficacy of the action observation treatment-based exoskeleton (AOT-EXO) for post-stroke upper extremity rehabilitation and elucidate the potential underlying kinematic and neurological mechanisms. Trial registration Chinese Clinical Trial Registry ChiCTR1900026656. Registered on 17 October 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05176-x.
Collapse
Affiliation(s)
- Zejian Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Nan Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Chang He
- Institute of Rehabilitation and Medical Robotics, State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Gu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Xiaohua Han
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China.
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China.
| |
Collapse
|
16
|
Mancuso M, Tondo SD, Costantini E, Damora A, Sale P, Abbruzzese L. Action Observation Therapy for Upper Limb Recovery in Patients with Stroke: A Randomized Controlled Pilot Study. Brain Sci 2021; 11:290. [PMID: 33652680 PMCID: PMC7996947 DOI: 10.3390/brainsci11030290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Due to the complexity of the interventions for upper limb recovery, at the moment there is a lack of evidence regarding innovative and effective rehabilitative interventions. Action Observation Training (AOT) constitutes a promising rehabilitative method to improve upper limb motor recovery in stroke patients. The aim of the present study was to evaluate the potential efficacy of AOT, both in upper limb recovery and in functional outcomes when compared to patients treated with task oriented training (TOT). Both treatments were added to traditional rehabilitative treatment. Thirty-two acute stroke patients at 15.6 days (±8.3) from onset, with moderate to severe upper limb impairment at baseline following their first-ever stroke, were enrolled and randomized into two groups: 16 in the experimental group (EG) and 16 in the control group (CG). The EG underwent 30 min sessions of AOT, and the CG underwent 30 min sessions of TOT. All participants received 20 sessions of treatment for four consecutive weeks (five days/week). The Fugl-Meyer Assessment for Upper Extremity (FMA-UE), Box and Block Test (BBT), Functional Independence Measure (FIM) and Modified Ashworth Scale (MAS) were administered at baseline (T0) and at the end of treatment (T1). No statistical differences were found at T0 for inclusion criteria between the CG and EG, whereas both groups improved significantly at T1. After the treatment period, the rehabilitative gain was greater in the EG compared to the CG for FMA-UE and FIM (all p < 0.05). Our results suggest that AOT can contribute to increased motor recovery in subacute stroke patients with moderate to severe upper limb impairment in the early phase after stroke. The improvements presented in this article, together with the lack of adverse events, confirm that the use of AOT should be broadened out to larger pools of subacute stroke patients.
Collapse
Affiliation(s)
- Mauro Mancuso
- Physical and Rehabilitative Medicine Unit, NHS-USL Tuscany South-Est, Via Senese 169, 58100 Grosseto, GR, Italy;
- Tuscany Rehabilitation Clinic, Montevarchi, Piazza del Volontariato 2, Montevarchi, 52025 Arezzo, AR, Italy; (S.D.T.); (A.D.); (L.A.)
| | - Serena Di Tondo
- Tuscany Rehabilitation Clinic, Montevarchi, Piazza del Volontariato 2, Montevarchi, 52025 Arezzo, AR, Italy; (S.D.T.); (A.D.); (L.A.)
| | - Enza Costantini
- Physical and Rehabilitative Medicine Unit, NHS-USL Tuscany South-Est, Via Senese 169, 58100 Grosseto, GR, Italy;
| | - Alessio Damora
- Tuscany Rehabilitation Clinic, Montevarchi, Piazza del Volontariato 2, Montevarchi, 52025 Arezzo, AR, Italy; (S.D.T.); (A.D.); (L.A.)
| | - Patrizio Sale
- Sant’Isidoro Hospital, FERB Onlus, Via Ospedale 34, 24069 Trescore Balneario, BG, Italy;
| | - Laura Abbruzzese
- Tuscany Rehabilitation Clinic, Montevarchi, Piazza del Volontariato 2, Montevarchi, 52025 Arezzo, AR, Italy; (S.D.T.); (A.D.); (L.A.)
| |
Collapse
|
17
|
Abstract
To date, both in monkeys and humans, very few studies have addressed the issue of the lateralization of the cortical parietal and premotor areas involved in the organization of voluntary movements and in-action understanding. In this review, we will first analyze studies in the monkey, describing the functional properties of neurons of the parieto-frontal circuits, involved in the organization of reaching-grasping actions, in terms of unilateral or bilateral control. We will concentrate, in particular, on the properties of the mirror neuron system (MNS). Then, we will consider the evidence about the mirror neuron mechanism in humans, describing studies in which action perception, as well as action execution, produces unilateral or bilateral brain activation. Finally, we will report some investigations demonstrating plastic changes of the MNS following specific unilateral brain damage, discussing how this plasticity can be related to the rehabilitation outcome
Collapse
|
18
|
Activation of cerebellum and basal ganglia during the observation and execution of manipulative actions. Sci Rep 2020; 10:12008. [PMID: 32686738 PMCID: PMC7371896 DOI: 10.1038/s41598-020-68928-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/29/2020] [Indexed: 12/02/2022] Open
Abstract
Studies on action observation mostly described the activation of a network of cortical areas, while less investigation focused specifically on the activation and role of subcortical nodes. In the present fMRI study, we investigated the recruitment of cerebellum and basal ganglia during the execution and observation of object manipulation performed with the right hand. The observation conditions consisted in: (a) observation of manipulative actions; (b) observation of sequences of random finger movements. In the execution conditions, participants had to perform the same actions or movements as in (a) and (b), respectively. The results of conjunction analysis showed significant shared activations during both observation and execution of manipulation in several subcortical structures, including: (1) cerebellar lobules V, VI, crus I, VIIIa and VIIIb (bilaterally); (2) globus pallidus, bilaterally, and left subthalamic nucleus; (3) red nucleus (bilaterally) and left thalamus. These findings support the hypothesis that the action observation/execution network also involves subcortical structures, such as cerebellum and basal ganglia, forming an integrated network. This suggests possible mechanisms, involving these subcortical structures, underlying learning of new motor skills, through action observation and imitation.
Collapse
|
19
|
Mann J. The medical avatar and its role in neurorehabilitation and neuroplasticity: A review. NeuroRehabilitation 2020; 46:467-482. [PMID: 32508340 DOI: 10.3233/nre-203063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND One of the most interesting emerging medical devices is the medical avatar - a digital representation of the patient that can be used toward myriad ends, the full potential of which remains to be explored. Medical avatars have been instantiated as telemedical tools used to establish a representation of the patient in tele-space, upon which data about the patient's health can be represented and goals and progress can be visually tracked. Manipulation of the medical avatar has also been explored as a means of increasing motivation and inducing neural plasticity. OBJECTIVE The article reviews the literature on body representation, simulation, and action-observation and explores how these components of neurorehabilitation are engaged by an avatar-based self-representation. METHODS Through a review of the literature on body representation, simulation, and action-observation and a review of how these components of neurorehabilitation can be engaged and manipulated with an avatar, the neuroplastic potential of the medical avatar is explored. Literature on the use of the medical avatar for neurorehabilitation is also reviewed. RESULTS This review demonstrates that the medical avatar has vast potentialities in neurorehabilitation and that further research on its use and effect is needed.
Collapse
Affiliation(s)
- Jessie Mann
- Virginia Tech Carilion Fralin Biomedical Research Institute, 2 Riverside Cr., Roanoke, VA 24016, USA. Tel.: + 1-201-423-3434; E-mail:
| |
Collapse
|
20
|
Casiraghi L, Alahmadi AAS, Monteverdi A, Palesi F, Castellazzi G, Savini G, Friston K, Gandini Wheeler-Kingshott CAM, D'Angelo E. I See Your Effort: Force-Related BOLD Effects in an Extended Action Execution-Observation Network Involving the Cerebellum. Cereb Cortex 2020; 29:1351-1368. [PMID: 30615116 PMCID: PMC6373696 DOI: 10.1093/cercor/bhy322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Action observation (AO) is crucial for motor planning, imitation learning, and social interaction, but it is not clear whether and how an action execution–observation network (AEON) processes the effort of others engaged in performing actions. In this functional magnetic resonance imaging (fMRI) study, we used a “squeeze ball” task involving different grip forces to investigate whether AEON activation showed similar patterns when executing the task or observing others performing it. Both in action execution, AE (subjects performed the visuomotor task) and action observation, AO (subjects watched a video of the task being performed by someone else), the fMRI signal was detected in cerebral and cerebellar regions. These responses showed various relationships with force mapping onto specific areas of the sensorimotor and cognitive systems. Conjunction analysis of AE and AO was repeated for the “0th” order and linear and nonlinear responses, and revealed multiple AEON nodes remapping the detection of actions, and also effort, of another person onto the observer’s own cerebrocerebellar system. This result implies that the AEON exploits the cerebellum, which is known to process sensorimotor predictions and simulations, performing an internal assessment of forces and integrating information into high-level schemes, providing a crucial substrate for action imitation.
