1
|
Pharmacological brain cytoprotection in acute ischaemic stroke — renewed hope in the reperfusion era. Nat Rev Neurol 2022; 18:193-202. [PMID: 35079135 PMCID: PMC8788909 DOI: 10.1038/s41582-021-00605-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 11/08/2022]
Abstract
For over 40 years, attempts to develop treatments that protect neurons and other brain cells against the cellular and biochemical consequences of cerebral ischaemia in acute ischaemic stroke (AIS) have been unsuccessful. However, the advent of intravenous thrombolysis and endovascular thrombectomy has taken us into a new era of treatment for AIS in which highly effective reperfusion therapy is widely available. In this context, cytoprotective treatments should be revisited as adjunctive treatment to reperfusion therapy. Renewed efforts should focus on developing new drugs that target multiple aspects of the ischaemic cascade, and previously developed drugs should be reconsidered if they produced robust cytoprotective effects in preclinical models and their safety profiles were reasonable in previous clinical trials. Several development pathways for cytoprotection as an adjunct to reperfusion can be envisioned. In this Review, we outline the targets for cytoprotective therapy and discuss considerations for future drug development, highlighting the recent ESCAPE-NA1 trial of nerinetide, which produced the most promising results to date. We review new types of clinical trial to evaluate whether cytoprotective drugs can slow infarct growth prior to reperfusion and/or ameliorate the consequences of reperfusion, such as haemorrhagic transformation. We also highlight how advanced brain imaging can help to identify patients with salvageable ischaemic tissue who are likely to benefit from cytoprotective therapy. In this Review, Fisher and Savitz consider how the era of reperfusion therapy in ischaemic stroke provides new hope for the development of cytoprotective therapies to further improve outcomes, highlighting how promising recent findings can be built on to benefit patients. Highly successful reperfusion therapy with intravenous thrombolysis and endovascular thrombectomy is now widely available for the treatment of acute ischaemic stroke, making cytoprotective therapy a viable additional treatment approach. Previous attempts to develop cytoprotective therapy have been unsuccessful, but this approach should now be reconsidered as an adjunctive therapy to thrombolysis and thrombectomy. New cytoprotective drugs should be developed to target multiple aspects of the ischaemic cascade, and previously developed drugs should be reconsidered. Trials should be conducted to evaluate the effects of cytoprotective drugs when administered before or after reperfusion therapy or both. Advanced brain imaging should be used to select patients who are most likely to benefit from cytoprotective treatment for enrolment in new trials.
Collapse
|
2
|
Zheng Z, Chen J, Chopp M. Mechanisms of Plasticity Remodeling and Recovery. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Andone S, Bajko Z, Motataianu A, Mosora O, Balasa R. The Role of Biomarkers in Atherothrombotic Stroke-A Systematic Review. Int J Mol Sci 2021; 22:ijms22169032. [PMID: 34445740 PMCID: PMC8396595 DOI: 10.3390/ijms22169032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
Stroke represents the primary debilitating disease in adults and is the second-highest cause of death worldwide. Atherosclerosis, the most prevalent etiology for vascular conditions, is a continuous process that gradually creates and develops endothelial lesions known as atherosclerotic plaques. These lesions lead to the appearance of atherothrombotic stroke. In the last decades, the role of biological biomarkers has emerged as either diagnostic, prognostic, or therapeutic targets. This article aims to create a list of potential biomarkers related to atherothrombotic stroke by reviewing the currently available literature. We identified 23 biomarkers and assessed their roles as risk factors, detection markers, prognostic predictors, and therapeutic targets. The central aspect of these biomarkers is related to risk stratification, especially for patients who have not yet suffered a stroke. Other valuable data are focused on the predictive capabilities for stroke patients regarding short-term and long-term prognosis, including their influence over the acute phase treatment, such as rt-PA thrombolysis. Although the role of biomarkers is anticipated to be of extreme value in the future, they cannot yet compete with traditional stroke neuroimaging markers but could be used as additional tools for etiological diagnosis.
Collapse
Affiliation(s)
- Sebastian Andone
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (S.A.); (R.B.)
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (O.M.)
| | - Zoltan Bajko
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (O.M.)
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology Targu Mures, 540136 Targu Mures, Romania
- Correspondence:
| | - Anca Motataianu
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (O.M.)