Collapse
Affiliation(s)
- Letizia Casiraghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Adnan A S Alahmadi
- Diagnostic Radiography Technology Department, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah 80200-21589, Saudi Arabia.,NMR Research Unit, Queen Square Multiple Sclerosis (MS) Centre, Department of Neuroinflammation, Institute of Neurology, University College London (UCL), London, UK
| | - Anita Monteverdi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Brain MRI 3T Center, Neuroradiology Unit, IRCCS Mondino Foundation, Pavia, PV, Italy
| | - Gloria Castellazzi
- NMR Research Unit, Queen Square Multiple Sclerosis (MS) Centre, Department of Neuroinflammation, Institute of Neurology, University College London (UCL), London, UK.,Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Giovanni Savini
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Physics, University of Milan, Milan, Italy
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London (UCL), London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,NMR Research Unit, Queen Square Multiple Sclerosis (MS) Centre, Department of Neuroinflammation, Institute of Neurology, University College London (UCL), London, UK.,Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
21
|
Hioka A, Tada Y, Kitazato K, Akazawa N, Takagi Y, Nagahiro S. Action observation treatment improves gait ability in subacute to convalescent stroke patients. J Clin Neurosci 2020; 75:55-61. [PMID: 32234334 DOI: 10.1016/j.jocn.2020.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/20/2020] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the effects of action observation treatment (AOT) on gait ability in patients with subacute to convalescent stroke. Sixteen patients with subacute stroke were divided into a control group (n = 8) and AOT group (n = 8) when admitted to the convalescent ward. The control group received a conventional rehabilitation only. In addition to conventional rehabilitation, the AOT received AOT for 3 months (30 min per day 5 times per week). The AOT involved observing the action of another subject in a comfortable gait situation from the front, sides, and back via video and conducting the actual action. All participants were assessed during the main-assessment period, which included a baseline (i.e., when admitted to the convalescent ward) and 1, 2, and 3 months after baseline. The sub-assessment period at 2 and 3 months after baseline was conducted with participants who could walk independently. The main outcomes of the main-assessment and sub-assessment periods were Functional Ambulation Classification (FAC) and the 10-m walk test (10MWT), respectively. With respect to the FAC, we used a split plot design analysis of covariance to test the interaction between assessment time and group. There was no significant interaction between assessment time and group in FAC. However, a significant improvement of the 10MWT in the sub-assessment period was observed in the AOT group, but not the control group. Our results indicate that AOT may be an effective therapy for patients with subacute to convalescent stroke who can walk independently.
Collapse
Affiliation(s)
- Akemi Hioka
- Department of Physical Therapy, Faculty of Health and Welfare, Tokushima Bunri University, Tokushima City, Japan.
| | - Yoshiteru Tada
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Japan
| | - Keiko Kitazato
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Japan
| | - Naoki Akazawa
- Department of Physical Therapy, Faculty of Health and Welfare, Tokushima Bunri University, Tokushima City, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Japan
| | | |
Collapse
|
22
|
Brain Computer Interface-Based Action Observation Game Enhances Mu Suppression in Patients with Stroke. ELECTRONICS 2019. [DOI: 10.3390/electronics8121466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Action observation (AO), based on the mirror neuron theory, is a promising strategy to promote motor cortical activation in neurorehabilitation. Brain computer interface (BCI) can detect a user’s intention and provide them with brain state-dependent feedback to assist with patient rehabilitation. We investigated the effects of a combined BCI-AO game on power of mu band attenuation in stroke patients. Nineteen patients with subacute stroke were recruited. A BCI-AO game provided real-time feedback to participants regarding their attention to a flickering action video using steady-state visual-evoked potentials. All participants watched a video of repetitive grasping actions under two conditions: (1) BCI-AO game and (2) conventional AO, in random order. In the BCI-AO game, feedback on participants’ observation scores and observation time was provided. In conventional AO, a non-flickering video and no feedback were provided. The magnitude of mu suppression in the central motor, temporal, parietal, and occipital areas was significantly higher in the BCI-AO game than in the conventional AO. The magnitude of mu suppression was significantly higher in the BCI-AO game than in the conventional AO both in the affected and unaffected hemispheres. These results support the facilitatory effects of the BCI-AO game on mu suppression over conventional AO.
Collapse
|
23
|
Kwon HG, Kim JS, Lee MY. Brain activation induced by different strengths of hand grasp: a functional magnetic resonance imaging study. Neural Regen Res 2019; 15:875-879. [PMID: 31719252 PMCID: PMC6990776 DOI: 10.4103/1673-5374.268907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mirror neuron system can be activated by observation and execution of an action. It has an important function of action understanding. We investigated brain activations in humans by observing the strength of a hand grasp using functional magnetic resonance imaging. Twenty right-handed healthy individuals, consisting of 10 males and 10 females, aged 22.40 ± 2.04 years, were recruited into this study from September to November 2017 via posters. Light hand grasp task video showed a hand lightly grasping and releasing a ball repeatedly. Powerful hand grasp task video showed a hand tightly grasping and releasing a ball repeatedly. Functional magnetic resonance imaging block design paradigm comprised five stimulation blocks alternating with five baseline blocks. Stimulation blocks were presented with two stimulus tasks, consisting of a light grasp and a powerful grasp. Region of interest was defined around the inferior parietal lobule, inferior frontal gyrus, and superior temporal sulcus which have been called mirror neuron system. The inferior parietal lobule, fusiform, postcentral, occipital, temporal, and frontal gyri were activated during light and powerful grasp tasks. The BOLD signal response of a powerful grasp was stronger than that of a light grasp. These results suggest that brain activation of the inferior parietal lobule, which is the core brain region of the mirror neuron system, was stronger in the powerful grasp task than in the light grasp task. We believe that our results might be helpful for instructing rehabilitation of brain injury. This study was approved by the Institutional Review Board of Daegu Oriental Hospital of Daegu Haany University on September 8, 2017 (approval No. DHUMC-D-17020-PRO-01).
Collapse
Affiliation(s)
- Hyeok Gyu Kwon
- Department of Physical Therapy, College of Health Science, Eulji University, Gyeonggi, Republic of Korea
| | - Ju Sang Kim
- Department of Physical Therapy and Rehabilitation, Yeungnam University Hospital, Daegu, Republic of Korea
| | - Mi Young Lee
- Department of Physical Therapy, College of Health and Therapy, Daegu Haany University, Gyeongsansi, Republic of Korea
| |
Collapse
|
24
|
Modulation of Motor Cortical Activities by Action Observation and Execution in Patients with Stroke: An MEG Study. Neural Plast 2019; 2019:8481371. [PMID: 31781183 PMCID: PMC6875039 DOI: 10.1155/2019/8481371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/22/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
Action observation therapy has recently attracted increasing attention; however, the mechanisms through which action observation and execution (AOE) modulate neural activity in stroke patients remain unclear. This study was aimed at investigating the effects of action observation and two types of AOE on motor cortical activations after stroke using magnetoencephalography. Twenty patients with stroke and 20 healthy controls were recruited for the collection of data on the beta oscillatory activity in the primary motor cortex (M1). All participants performed the conditions of resting, observation only, and video observation combined with execution (video AOE). Stroke patients performed one additional condition of affected hand observation combined with execution (affected hand AOE). The relative change index of beta oscillations was calculated, and nonparametric tests were used to examine the differences in conditions. In stroke patients, the relative change index of M1 beta oscillatory activity under the video AOE condition was significantly lower than that under the observation only and affected hand AOE conditions. Moreover, M1 cortical activity did not significantly differ under the observation only and affected hand AOE conditions. For healthy controls, the relative change index under the video AOE condition was significantly lower than that under the observation only condition. In addition, no significant differences in relative change indices were found under the observation only and video AOE conditions between the 2 groups. This study provides new insight into the neural mechanisms underlying AOE, which supports the use of observing videos of normal movements during action observation therapy in stroke rehabilitation.