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology Targu Mures, 540136 Targu Mures, Romania
| | - Oana Mosora
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (O.M.)
| | - Rodica Balasa
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (S.A.); (R.B.)
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (O.M.)
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
4
|
Putzer AS, Worthmann H, Grosse GM, Goetz F, Martens-Lobenhoffer J, Dirks M, Kielstein JT, Lichtinghagen R, Budde U, Bode-Böger SM, Weissenborn K, Schuppner R. ADAMTS13 activity is associated with early neurological improvement in acute ischemic stroke patients treated with intravenous thrombolysis. J Thromb Thrombolysis 2020; 49:67-74. [PMID: 31482326 DOI: 10.1007/s11239-019-01941-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although intravenous thrombolysis (IVT) with recombinant tissue-plasminogen-activator represents a highly effective treatment in acute ischemic stroke patients, not every patient benefits. We hypothesized that pretreatment levels of mediators of hemostasis (VWF and ADAMTS13) and dimethylarginines (ADMA and SDMA) are associated with early neurological improvement and outcome after IVT in ischemic stroke. Moreover we aimed to investigate the link between ADAMTS13 and markers of inflammation (CRP, IL-6, MMP-9 and MCP-1). In 43 patients with acute ischemic stroke treated with IVT blood samples for determination of the different markers were strictly taken before treatment, as well as at 24 h, 3, 7 and 90 days after symptom onset. Early neurological improvement was assessed using the shift between National Institutes of Health Stroke Scale (NIHSS) at baseline and at 24 h. Outcome at 90 days was assessed using the modified Rankin Scale. The lowest quartile of ADAMTS13 activity was independently associated with less improvement in NIHSS (baseline-24 h) (OR 1.298, p = 0.050). No independent association of ADMA or SDMA levels at baseline with outcome could be shown. Furthermore, IL-6, MCP-1 and CRP levels at 90 days significantly differed between patients with low and high ADAMTS13 activity. Thus, ADAMTS13 might indicate or even influence efficacy of IVT.
Collapse
Affiliation(s)
- Anne-Sophie Putzer
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Gerrit M Grosse
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Friedrich Goetz
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, 30625, Hannover, Germany
| | - Jens Martens-Lobenhoffer
- Department of Clinical Pharmacology, Otto-Guericke-University of Magdeburg, University Hospital, 39106, Magdeburg, Germany
| | - Meike Dirks
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Jan T Kielstein
- Medical Clinic V, Academic Teaching Hospital Braunschweig, 38118, Brunswick, Germany
| | - Ralf Lichtinghagen
- Department of Clinical Chemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Ulrich Budde
- Medilys Laboratory, Asklepios Klinik Altona, 22763, Hamburg, Germany
| | - Stefanie M Bode-Böger
- Department of Clinical Pharmacology, Otto-Guericke-University of Magdeburg, University Hospital, 39106, Magdeburg, Germany
| | - Karin Weissenborn
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Ramona Schuppner
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
5
|
Ehrenreich H, Weissenborn K, Begemann M, Busch M, Vieta E, Miskowiak KW. Erythropoietin as candidate for supportive treatment of severe COVID-19. Mol Med 2020; 26:58. [PMID: 32546125 PMCID: PMC7297268 DOI: 10.1186/s10020-020-00186-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
In light of the present therapeutic situation in COVID-19, any measure to improve course and outcome of seriously affected individuals is of utmost importance. We recap here evidence that supports the use of human recombinant erythropoietin (EPO) for ameliorating course and outcome of seriously ill COVID-19 patients. This brief expert review grounds on available subject-relevant literature searched until May 14, 2020, including Medline, Google Scholar, and preprint servers. We delineate in brief sections, each introduced by a summary of respective COVID-19 references, how EPO may target a number of the gravest sequelae of these patients. EPO is expected to: (1) improve respiration at several levels including lung, brainstem, spinal cord and respiratory muscles; (2) counteract overshooting inflammation caused by cytokine storm/ inflammasome; (3) act neuroprotective and neuroregenerative in brain and peripheral nervous system. Based on this accumulating experimental and clinical evidence, we finally provide the research design for a double-blind placebo-controlled randomized clinical trial including severely affected patients, which is planned to start shortly.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | | | - Martin Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Department of Psychiatry & Psychotherapy, University Medical Center, Göttingen, Germany
| | - Markus Busch
- Center of Internal Medicine, Hannover Medical School, Hannover, Germany
| | - Eduard Vieta
- Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Kamilla W Miskowiak
- Psychiatric Centre Copenhagen, University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
6
|
Grosse GM, Schwedhelm E, Worthmann H, Choe CU. Arginine Derivatives in Cerebrovascular Diseases: Mechanisms and Clinical Implications. Int J Mol Sci 2020; 21:ijms21051798. [PMID: 32150996 PMCID: PMC7084464 DOI: 10.3390/ijms21051798] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023] Open
Abstract
The amino acid L-arginine serves as substrate for the nitric oxide synthase which is crucial in vascular function and disease. Derivatives of arginine, such as asymmetric (ADMA) and symmetric dimethylarginine (SDMA), are regarded as markers of endothelial dysfunction and have been implicated in vascular disorders. While there is a variety of studies consolidating ADMA as biomarker of cerebrovascular risk, morbidity and mortality, SDMA is currently emerging as an interesting metabolite with distinct characteristics in ischemic stroke. In contrast to dimethylarginines, homoarginine is inversely associated with adverse events and mortality in cerebrovascular diseases and might constitute a modifiable protective risk factor. This review aims to provide an overview of the current evidence for the pathophysiological role of arginine derivatives in cerebrovascular ischemic diseases. We discuss the complex mechanisms of arginine metabolism in health and disease and its potential clinical implications in diverse aspects of ischemic stroke.
Collapse
Affiliation(s)
- Gerrit M. Grosse
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
- Correspondence:
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20249 Hamburg, Germany;
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.), partner site Hamburg/Kiel/Lübeck, 20249 Hamburg, Germany
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Chi-un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20249 Hamburg, Germany;
| |
Collapse
|
7
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
8
|
Endogenous regeneration: Engineering growth factors for stroke. Neurochem Int 2017; 107:57-65. [PMID: 28411103 DOI: 10.1016/j.neuint.2017.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022]
Abstract
Despite the efforts in developing therapeutics for stroke, recombinant tissue plasminogen activator (rtPA) remains the only FDA approved drug for ischemic stroke. Regenerative medicine targeting endogenous growth factors has drawn much interest in the clinical field as it provides potential restoration for the damaged brain tissue without being limited by a narrow therapeutic window. To date, most of the translational studies using regenerative medicines have encountered problems and failures. In this review, we discuss the effects of some trophic factors which include of erythropoietin (EPO), brain derived neurotrophic factor (BDNF), granulocyte-colony stimulating factor (G-CSF), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), epidermal growth factor (EGF) and heparin binding epidermal growth factor (HB-EGF) in experimental ischemic stroke models and elaborate the lost in translation of the candidate growth factors from bench to bedside. Several new methodologies have been developed to overcome the caveats in translational studies. This review highlights the latest bioengineering approaches including the controlled release and delivery of growth factors by hydrogel-based scaffolds and the enhancement of half-life and selectivity of growth factors by a novel approach facilitated by glycosaminoglycans.
Collapse
|
9
|
Grasso G, Alafaci C, Ghezzi P. Is erythropoietin a worthy candidate for traumatic brain injury or are we heading the wrong way? F1000Res 2016; 5:911. [PMID: 27239280 PMCID: PMC4879931 DOI: 10.12688/f1000research.8723.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 01/23/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the modern society. Although primary prevention is the only strategy that can counteract the primary brain damage, numerous preclinical studies have been accumulated in order to find therapeutic strategies against the secondary damage. In this scenario erythropoietin (EPO) has been shown to be a promising candidate as neuroprotective agent. A recent clinical trial, however, has shown that EPO has not an overall effect on outcomes following TBI thus renewing old concerns. However, the results of a prespecified sensitivity analysis indicate that the effect of EPO on mortality remains still unclear. In the light of these observations, further investigations are needed to resolve doubts on EPO effectiveness in order to provide a more solid base for tailoring conclusive clinical trials.