Collapse
|
25
|
Vourvopoulos A, Pardo OM, Lefebvre S, Neureither M, Saldana D, Jahng E, Liew SL. Effects of a Brain-Computer Interface With Virtual Reality (VR) Neurofeedback: A Pilot Study in Chronic Stroke Patients. Front Hum Neurosci 2019; 13:210. [PMID: 31275126 PMCID: PMC6593205 DOI: 10.3389/fnhum.2019.00210] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/03/2019] [Indexed: 01/13/2023] Open
Abstract
Rehabilitation for stroke patients with severe motor impairments (e.g., inability to perform wrist or finger extension on the affected side) is burdensome and difficult because most current rehabilitation options require some volitional movement to retrain the affected side. However, although these patients participate in therapy requiring volitional movement, previous research has shown that they may receive modest benefits from action observation, virtual reality (VR), and brain-computer interfaces (BCIs). These approaches have shown some success in strengthening key motor pathways thought to support motor recovery after stroke, in the absence of volitional movement. The purpose of this study was to combine the principles of VR and BCI in a platform called REINVENT and assess its effects on four chronic stroke patients across different levels of motor impairment. REINVENT acquires post-stroke EEG signals that indicate an attempt to move and drives the movement of a virtual avatar arm, allowing patient-driven action observation neurofeedback in VR. In addition, synchronous electromyography (EMG) data were also captured to monitor overt muscle activity. Here we tested four chronic stroke survivors and show that this EEG-based BCI can be safely used over repeated sessions by stroke survivors across a wide range of motor disabilities. Finally, individual results suggest that patients with more severe motor impairments may benefit the most from EEG-based neurofeedback, while patients with more mild impairments may benefit more from EMG-based feedback, harnessing existing sensorimotor pathways. We note that although this work is promising, due to the small sample size, these results are preliminary. Future research is needed to confirm these findings in a larger and more diverse population.
Collapse
Affiliation(s)
- Athanasios Vourvopoulos
- Neural Plasticity and Neurorehabilitation Laboratory, Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Octavio Marin Pardo
- Neural Plasticity and Neurorehabilitation Laboratory, Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Stéphanie Lefebvre
- Neural Plasticity and Neurorehabilitation Laboratory, Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Meghan Neureither
- Neural Plasticity and Neurorehabilitation Laboratory, Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - David Saldana
- Neural Plasticity and Neurorehabilitation Laboratory, Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Esther Jahng
- Neural Plasticity and Neurorehabilitation Laboratory, Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Sook-Lei Liew
- Neural Plasticity and Neurorehabilitation Laboratory, Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
26
|
Borges LRDM, Fernandes ABGS, Melo LP, Guerra RO, Campos TF. Action observation for upper limb rehabilitation after stroke. Cochrane Database Syst Rev 2018; 10:CD011887. [PMID: 30380586 PMCID: PMC6517007 DOI: 10.1002/14651858.cd011887.pub2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Action observation (AO) is a physical rehabilitation approach that facilitates the occurrence of neural plasticity through the activation of the mirror-neural system, promoting motor recovery in people with stroke. OBJECTIVES To assess whether action observation enhances motor function and upper limb motor performance and cortical activation in people with stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register (last searched 4 September 2017), the Central Register of Controlled Trials (24 October 2017), MEDLINE (1946 to 24 October 2017), Embase (1974 to 24 October 2017) and five additional databases. We also searched trial registries and reference lists. SELECTION CRITERIA Randomized controlled trials (RCTs) of AO, alone or associated with physical practice in adults after stroke. The primary outcome was upper limb motor function. Secondary outcomes included dependence on activities of daily living (ADL), motor performance, cortical activation, quality of life, and adverse effects. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials according to the pre-defined inclusion criteria, extracted data, assessed risk of bias, and applied the GRADE approach to assess the quality of the evidence. The reviews authors contacted trial authors for clarification and missing information. MAIN RESULTS We included 12 trials involving 478 individuals. A number of trials showed a high risk of bias and others an unclear risk of bias due to poor reporting. The quality of the evidence was 'low' for most of the outcomes and 'moderate' for hand function, according to the GRADE system. In most of the studies, AO was followed by some form of physical activity. PRIMARY OUTCOME the impact of AO on arm function showed a small significant effect (standardized mean difference (SMD) 0.36, 95% CI 0.13 to 0.60; 8 studies; 314 participants; low-quality evidence); and a large significant effect (mean difference (MD) 2.90, 95% CI 1.13 to 4.66; 3 studies; 132 participants; moderate-quality evidence) on hand function. SECONDARY OUTCOMES there was a large significant effect for ADL outcome (SMD 0.86, 95% CI 0.11 to 1.61; 4 studies, 226 participants; low-quality evidence). We were unable to pool other secondary outcomes to extract the evidence. Only two studies reported adverse effects without significant adverse AO events. AUTHORS' CONCLUSIONS We found evidence that AO is beneficial in improving upper limb motor function and dependence in activities of daily living (ADL) in people with stroke, when compared with any control group; however, we considered the quality of the evidence to be low. We considered the effect of AO on hand function to be large, but it does not appear to be clinically relevant, although we considered the quality of the evidence as moderate. As such, our confidence in the effect estimate is limited because it will likely change with future research.
Collapse
Affiliation(s)
- Lorenna RDM Borges
- Federal University of Rio Grande do NorteDepartment of Physical TherapyAv. Senador Salgado Filho, 3000.NatalRio Grande do NorteBrazil59078‐970
| | - Aline BGS Fernandes
- Federal University of Rio Grande do NorteDepartment of Physical TherapyAv. Senador Salgado Filho, 3000.NatalRio Grande do NorteBrazil59078‐970
| | - Luciana Protásio Melo
- Federal University of Rio Grande do NorteDepartment of Physical TherapyAv. Senador Salgado Filho, 3000.NatalRio Grande do NorteBrazil59078‐970
| | - Ricardo O Guerra
- Federal University of Rio Grande do NortePhD Program in Physical TherapyRua Senador Salgado, Filho 3000Lagoa NovaNatalRio Grande do NorteBrazil59072‐970
| | - Tania F Campos
- Federal University of Rio Grande do NorteDepartment of Physical TherapyAv. Senador Salgado Filho, 3000.NatalRio Grande do NorteBrazil59078‐970
| | | |
Collapse
|
27
|
Activation of mirror neuron system during gait observation in sub-acute stroke patients and healthy persons. J Clin Neurosci 2018; 60:79-83. [PMID: 30318398 DOI: 10.1016/j.jocn.2018.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 11/24/2022]
Abstract
The observation of walking improves gait ability in chronic stroke survivors. It has also been suggested that activation of the mirror neuron system contributes to this effect. However, activation of the mirror neuron system during gait observation has not yet been assessed in sub-acute stroke patients. The objective of this study was to clarify the activation of mirror neuron system during gait observation in sub-acute stroke patients and healthy persons. In this study, we sequentially enrolled five sub-acute stroke patients who had undergone gait training and nine healthy persons. We used fMRI to detect neuronal activation during gait observation. During the observation period in the stroke group, neural activity in the left inferior parietal lobule, right and left inferior frontal gyrus was significantly higher than during the rest period. In the healthy group, neural activity in the left inferior parietal lobule, left inferior frontal gyrus, left middle frontal gyrus, left superior temporal lobule and right and left middle temporal gyrus was significantly higher than during the rest period. The results indicate that the mirror neuron system was activated during gait observation in sub-acute stroke patients who had undergone gait training and also in healthy persons. Our findings suggest that gait observation treatment may provide a promising therapeutic strategy in sub-acute stroke patients who have experienced gait training.
Collapse
|
28
|
Lewis JW, Silberman MJ, Donai JJ, Frum CA, Brefczynski-Lewis JA. Hearing and orally mimicking different acoustic-semantic categories of natural sound engage distinct left hemisphere cortical regions. BRAIN AND LANGUAGE 2018; 183:64-78. [PMID: 29966815 PMCID: PMC6461214 DOI: 10.1016/j.bandl.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/22/2018] [Accepted: 05/06/2018] [Indexed: 05/10/2023]
Abstract
Oral mimicry is thought to represent an essential process for the neurodevelopment of spoken language systems in infants, the evolution of language in hominins, and a process that could possibly aid recovery in stroke patients. Using functional magnetic resonance imaging (fMRI), we previously reported a divergence of auditory cortical pathways mediating perception of specific categories of natural sounds. However, it remained unclear if or how this fundamental sensory organization by the brain might relate to motor output, such as sound mimicry. Here, using fMRI, we revealed a dissociation of activated brain regions preferential for hearing with the intent to imitate and the oral mimicry of animal action sounds versus animal vocalizations as distinct acoustic-semantic categories. This functional dissociation may reflect components of a rudimentary cortical architecture that links systems for processing acoustic-semantic universals of natural sound with motor-related systems mediating oral mimicry at a category level. The observation of different brain regions involved in different aspects of oral mimicry may inform targeted therapies for rehabilitation of functional abilities after stroke.
Collapse
Affiliation(s)
- James W Lewis
- Rockefeller Neurosciences Institute, Department of Physiology, Pharmacology & Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| | - Magenta J Silberman
- Rockefeller Neurosciences Institute, Department of Physiology, Pharmacology & Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Jeremy J Donai
- Rockefeller Neurosciences Institute, Department of Communication Sciences and Disorders, West Virginia University, Morgantown, WV 26506, USA
| | - Chris A Frum
- Rockefeller Neurosciences Institute, Department of Physiology, Pharmacology & Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Julie A Brefczynski-Lewis
- Rockefeller Neurosciences Institute, Department of Physiology, Pharmacology & Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
29
|
Winstein C, Varghese R. Been there, done that, so what’s next for arm and hand rehabilitation in stroke? NeuroRehabilitation 2018; 43:3-18. [DOI: 10.3233/nre-172412] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Carolee Winstein
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Rini Varghese
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
30
|
Laterality of Poststroke Cortical Motor Activity during Action Observation Is Related to Hemispheric Dominance. Neural Plast 2018; 2018:3524960. [PMID: 29997648 PMCID: PMC5994588 DOI: 10.1155/2018/3524960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 11/26/2022] Open
Abstract
Background Increased activity in the lesioned hemisphere has been related to improved poststroke motor recovery. However, the role of the dominant hemisphere—and its relationship to activity in the lesioned hemisphere—has not been widely explored. Objective Here, we examined whether the dominant hemisphere drives the lateralization of brain activity after stroke and whether this changes based on if the lesioned hemisphere is the dominant hemisphere or not. Methods We used fMRI to compare cortical motor activity in the action observation network (AON), motor-related regions that are active both during the observation and execution of an action, in 36 left hemisphere dominant individuals. Twelve individuals had nondominant, right hemisphere stroke, twelve had dominant, left-hemisphere stroke, and twelve were healthy age-matched controls. We previously found that individuals with left dominant stroke show greater ipsilesional activity during action observation. Here, we examined if individuals with nondominant, right hemisphere stroke also showed greater lateralized activity in the ipsilesional, right hemisphere or in the dominant, left hemisphere and compared these results with those of individuals with dominant, left hemisphere stroke. Results We found that individuals with right hemisphere stroke showed greater activity in the dominant, left hemisphere, rather than the ipsilesional, right hemisphere. This left-lateralized pattern matched that of individuals with left, dominant hemisphere stroke, and both stroke groups differed from the age-matched control group. Conclusions These findings suggest that action observation is lateralized to the dominant, rather than ipsilesional, hemisphere, which may reflect an interaction between the lesioned hemisphere and the dominant hemisphere in driving lateralization of brain activity after stroke. Hemispheric dominance and laterality should be carefully considered when characterizing poststroke neural activity.
Collapse
|
31
|
Aziz-Zadeh L, Kilroy E, Corcelli G. Understanding Activation Patterns in Shared Circuits: Toward a Value Driven Model. Front Hum Neurosci 2018; 12:180. [PMID: 29867409 PMCID: PMC5949354 DOI: 10.3389/fnhum.2018.00180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/17/2018] [Indexed: 01/06/2023] Open
Abstract
Over the past decade many studies indicate that we utilize our own motor system to understand the actions of other people. This mirror neuron system (MNS) has been proposed to be involved in social cognition and motor learning. However, conflicting findings regarding the underlying mechanisms that drive these shared circuits make it difficult to decipher a common model of their function. Here we propose adapting a “value-driven” model to explain discrepancies in the human mirror system literature and to incorporate this model with existing models. We will use this model to explain discrepant activation patterns in multiple shared circuits in the human data, such that a unified model may explain reported activation patterns from previous studies as a function of value.
Collapse
Affiliation(s)
- Lisa Aziz-Zadeh
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States.,Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Emily Kilroy
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States.,Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Giorgio Corcelli
- Department of Economics, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
32
|
Zhang JJQ, Fong KNK, Welage N, Liu KPY. The Activation of the Mirror Neuron System during Action Observation and Action Execution with Mirror Visual Feedback in Stroke: A Systematic Review. Neural Plast 2018; 2018:2321045. [PMID: 29853839 PMCID: PMC5941778 DOI: 10.1155/2018/2321045] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Objective To evaluate the concurrent and training effects of action observation (AO) and action execution with mirror visual feedback (MVF) on the activation of the mirror neuron system (MNS) and its relationship with the activation of the motor cortex in stroke individuals. Methods A literature search using CINAHL, PubMed, PsycINFO, Medline, Web of Science, and SCOPUS to find relevant studies was performed. Results A total of 19 articles were included. Two functional magnetic resonance imaging (fMRI) studies reported that MVF could activate the ipsilesional primary motor cortex as well as the MNS in stroke individuals, whereas two other fMRI studies found that the MNS was not activated by MVF in stroke individuals. Two clinical trials reported that long-term action execution with MVF induced a shift of activation toward the ipsilesional hemisphere. Five fMRI studies showed that AO activated the MNS, of which, three found the activation of movement-related areas. Five electroencephalography (EEG) studies demonstrated that AO or MVF enhanced mu suppression over the sensorimotor cortex. Conclusions MVF may contribute to stroke recovery by revising the interhemispheric imbalance caused by stroke due to the activation of the MNS. AO may also promote motor relearning in stroke individuals by activating the MNS and motor cortex.
Collapse
Affiliation(s)
- Jack J. Q. Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Nandana Welage
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - Karen P. Y. Liu
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
33
|
Müller S, Vallence AM, Winstein C. Investigation of Perceptual-Motor Behavior Across the Expert Athlete to Disabled Patient Skill Continuum can Advance Theory and Practical Application. J Mot Behav 2017; 50:697-707. [PMID: 29240533 DOI: 10.1080/00222895.2017.1408557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A framework is presented of how theoretical predictions can be tested across the expert athlete to disabled patient skill continuum. Common-coding theory is used as the exemplar to discuss sensory and motor system contributions to perceptual-motor behavior. Behavioral and neural studies investigating expert athletes and patients recovering from cerebral stroke are reviewed. They provide evidence of bi-directional contributions of visual and motor systems to perceptual-motor behavior. Majority of this research is focused on perceptual-motor performance or learning, with less on transfer. The field is ripe for research designed to test theoretical predictions across the expert athlete to disabled patient skill continuum. Our view has implications for theory and practice in sports science, physical education, and rehabilitation.
Collapse
Affiliation(s)
- Sean Müller
- a School of Psychology and Exercise Science, Murdoch University , Perth , Western Australia , Australia
| | - Ann-Maree Vallence
- a School of Psychology and Exercise Science, Murdoch University , Perth , Western Australia , Australia
| | - Carolee Winstein
- b Division of Biokinesiology and Physical Therapy , University of Southern California , Los Angeles , California , USA
| |
Collapse
|
34
|
Perez-Marcos D, Chevalley O, Schmidlin T, Garipelli G, Serino A, Vuadens P, Tadi T, Blanke O, Millán JDR. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study. J Neuroeng Rehabil 2017; 14:119. [PMID: 29149855 PMCID: PMC5693522 DOI: 10.1186/s12984-017-0328-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/31/2017] [Indexed: 01/05/2023] Open
Abstract
Background Technology-mediated neurorehabilitation is suggested to enhance training intensity and therefore functional gains. Here, we used a novel virtual reality (VR) system for task-specific upper extremity training after stroke. The system offers interactive exercises integrating motor priming techniques and embodied visuomotor feedback. In this pilot study, we examined (i) rehabilitation dose and training intensity, (ii) functional improvements, and (iii) safety and tolerance when exposed to intensive VR rehabilitation. Methods Ten outpatient stroke survivors with chronic (>6 months) upper extremity paresis participated in a ten-session VR-based upper limb rehabilitation program (2 sessions/week). Results All participants completed all sessions of the treatment. In total, they received a median of 403 min of upper limb therapy, with 290 min of effective training. Within that time, participants performed a median of 4713 goal-directed movements. Importantly, training intensity increased progressively across sessions from 13.2 to 17.3 movements per minute. Clinical measures show that despite being in the chronic phase, where recovery potential is thought to be limited, participants showed a median improvement rate of 5.3% in motor function (Fugl-Meyer Assessment for Upper Extremity; FMA-UE) post intervention compared to baseline, and of 15.4% at one-month follow-up. For three of them, this improvement was clinically significant. A significant improvement in shoulder active range of motion (AROM) was also observed at follow-up. Participants reported very low levels of pain, stress and fatigue following each session of training, indicating that the intensive VR intervention was well tolerated. No severe adverse events were reported. All participants expressed their interest in continuing the intervention at the hospital or even at home, suggesting high levels of adherence and motivation for the provided intervention. Conclusions This pilot study showed how a dedicated VR system could deliver high rehabilitation doses and, importantly, intensive training in chronic stroke survivors. FMA-UE and AROM results suggest that task-specific VR training may be beneficial for further functional recovery both in the chronic stage of stroke. Longitudinal studies with higher doses and sample sizes are required to confirm the therapy effectiveness. Trial registration This trial was retrospectively registered at ClinicalTrials.gov database (registration number NCT03094650) on 14 March 2017.