Collapse
Affiliation(s)
- Giovanni Grasso
- Section of Neurosurgery, Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo, 90100, Italy
| | - Concetta Alafaci
- Department of Neurosurgery, University of Messina, Messina, 98100, Italy
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Falmer, BN1 9PX, UK
| |
Collapse
|
10
|
Åberg ND, Stanne TM, Jood K, Schiöler L, Blomstrand C, Andreasson U, Blennow K, Zetterberg H, Isgaard J, Jern C, Svensson J. Serum erythropoietin and outcome after ischaemic stroke: a prospective study. BMJ Open 2016; 6:e009827. [PMID: 26916692 PMCID: PMC4769431 DOI: 10.1136/bmjopen-2015-009827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Erythropoietin (EPO), which is inversely associated with blood haemoglobin (Hb), exerts neuroprotective effects in experimental ischaemic stroke (IS). However, clinical treatment trials have so far been negative. Here, in patients with IS, we analysed whether serum EPO is associated with (1) initial stroke severity, (2) recovery and (3) functional outcome. DESIGN Prospective. Controls available at baseline. SETTING A Swedish hospital-initiated study with outpatient follow-up after 3 months. PARTICIPANTS Patients (n=600; 64% males, mean age 56 years, controls n=600) were included from the Sahlgrenska Academy Study on IS (SAHLSIS). PRIMARY AND SECONDARY OUTCOME MEASURES In addition to EPO and Hb, initial stroke severity was assessed by the Scandinavian Stroke Scale (SSS) and compared with SSS after 3 months (follow-up) as a measure of recovery. Functional outcome was evaluated using the modified Rankin Scale (mRS) at follow-up. Serum EPO and SSS were divided into quintiles in the multivariate regression analyses. RESULTS Serum EPO was 21% and 31% higher than in controls at the acute phase of IS and follow-up, respectively. In patients, acute serum EPO was 19.5% higher in severe versus mild IS. The highest acute EPO quintile adjusted for sex, age and Hb was associated with worse stroke severity quintile (OR 1.70, 95% CI 1.00 to 2.87), better stroke recovery quintile (OR 1.93, CI 1.09 to 3.41) and unfavourable mRS 3-6 (OR 2.59, CI 1.15 to 5.80). However, the fourth quintile of EPO increase (from acute to follow-up) was associated with favourable mRS 0-2 (OR 3.42, CI 1.46 to 8.03). Only the last association withstood full adjustment. CONCLUSIONS The crude associations between EPO and worse stroke severity and outcome lost significance after multivariate modelling. However, in patients in whom EPO increased, the association with favourable outcome remained after adjustment for multiple covariates.
Collapse
Affiliation(s)
- N David Åberg
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center of Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tara M Stanne
- Department of Medical and Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Jood
- Department for Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linus Schiöler
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christian Blomstrand
- Center of Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department for Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- UCL Institute of Neurology, London, UK
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Christina Jern
- Department of Medical and Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Nucci LP, Silva HR, Giampaoli V, Mamani JB, Nucci MP, Gamarra LF. Stem cells labeled with superparamagnetic iron oxide nanoparticles in a preclinical model of cerebral ischemia: a systematic review with meta-analysis. Stem Cell Res Ther 2015; 6:27. [PMID: 25889904 PMCID: PMC4425914 DOI: 10.1186/s13287-015-0015-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 12/17/2022] Open
Abstract
Introduction Although there is an increase in clinical trials assessing the efficacy of cell therapy in structural and functional regeneration after stroke, there are not enough data in the literature describing the best cell type to be used, the best route, and also the best nanoparticle to analyze these stem cells in vivo. This review analyzed published data on superparamagnetic iron oxide nanoparticle (SPION)-labeled stem cells used for ischemic stroke therapy. Method We performed a systematic review and meta-analysis of data from experiments testing the efficacy of cellular treatment with SPION versus no treatment to improve behavioral or modified neural scale outcomes in animal models of stroke by the Cochrane Collaboration and indexed in EMBASE, PubMed, and Web of Science since 2000. To test the impact of study quality and design characteristics, we used random-effects meta-regression. In addition, trim and fill were used to assess publication bias. Results The search retrieved 258 articles. After application of the inclusion criteria, 24 reports published between January 2000 and October 2014 were selected. These 24 articles were analyzed for nanoparticle characteristics, stem cell types, and efficacy in animal models. Conclusion This study highlights the therapeutic role of stem cells in stroke and emphasizes nanotechnology as an important tool for monitoring stem cell migration to the affected neurological locus.