Collapse
Affiliation(s)
| | - Odile Chevalley
- MindMaze SA, Lausanne, Switzerland.,Laboratory of Cognitive Neuroscience, Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thomas Schmidlin
- Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Andrea Serino
- MindMaze SA, Lausanne, Switzerland.,Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Clinical Neurosciences, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Tej Tadi
- MindMaze SA, Lausanne, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - José D R Millán
- Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Chair in Brain-Machine Interface, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Functional Activation-Informed Structural Changes during Stroke Recovery: A Longitudinal MRI Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4345205. [PMID: 29204440 PMCID: PMC5674725 DOI: 10.1155/2017/4345205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/09/2017] [Accepted: 09/12/2017] [Indexed: 01/21/2023]
Abstract
Objective Neuroimaging studies revealed the functional reorganization or the structural changes during stroke recovery. However, previous studies did not combine the functional and structural information and the results might be affected by heterogeneous lesion. This study aimed to investigate functional activation-informed structural changes during stroke recovery. Methods MRI data of twelve stroke patients were collected at four consecutive time points during the first 3 months after stroke onset. Functional activation during finger-tapping task was used to inform the analysis of structural changes of activated brain regions. Correlation between structural changes in motor-related activated brain regions and motor function recovery was estimated. Results The averaged gray matter volume (aGMV) of contralesional activated brain regions and laterality index of gray matter volume (LIGMV) increased during stroke recovery, and LIGMV was positively correlated with Fugl-Meyer Index (FMI) at initial stage after stroke. The aGMV of bilateral activated brain regions was negatively correlated with FMI during the stroke recovery. Conclusion This study demonstrated that combining the stroke-induced functional reorganization and structural change provided new insights into the underlying innate plasticity process during stroke recovery. Significance This study proposed a new approach to integrate functional and structural information for investigating the innate plasticity after stroke.
Collapse
|
36
|
Dettmers C, Braun N, Büsching I, Hassa T, Debener S, Liepert J. [Neurofeedback-based motor imagery training for rehabilitation after stroke]. DER NERVENARZT 2017; 87:1074-1081. [PMID: 27573884 DOI: 10.1007/s00115-016-0185-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mental training, including motor observation and motor imagery, has awakened much academic interest. The presumed functional equivalence of motor imagery and motor execution has given hope that mental training could be used for motor rehabilitation after a stroke. Results obtained from randomized controlled trials have shown mixed results. Approximately half of the studies demonstrate positive effects of motor imagery training but the rest do not show an additional benefit. Possible reasons why motor imagery training has so far not become established as a robust therapeutic approach are discussed in detail. Moreover, more recent approaches, such as neurofeedback-based motor imagery or closed-loop systems are presented and the potential importance for motor learning and rehabilitation after a stroke is discussed.
Collapse
Affiliation(s)
- C Dettmers
- Kliniken Schmieder Konstanz, Eichhornstr.68, 78464, Konstanz, Deutschland.
| | - N Braun
- Abteilung für Neuropsychologie, Department für Psychologie, Fakultät VI - Medizin und Gesundheitswissenschaften, Universität Oldenburg, Oldenburg, Deutschland
| | - I Büsching
- Kliniken Schmieder Allensbach, Allensbach, Deutschland
| | - T Hassa
- Kliniken Schmieder Allensbach, Allensbach, Deutschland.,Lurija Institut, Konstanz, Deutschland
| | - S Debener
- Abteilung für Neuropsychologie, Department für Psychologie, Fakultät VI - Medizin und Gesundheitswissenschaften, Universität Oldenburg, Oldenburg, Deutschland
| | - J Liepert
- Kliniken Schmieder Allensbach, Allensbach, Deutschland
| |
Collapse
|
37
|
Lefebvre S, Liew SL. Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review. Front Neurol 2017; 8:29. [PMID: 28232816 PMCID: PMC5298973 DOI: 10.3389/fneur.2017.00029] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/23/2017] [Indexed: 01/19/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method to modulate the local field potential in neural tissue and consequently, cortical excitability. As tDCS is relatively portable, affordable, and accessible, the applications of tDCS to probe brain-behavior connections have rapidly increased in the last 10 years. One of the most promising applications is the use of tDCS to modulate excitability in the motor cortex after stroke and promote motor recovery. However, the results of clinical studies implementing tDCS to modulate motor excitability have been highly variable, with some studies demonstrating that as many as 50% or more of patients fail to show a response to stimulation. Much effort has therefore been dedicated to understand the sources of variability affecting tDCS efficacy. Possible suspects include the placement of the electrodes, task parameters during stimulation, dosing (current amplitude, duration of stimulation, frequency of stimulation), individual states (e.g., anxiety, motivation, attention), and more. In this review, we first briefly review potential sources of variability specific to stroke motor recovery following tDCS. We then examine how the anatomical variability in tDCS placement [e.g., neural target(s) and montages employed] may alter the neuromodulatory effects that tDCS exerts on the post-stroke motor system.
Collapse
Affiliation(s)
- Stephanie Lefebvre
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, Division of Biokinesiology and Physical Therapy, Department of Neurology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Sook-Lei Liew
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, Division of Biokinesiology and Physical Therapy, Department of Neurology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
38
|
Friesen CL, Bardouille T, Neyedli HF, Boe SG. Combined Action Observation and Motor Imagery Neurofeedback for Modulation of Brain Activity. Front Hum Neurosci 2017; 10:692. [PMID: 28119594 PMCID: PMC5223402 DOI: 10.3389/fnhum.2016.00692] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/26/2016] [Indexed: 12/27/2022] Open
Abstract
Motor imagery (MI) and action observation have proven to be efficacious adjuncts to traditional physiotherapy for enhancing motor recovery following stroke. Recently, researchers have used a combined approach called imagined imitation (II), where an individual watches a motor task being performed, while simultaneously imagining they are performing the movement. While neurofeedback (NFB) has been used extensively with MI to improve patients' ability to modulate sensorimotor activity and enhance motor recovery, the effectiveness of using NFB with II to modulate brain activity is unknown. This project tested the ability of participants to modulate sensorimotor activity during electroencephalography-based II-NFB of a complex, multi-part unilateral handshake, and whether this ability transferred to a subsequent bout of MI. Moreover, given the goal of translating findings from NFB research into practical applications, such as rehabilitation, the II-NFB system was designed with several user interface and user experience features, in an attempt to both drive user engagement and match the level of challenge to the abilities of the subjects. In particular, at easy difficulty levels the II-NFB system incentivized contralateral sensorimotor up-regulation (via event related desynchronization of the mu rhythm), while at higher difficulty levels the II-NFB system incentivized sensorimotor lateralization (i.e., both contralateral up-regulation and ipsilateral down-regulation). Thirty-two subjects, receiving real or sham NFB attended four sessions where they engaged in II-NFB training and subsequent MI. Results showed the NFB group demonstrated more bilateral sensorimotor activity during sessions 2–4 during II-NFB and subsequent MI, indicating mixed success for the implementation of this particular II-NFB system. Here we discuss our findings in the context of the design features included in the II-NFB system, highlighting limitations that should be considered in future designs.
Collapse
Affiliation(s)
- Christopher L Friesen
- Laboratory for Brain Recovery and Function, Dalhousie UniversityHalifax, NS, Canada; Department of Psychology and Neuroscience, Dalhousie UniversityHalifax, NS, Canada
| | - Timothy Bardouille
- Department of Psychology and Neuroscience, Dalhousie UniversityHalifax, NS, Canada; Biomedical Translational Imaging Centre, IWK Health CentreHalifax, NS, Canada; School of Physiotherapy, Dalhousie UniversityHalifax, NS, Canada
| | - Heather F Neyedli
- Department of Psychology and Neuroscience, Dalhousie UniversityHalifax, NS, Canada; School of Health and Human Performance, Dalhousie UniversityHalifax, NS, Canada
| | - Shaun G Boe
- Laboratory for Brain Recovery and Function, Dalhousie UniversityHalifax, NS, Canada; Department of Psychology and Neuroscience, Dalhousie UniversityHalifax, NS, Canada; School of Physiotherapy, Dalhousie UniversityHalifax, NS, Canada; School of Health and Human Performance, Dalhousie UniversityHalifax, NS, Canada
| |
Collapse
|
39
|
Martin M, Nitschke K, Beume L, Dressing A, Bühler LE, Ludwig VM, Mader I, Rijntjes M, Kaller CP, Weiller C. Brain activity underlying tool-related and imitative skills after major left hemisphere stroke. Brain 2016; 139:1497-516. [DOI: 10.1093/brain/aww035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/24/2016] [Indexed: 11/12/2022] Open
|
40
|
Garrison KA, Rogalsky C, Sheng T, Liu B, Damasio H, Winstein CJ, Aziz-Zadeh LS. Functional MRI Preprocessing in Lesioned Brains: Manual Versus Automated Region of Interest Analysis. Front Neurol 2015; 6:196. [PMID: 26441816 PMCID: PMC4585177 DOI: 10.3389/fneur.2015.00196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/21/2015] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) has significant potential in the study and treatment of neurological disorders and stroke. Region of interest (ROI) analysis in such studies allows for testing of strong a priori clinical hypotheses with improved statistical power. A commonly used automated approach to ROI analysis is to spatially normalize each participant's structural brain image to a template brain image and define ROIs using an atlas. However, in studies of individuals with structural brain lesions, such as stroke, the gold standard approach may be to manually hand-draw ROIs on each participant's non-normalized structural brain image. Automated approaches to ROI analysis are faster and more standardized, yet are susceptible to preprocessing error (e.g., normalization error) that can be greater in lesioned brains. The manual approach to ROI analysis has high demand for time and expertise, but may provide a more accurate estimate of brain response. In this study, commonly used automated and manual approaches to ROI analysis were directly compared by reanalyzing data from a previously published hypothesis-driven cognitive fMRI study, involving individuals with stroke. The ROI evaluated is the pars opercularis of the inferior frontal gyrus. Significant differences were identified in task-related effect size and percent-activated voxels in this ROI between the automated and manual approaches to ROI analysis. Task interactions, however, were consistent across ROI analysis approaches. These findings support the use of automated approaches to ROI analysis in studies of lesioned brains, provided they employ a task interaction design.
Collapse
Affiliation(s)
- Kathleen A Garrison
- Department of Psychiatry, Yale School of Medicine , New Haven, CT , USA ; Division of Biokinesiology and Physical Therapy, University of Southern California , Los Angeles, CA , USA ; Brain and Creativity Institute, University of Southern California , Los Angeles, CA , USA
| | - Corianne Rogalsky
- Brain and Creativity Institute, University of Southern California , Los Angeles, CA , USA ; Department of Speech and Hearing Science, Arizona State University , Tempe, AZ , USA
| | - Tong Sheng
- Brain and Creativity Institute, University of Southern California , Los Angeles, CA , USA ; Palo Alto VA Medical Center , Palo Alto, CA , USA ; Stanford University School of Medicine , Palo Alto, CA , USA
| | - Brent Liu
- Department of Biomedical Engineering, University of Southern California , Los Angeles, CA , USA
| | - Hanna Damasio
- Brain and Creativity Institute, University of Southern California , Los Angeles, CA , USA ; Department of Psychology, University of Southern California , Los Angeles, CA , USA
| | - Carolee J Winstein
- Division of Biokinesiology and Physical Therapy, University of Southern California , Los Angeles, CA , USA
| | - Lisa S Aziz-Zadeh
- Brain and Creativity Institute, University of Southern California , Los Angeles, CA , USA ; Department of Psychology, University of Southern California , Los Angeles, CA , USA ; Division of Occupational Science and Occupational Therapy, University of Southern California , Los Angeles, CA , USA
| |
Collapse
|
41
|
Borges LRDM, Melo LP, Fernandes ABGS, Guerra RO, Campos TF. Action observation for upper limb rehabilitation after stroke. Hippokratia 2015. [DOI: 10.1002/14651858.cd011887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lorenna RDM Borges
- Federal University of Rio Grande do Norte; Department of Physical Therapy; Av. Senador Salgado Filho, 3000. Natal Rio Grande do Norte Brazil 59078-970
| | - Luciana Protásio Melo
- Federal University of Rio Grande do Norte; Department of Physical Therapy; Av. Senador Salgado Filho, 3000. Natal Rio Grande do Norte Brazil 59078-970
| | - Aline BGS Fernandes
- Federal University of Rio Grande do Norte; Department of Physical Therapy; Av. Senador Salgado Filho, 3000. Natal Rio Grande do Norte Brazil 59078-970
| | - Ricardo O Guerra
- Federal University of Rio Grande do Norte; PhD Program in Physical Therapy; Rua Senador Salgado, Filho 3000 Lagoa Nova Natal Rio Grande do Norte Brazil 59072-970
| | - Tania F Campos
- Federal University of Rio Grande do Norte; Department of Physical Therapy; Av. Senador Salgado Filho, 3000. Natal Rio Grande do Norte Brazil 59078-970
| |
Collapse
|
42
|
Choe YK, Foster T, Asselin A, LeVander M, Baird J. Cognitive-linguistic effort in multidisciplinary stroke rehabilitation: Decreasing vs. increasing cues for word retrieval. Neuropsychol Rehabil 2015; 27:318-348. [PMID: 26366476 DOI: 10.1080/09602011.2015.1078820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Approximately 24% of stroke survivors experience co-occurring aphasia and hemiparesis. These individuals typically attend back-to-back therapy sessions. However, sequentially scheduled therapy may trigger physical and mental fatigue and have an adverse impact on treatment outcomes. The current study tested a hypothesis that exerting less effort during a therapy session would reduce overall fatigue and enhance functional recovery. Two stroke survivors chronically challenged by non-fluent aphasia and right hemiparesis sequentially completed verbal naming and upper-limb tasks on their home computers. The level of cognitive-linguistic effort in speech/language practice was manipulated by presenting verbal naming tasks in two conditions: Decreasing cues (i.e., most-to-least support for word retrieval), and Increasing cues (i.e., least-to-most support). The participants completed the same upper-limb exercises throughout the study periods. Both individuals showed a statistically significant advantage of decreasing cues over increasing cues in word retrieval during the practice period, but not at the end of the practice period or thereafter. The participant with moderate aphasia and hemiparesis achieved clinically meaningful gains in upper-limb functions following the decreasing cues condition, but not after the increasing cues condition. Preliminary findings from the current study suggest a positive impact of decreasing cues in the context of multidisciplinary stroke rehabilitation.
Collapse
Affiliation(s)
- Yu-Kyong Choe
- a Department of Communication Disorders , University of Massachusetts Amherst , Amherst , MA , USA
| | - Tammie Foster
- b Cooley Dickinson Hospital , Northampton , MA , USA
| | - Abigail Asselin
- a Department of Communication Disorders , University of Massachusetts Amherst , Amherst , MA , USA
| | - Meagan LeVander
- a Department of Communication Disorders , University of Massachusetts Amherst , Amherst , MA , USA
| | - Jennifer Baird
- c Department of Physical Therapy , St. Ambrose University , Davenport , IA , USA
| |
Collapse
|
43
|
Pazzaglia M, Galli G. Translating novel findings of perceptual-motor codes into the neuro-rehabilitation of movement disorders. Front Behav Neurosci 2015; 9:222. [PMID: 26347631 PMCID: PMC4543860 DOI: 10.3389/fnbeh.2015.00222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/07/2015] [Indexed: 12/16/2022] Open
Abstract
The bidirectional flow of perceptual and motor information has recently proven useful as rehabilitative tool for re-building motor memories. We analyzed how the visual-motor approach has been successfully applied in neurorehabilitation, leading to surprisingly rapid and effective improvements in action execution. We proposed that the contribution of multiple sensory channels during treatment enables individuals to predict and optimize motor behavior, having a greater effect than visual input alone. We explored how the state-of-the-art neuroscience techniques show direct evidence that employment of visual-motor approach leads to increased motor cortex excitability and synaptic and cortical map plasticity. This super-additive response to multimodal stimulation may maximize neural plasticity, potentiating the effect of conventional treatment, and will be a valuable approach when it comes to advances in innovative methodologies.