Collapse
Affiliation(s)
- Leopoldo P Nucci
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701, Morumbi, CEP: 05651-901, São Paulo, Brazil. .,Universidade Federal de São Paulo, Rua Sena Madureira, 1500 - Vila Clementino, 04021-001, São Paulo-SP, Brazil.
| | - Helio R Silva
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701, Morumbi, CEP: 05651-901, São Paulo, Brazil. .,Santa Casa Misericórdia de São Paulo, Dr. Cesario Motta Junior, 61 - Vila Buarque, 01221-020, São Paulo-SP, Brazil.
| | - Viviana Giampaoli
- Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010 - Cidade Universitária, 05508-090, São Paulo-SP, Brazil.
| | - Javier B Mamani
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701, Morumbi, CEP: 05651-901, São Paulo, Brazil.
| | - Mariana P Nucci
- LIM44, Universidade de São Paulo, Rua Dr Éneas de Carvalho Aguiar, 255 - Cerqueira César, 05403-000, São Paulo-SP, Brazil.
| | - Lionel F Gamarra
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701, Morumbi, CEP: 05651-901, São Paulo, Brazil. .,Universidade Federal de São Paulo, Rua Sena Madureira, 1500 - Vila Clementino, 04021-001, São Paulo-SP, Brazil. .,Santa Casa Misericórdia de São Paulo, Dr. Cesario Motta Junior, 61 - Vila Buarque, 01221-020, São Paulo-SP, Brazil.
| |
Collapse
|
12
|
|
13
|
Rapoport RM. Acute nitric oxide synthase inhibition and endothelin-1-dependent arterial pressure elevation. Front Pharmacol 2014; 5:57. [PMID: 24744731 PMCID: PMC3978292 DOI: 10.3389/fphar.2014.00057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/15/2014] [Indexed: 11/13/2022] Open
Abstract
Key evidence that endogenous nitric oxide (NO) inhibits the continuous, endothelin (ET)-1-mediated drive to elevate arterial pressure includes demonstrations that ET-1 mediates a significant component of the pressure elevated by acute exposure to NO synthase (NOS) inhibitors. This review examines the characteristics of this pressure elevation in order to elucidate potential mechanisms associated with the negative regulation of ET-1 by NO and, thereby, provide potential insight into the vascular pathophysiology underlying NO dysregulation. We surmise that the magnitude of the ET-1-dependent component of the NOS inhibitor-elevated pressure is (1) independent of underlying arterial pressure and other pressor pathways activated by the NOS inhibitors and (2) dependent on relatively higher NOS inhibitor dose, release of stored and de novo synthesized ET-1, and ETA receptor-mediated increased vascular resistance. Major implications of these conclusions include: (1) the marked variation of the ET-1-dependent component, i.e., from 0 to 100% of the pressure elevation, reflects the NO-ET-1 regulatory pathway. Thus, NOS inhibitor-mediated, ET-1-dependent pressure elevation in vascular pathophysiologies is an indicator of the level of compromised/enhanced function of this pathway; (2) NO is a more potent inhibitor of ET-1-mediated elevated arterial pressure than other pressor pathways, due in part to inhibition of intravascular pressure-independent release of ET-1. Thus, the ET-1-dependent component of pressure elevation in vascular pathophysiologies associated with NO dysregulation is of greater magnitude at higher levels of compromised NO.
Collapse
Affiliation(s)
- Robert M Rapoport
- Research Service, Department of Pharmacology and Cell Biophysics, Veterans Affairs Medical Center, University of Cincinnati College of Medicine Cincinnati, OH, USA
| |
Collapse
|
14
|
Kurtoglu E, Balta S, Sincer I, Korkmaz H. Letter by Kurtoglu et al Regarding Article, “Asymmetric Dimethylarginine in Response to Recombinant Tissue-Type Plasminogen Activator and Erythropoietin in Acute Stroke”. Stroke 2013; 44:e229. [DOI: 10.1161/strokeaha.113.003236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ertugrul Kurtoglu
- Department of Cardiology, Elazig Training and Research Hospital, Elazig, Turkey
| | - Sevket Balta
- Department of Cardiology, Gulhane Medical Faculty, Ankara, Turkey
| | - Isa Sincer
- Department of Cardiology, Gaziantep State Hospital, Gaziantep, Turkey
| | - Hasan Korkmaz
- Department of Cardiology, Firat University Medical School, Elazig, Turkey
| |
Collapse
|
15
|
Worthmann H, Kielstein JT, Weissenborn K. Response to letter regarding article, "Asymmetric dimethylarginine in response to recombinant tissue-type plasminogen activator and erythropoietin in acute stroke". Stroke 2013; 44:e230. [PMID: 24130135 DOI: 10.1161/strokeaha.113.003259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hans Worthmann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|