Collapse
Affiliation(s)
- Mariella Pazzaglia
- Dipartimento di Psicologia, Università degli Studi di Roma "La Sapienza" Rome, Italy ; IRCCS Santa Lucia Foundation Rome, Italy
| | | |
Collapse
|
44
|
Villamil-Ortiz JG, Cardona-Gomez GP. Comparative analysis of autophagy and tauopathy related markers in cerebral ischemia and Alzheimer's disease animal models. Front Aging Neurosci 2015; 7:84. [PMID: 26042033 PMCID: PMC4436888 DOI: 10.3389/fnagi.2015.00084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) and cerebral ischemia (CI) are neuropathologies that are characterized by aggregates of tau protein, a hallmark of cognitive disorder and dementia. Protein accumulation can be induced by autophagic failure. Autophagy is a metabolic pathway involved in the homeostatic recycling of cellular components. However, the role of autophagy in those tauopathies remains unclear. In this study, we performed a comparative analysis to identify autophagy related markers in tauopathy generated by AD and CI during short-term, intermediate, and long-term progression using the 3xTg-AD mouse model (aged 6,12, and 18 months) and the global CI 2-VO (2-Vessel Occlusion) rat model (1,15, and 30 days post-ischemia). Our findings confirmed neuronal loss and hyperphosphorylated tau aggregation in the somatosensory cortex (SS-Cx) of the 3xTg-AD mice in the late stage (aged 18 months), which was supported by a failure in autophagy. These results were in contrast to those obtained in the SS-Cx of the CI rats, in which we detected neuronal loss and tauopathy at 1 and 15 days post-ischemia, and this phenomenon was reversed at 30 days. We proposed that this phenomenon was associated with autophagy induction in the late stage, since the data showed a decrease in p-mTOR activity, an association of Beclin-1 and Vps34, a progressive reduction in PHF-1, an increase in LC3B puncta and autophago-lysosomes formation were observed. Furthermore, the survival pathways remained unaffected. Together, our comparative study suggest that autophagy could ameliorates tauopathy in CI but not in AD, suggesting a differential temporal approach to the induction of neuroprotection and the prevention of neurodegeneration.
Collapse
Affiliation(s)
| | - Gloria P. Cardona-Gomez
- *Correspondence: Gloria P. Cardona-Gomez, Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Calle 62 #52–59, Torre 1, Piso 4, Laboratorio 412, Antioquia, Medellín, Colombia
| |
Collapse
|
45
|
Winstein CJ, Kay DB. Translating the science into practice: shaping rehabilitation practice to enhance recovery after brain damage. PROGRESS IN BRAIN RESEARCH 2015; 218:331-60. [PMID: 25890145 DOI: 10.1016/bs.pbr.2015.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The revolution in neuroscience provided strong evidence for learning-dependent neuroplasticity and presaged the role of motor learning as essential for restorative therapies after stroke and other disabling neurological conditions. The scientific basis of motor learning has continued to evolve from a dominance of cognitive or information processing perspectives to a blend with neural science and contemporary social-cognitive-psychological science, which includes the neural and psychological underpinnings of motivation. This transformation and integration across traditionally separate domains is timely now that clinician scientists are developing novel, evidence-based therapies to maximize motor recovery in the place of suboptimal solutions. We will review recent evidence pertaining to therapeutic approaches that spring from an integrated framework of learning-dependent neuroplasticity along with the growing awareness of protocols that directly address the patient's fundamental psychological needs. Of importance, there is mounting evidence that when the individual's needs are considered in the context of instructions or expectations, the learning/rehabilitation process is accelerated.
Collapse
Affiliation(s)
- Carolee J Winstein
- Division of Biokinesiology and Physical Therapy, Ostrow School of Dentistry, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| | - Dorsa Beroukhim Kay
- Division of Biokinesiology and Physical Therapy, Ostrow School of Dentistry, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
46
|
Force control in chronic stroke. Neurosci Biobehav Rev 2015; 52:38-48. [PMID: 25704075 DOI: 10.1016/j.neubiorev.2015.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
Force control deficits are common dysfunctions after a stroke. This review concentrates on various force control variables associated with motor impairments and suggests new approaches to quantifying force control production and modulation. Moreover, related neurophysiological mechanisms were addressed to determine variables that affect force control capabilities. Typically, post stroke force control impairments include: (a) decreased force magnitude and asymmetrical forces between hands, (b) higher task error, (c) greater force variability, (d) increased force regularity, and (e) greater time-lag between muscular forces. Recent advances in force control analyses post stroke indicated less bimanual motor synergies and impaired low-force frequency structure. Brain imaging studies demonstrate possible neurophysiological mechanisms underlying force control impairments: (a) decreased activation in motor areas of the ipsilesional hemisphere, (b) increased activation in secondary motor areas between hemispheres, (c) cerebellum involvement, and (d) relatively greater interhemispheric inhibition from the contralesional hemisphere. Consistent with identifying neurophysiological mechanisms, analyzing bimanual motor synergies as well as low-force frequency structure will advance our understanding of post stroke force control.
Collapse
|
47
|
Sugg K, Müller S, Winstein C, Hathorn D, Dempsey A. Does Action Observation Training With Immediate Physical Practice Improve Hemiparetic Upper-Limb Function in Chronic Stroke? Neurorehabil Neural Repair 2015; 29:807-17. [DOI: 10.1177/1545968314565512] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. The mirror neuron network provides a neural mechanism to prime the motor system through action observation in stroke survivors. Objective. To examine whether action observation training with immediate physical practice improves upper-limb function in chronic stroke. Methods. In a within-subject design, 14 chronic stroke survivors were assessed at baseline, then participated in 2 weeks of relaxation-sham plus physical practice (control) and reassessed. Thereafter, they participated in 2 weeks of action observation training coupled with immediate physical practice (intervention), followed by a final assessment. Duration of each action observation video sequence (priming exposure) was 30 s followed immediately by practice of the observed motor skill. Results. There were significant improvements in control and intervention phases on primary outcome measures—Upper Extremity Fugl-Meyer Motor Assessment (FMA) and Functional Test of the Hemiparetic Upper Extremity (FTHUE)—as well as secondary outcome measures of self-perceptions of arm use. Gains in the primary outcomes were greater during the intervention phase (action observation + physical practice; FMA, 10.64; FTHUE level, 0.79, and tasks, 1.57) than during the control phase (relaxation-sham plus physical practice; FMA, 6.64; FTHUE level, 0.43, and tasks, 1.00). Interviews with participants highlighted the added value of watching an actor perform the movement before physically attempting to perform the action. Conclusions. This study provides preliminary evidence of the additive value of action observation plus physical practice over relaxation-sham plus physical practice. There appears to be capacity for further recovery of upper-limb function in chronic stroke that persists at least in the short term.
Collapse
Affiliation(s)
- Kita Sugg
- Murdoch University, Perth, Australia
| | | | | | - David Hathorn
- Western Australian Neuroscience Research Institute (WANRI), Perth, Australia
| | | |
Collapse
|
48
|
Laffont I, Bakhti K, Coroian F, van Dokkum L, Mottet D, Schweighofer N, Froger J. Innovative technologies applied to sensorimotor rehabilitation after stroke. Ann Phys Rehabil Med 2014; 57:543-551. [PMID: 25261273 DOI: 10.1016/j.rehab.2014.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
Abstract
Innovative technologies for sensorimotor rehabilitation after stroke have dramatically increased these past 20 years. Based on a review of the literature on "Medline" and "Web of Science" between 1990 and 2013, we offer an overview of available tools and their current level of validation. Neuromuscular electric stimulation and/or functional electric stimulation are widely used and highly suspected of being effective in upper or lower limb stroke rehabilitation. Robotic rehabilitation has yielded various results in the literature. It seems to have some effect on functional capacities when used for the upper limb. Its effectiveness in gait training is more controversial. Virtual reality is widely used in the rehabilitation of cognitive and motor impairments, as well as posture, with admitted benefits. Non-invasive brain stimulation (rTMS and TDCS) are promising in this indication but clinical evidence of their effectiveness is still lacking. In the same manner, these past five years, neurofeedback techniques based on brain signal recordings have emerged with a special focus on their therapeutic relevance in rehabilitation. Technological devices applied to rehabilitation are revolutionizing our clinical practices. Most of them are based on advances in neurosciences allowing us to better understand the phenomenon of brain plasticity, which underlies the effectiveness of rehabilitation. The acceptation and "real use" of those devices is still an issue since most of them are not easily available in current practice.
Collapse
Affiliation(s)
- I Laffont
- Département de médecine physique et de réadaptation, hôpital Lapeyronie, CHU de Montpellier, 191, boulevard du Doyen-Gaston-Giraud, 34295 Montpellier cedex 5, France; Movement to Health, Euromov, université Montpellier 1, 700, avenue du Pic-Saint-Loup, 34090 Montpellier, France.
| | - K Bakhti
- Département de médecine physique et de réadaptation, hôpital Lapeyronie, CHU de Montpellier, 191, boulevard du Doyen-Gaston-Giraud, 34295 Montpellier cedex 5, France; Movement to Health, Euromov, université Montpellier 1, 700, avenue du Pic-Saint-Loup, 34090 Montpellier, France
| | - F Coroian
- Département de médecine physique et de réadaptation, hôpital Lapeyronie, CHU de Montpellier, 191, boulevard du Doyen-Gaston-Giraud, 34295 Montpellier cedex 5, France; Movement to Health, Euromov, université Montpellier 1, 700, avenue du Pic-Saint-Loup, 34090 Montpellier, France
| | - L van Dokkum
- Département de médecine physique et de réadaptation, hôpital Lapeyronie, CHU de Montpellier, 191, boulevard du Doyen-Gaston-Giraud, 34295 Montpellier cedex 5, France; Movement to Health, Euromov, université Montpellier 1, 700, avenue du Pic-Saint-Loup, 34090 Montpellier, France
| | - D Mottet
- Movement to Health, Euromov, université Montpellier 1, 700, avenue du Pic-Saint-Loup, 34090 Montpellier, France
| | - N Schweighofer
- Movement to Health, Euromov, université Montpellier 1, 700, avenue du Pic-Saint-Loup, 34090 Montpellier, France; Computational Neuro-Rehabilitation Laboratory, University of Southern California, 1540 Alcazar Street, CHP 155, Los Angeles, CA 90089-9006, USA
| | - J Froger
- Movement to Health, Euromov, université Montpellier 1, 700, avenue du Pic-Saint-Loup, 34090 Montpellier, France; Département de médecine physique et de réadaptation, hôpital universitaire de rééducation et de réadaptation, CHU de Nîmes, Le Boucanet, 30240 Le-Grau-du-Roi, France
| |
Collapse
|
49
|
Song J, Young BM, Nigogosyan Z, Walton LM, Nair VA, Grogan SW, Tyler ME, Farrar-Edwards D, Caldera KE, Sattin JA, Williams JC, Prabhakaran V. Characterizing relationships of DTI, fMRI, and motor recovery in stroke rehabilitation utilizing brain-computer interface technology. FRONTIERS IN NEUROENGINEERING 2014; 7:31. [PMID: 25120466 PMCID: PMC4114288 DOI: 10.3389/fneng.2014.00031] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/08/2014] [Indexed: 11/13/2022]
Abstract
The relationship of the structural integrity of white matter tracts and cortical activity to motor functional outcomes in stroke patients is of particular interest in understanding mechanisms of brain structural and functional changes while recovering from stroke. This study aims to probe these underlying mechanisms using diffusion tensor imaging (DTI) and fMRI measures. We examined the structural integrity of the posterior limb of the internal capsule (PLIC) using DTI and corticomotor activity using motor-task fMRI in stroke patients who completed up to 15 sessions of rehabilitation therapy using Brain-Computer Interface (BCI) technology. We hypothesized that (1) the structural integrity of PLIC and corticomotor activity are affected by stroke; (2) changes in structural integrity and corticomotor activity following BCI intervention are related to motor recovery; (3) there is a potential relationship between structural integrity and corticomotor activity. We found that (1) the ipsilesional PLIC showed significantly decreased fractional anisotropy (FA) values when compared to the contralesional PLIC; (2) lower ipsilesional PLIC-FA values were significantly associated with worse motor outcomes (i.e., ipsilesional PLIC-FA and motor outcomes were positively correlated.); (3) lower ipsilesional PLIC-FA values were significantly associated with greater ipsilesional corticomotor activity during impaired-finger-tapping-task fMRI (i.e., ipsilesional PLIC-FA and ipsilesional corticomotor activity were negatively correlated), with an overall bilateral pattern of corticomotor activity observed; and (4) baseline FA values predicted motor recovery assessed after BCI intervention. These findings suggest that (1) greater vs. lesser microstructural integrity of the ipsilesional PLIC may contribute toward better vs. poor motor recovery respectively in the stroke-affected limb and demand lesser vs. greater cortical activity respectively from the ipsilesional motor cortex; and that (2) PLIC-FA is a promising biomarker in tracking and predicting motor functional recovery in stroke patients receiving BCI intervention.
Collapse
Affiliation(s)
- Jie Song
- Department of Radiology, University of Wisconsin - Madison Madison, WI, USA ; Department of Biomedical Engineering, University of Wisconsin - Madison Madison, WI, USA
| | - Brittany M Young
- Department of Radiology, University of Wisconsin - Madison Madison, WI, USA ; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health - Madison Madison, WI, USA ; Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health - Madison Madison, WI, USA
| | - Zack Nigogosyan
- Department of Radiology, University of Wisconsin - Madison Madison, WI, USA
| | - Leo M Walton
- Department of Biomedical Engineering, University of Wisconsin - Madison Madison, WI, USA ; Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health - Madison Madison, WI, USA
| | - Veena A Nair
- Department of Radiology, University of Wisconsin - Madison Madison, WI, USA
| | - Scott W Grogan
- Department of Radiology, University of Wisconsin - Madison Madison, WI, USA
| | - Mitchell E Tyler
- Department of Biomedical Engineering, University of Wisconsin - Madison Madison, WI, USA ; Departments of Orthopedics and Rehabilitation, University of Wisconsin - Madison Madison, WI, USA
| | - Dorothy Farrar-Edwards
- Department of Kinesiology, University of Wisconsin - Madison Madison, WI, USA ; Department of Medicine, University of Wisconsin - Madison Madison, WI, USA ; Department of Neurology, University of Wisconsin - Madison Madison, WI, USA
| | - Kristin E Caldera
- Departments of Orthopedics and Rehabilitation, University of Wisconsin - Madison Madison, WI, USA
| | - Justin A Sattin
- Department of Neurology, University of Wisconsin - Madison Madison, WI, USA
| | - Justin C Williams
- Department of Biomedical Engineering, University of Wisconsin - Madison Madison, WI, USA ; Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health - Madison Madison, WI, USA ; Department of Neurosurgery, University of Wisconsin - Madison Madison, WI, USA
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin - Madison Madison, WI, USA ; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health - Madison Madison, WI, USA ; Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health - Madison Madison, WI, USA ; Department of Neurology, University of Wisconsin - Madison Madison, WI, USA ; Department of Psychiatry, University of Wisconsin - Madison Madison, WI, USA ; Department of Psychology, University of Wisconsin - Madison Madison, WI, USA
| |
Collapse
|
50
|
Van Vugt FT, Ritter J, Rollnik JD, Altenmüller E. Music-supported motor training after stroke reveals no superiority of synchronization in group therapy. Front Hum Neurosci 2014; 8:315. [PMID: 24904358 PMCID: PMC4033001 DOI: 10.3389/fnhum.2014.00315] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/28/2014] [Indexed: 12/19/2022] Open
Abstract
Background: Music-supported therapy has been shown to be an effective tool for rehabilitation of motor deficits after stroke. A unique feature of music performance is that it is inherently social: music can be played together in synchrony. Aim: The present study explored the potential of synchronized music playing during therapy, asking whether synchronized playing could improve fine motor rehabilitation and mood. Method: Twenty-eight patients in neurological early rehabilitation after stroke with no substantial previous musical training were included. Patients learned to play simple finger exercises and familiar children's songs on the piano for 10 sessions of half an hour. Patients first received three individual therapy sessions and then continued in pairs. The patient pairs were divided into two groups. Patients in one group played synchronously (together group) whereas the patients in the other group played one after the other (in-turn group). To assess fine motor skill recovery the patients performed standard clinical tests such as the nine-hole-pegboard test (9HPT) and index finger-tapping speed and regularity, and metronome-paced finger tapping. Patients' mood was established using the Profile of Mood States (POMS). Results: Both groups showed improvements in fine motor control. In metronome-paced finger tapping, patients in both groups improved significantly. Mood tests revealed reductions in depression and fatigue in both groups. During therapy, patients in the in-turn group rated their partner as more sympathetic than the together-group in a visual-analog scale. Conclusions: Our results suggest that music-supported stroke rehabilitation can improve fine motor control and mood not only individually but also in patient pairs. Patients who were playing in turn rather than simultaneously tended to reveal greater improvement in fine motor skill. We speculate that patients in the former group may benefit from the opportunity to learn from observation.
Collapse
Affiliation(s)
- Floris T Van Vugt
- Institute of Music Physiology and Musicians' Medicine, University of Music, Drama, and Media Hanover Hanover, Germany ; Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, University Claude Bernard Lyon-1 Lyon, France
| | - Juliane Ritter
- Institute of Music Physiology and Musicians' Medicine, University of Music, Drama, and Media Hanover Hanover, Germany
| | - Jens D Rollnik
- BDH-Klinik, Institute for Neurorehabilitational Research (InFo), Teaching Hospital of Hanover Medical School Hessisch Oldendorf, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musicians' Medicine, University of Music, Drama, and Media Hanover Hanover, Germany
| |
Collapse
|