1
|
Reiländer A, Pilatus U, Schüre JR, Shrestha M, Deichmann R, Nöth U, Hattingen E, Gracien RM, Wagner M, Seiler A. Impaired oxygen extraction and adaptation of intracellular energy metabolism in cerebral small vessel disease. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100162. [PMID: 36851996 PMCID: PMC9957754 DOI: 10.1016/j.cccb.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND We aimed to investigate whether combined phosphorous (31P) magnetic resonance spectroscopic imaging (MRSI) and quantitative T 2 ' mapping are able to detect alterations of the cerebral oxygen extraction fraction (OEF) and intracellular pH (pHi) as markers the of cellular energy metabolism in cerebral small vessel disease (SVD). MATERIALS AND METHODS 32 patients with SVD and 17 age-matched healthy control subjects were examined with 3-dimensional 31P MRSI and oxygenation-sensitive quantitative T 2 ' mapping (1/ T 2 ' = 1/T2* - 1/T2) at 3 Tesla (T). PHi was measured within the white matter hyperintensities (WMH) in SVD patients. Quantitative T 2 ' values were averaged across the entire white matter (WM). Furthermore, T 2 ' values were extracted from normal-appearing WM (NAWM) and the WMH and compared between patients and controls. RESULTS Quantitative T 2 ' values were significantly increased across the entire WM and in the NAWM in patients compared to control subjects (149.51 ± 16.94 vs. 138.19 ± 12.66 ms and 147.45 ± 18.14 vs. 137.99 ± 12.19 ms, p < 0.05). WM T 2 ' values correlated significantly with the WMH load (ρ=0.441, p = 0.006). Increased T 2 ' was significantly associated with more alkaline pHi (ρ=0.299, p < 0.05). Both T 2 ' and pHi were significantly positively correlated with vascular pulsatility in the distal carotid arteries (ρ=0.596, p = 0.001 and ρ=0.452, p = 0.016). CONCLUSIONS This exploratory study found evidence of impaired cerebral OEF in SVD, which is associated with intracellular alkalosis as an adaptive mechanism. The employed techniques provide new insights into the pathophysiology of SVD with regard to disease-related consequences on the cellular metabolic state.
Collapse
Key Words
- BBB, blood-brain barrier
- CBF, cerebral blood flow
- CBV, cerebral blood volume
- CMRO2, Cerebral metabolic rate of oxygen
- Cellular energy metabolism
- DTI, diffusion tensor imaging
- GE, gradient echo
- Hb, hemoglobin
- ICA, internal carotid artery
- MR spectroscopy
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- MRSI, magnetic resonance spectroscopic imaging
- Microstructural impairment
- NAWM, normal-appearing white matter
- OEF, oxygen extraction fraction
- Oxygen extraction fraction
- PI, Pulsatility index
- RF, radio frequency
- SVD, cerebral small vessel disease
- Small vessel disease
- TR, repetition time
- WM, white matter
- WMH, white matter hyperintensities
- pHi, intracellular pH
- quantitative MRI
Collapse
Affiliation(s)
- Annemarie Reiländer
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Jan-Rüdiger Schüre
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Manoj Shrestha
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Marlies Wagner
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Alexander Seiler
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| |
Collapse
|
2
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Crespo Pimentel B, Sedlacik J, Schröder J, Heinze M, Østergaard L, Fiehler J, Gerloff C, Thomalla G, Cheng B. Comprehensive Evaluation of Cerebral Hemodynamics and Oxygen Metabolism in Revascularization of Asymptomatic High-Grade Carotid Stenosis. Clin Neuroradiol 2021; 32:163-173. [PMID: 34487195 PMCID: PMC8894147 DOI: 10.1007/s00062-021-01077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
Introduction Revascularization procedures in carotid artery stenosis have shown a positive effect in the restoration of cerebral oxygen metabolism as assessed by T2’ (T2 prime) imaging as well as capillary homeostasis by measurement of capillary transit time heterogeneity (CTH); however, data in patients with asymptomatic carotid stenosis without manifest brain lesions are scarce. Patients and Methods The effect of revascularization on the hemodynamic profile and capillary homeostasis was evaluated in 13 patients with asymptomatic high-grade carotid stenosis without ischemic brain lesions using dynamic susceptibility contrast perfusion imaging and oxygenation-sensitive T2’ mapping before and 6–8 weeks after revascularization by endarterectomy or stenting. The cognitive performance at both timepoints was further assessed. Results Perfusion impairment at baseline was accompanied by an increased CTH (p = 0.008) in areas with a time to peak delay ≥ 2 s in the affected hemisphere compared to contralateral regions. Carotid intervention improved the overall moderate hemodynamic impairment at baseline by leading to an increase in normalized cerebral blood flow (p = 0.017) and a decrease in mean transit time (p = 0.027), oxygen extraction capacity (OEC) (p = 0.033) and CTH (p = 0.048). The T2’ values remained unchanged. Conclusion This study presents novel evidence of a state of altered microvascular function in patients with high-grade carotid artery stenosis in the absence of ischemic brain lesions, which shows sustained normalization after revascularization procedures. Supplementary Information The online version of this article (10.1007/s00062-021-01077-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jan Sedlacik
- Centre for the Developing Brain & Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Julian Schröder
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Heinze
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Fiehler
- Department of Neuroradiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Seiler A, Schöngrundner S, Stock B, Nöth U, Hattingen E, Steinmetz H, Klein JC, Baudrexel S, Wagner M, Deichmann R, Gracien RM. Cortical aging - new insights with multiparametric quantitative MRI. Aging (Albany NY) 2020; 12:16195-16210. [PMID: 32852283 PMCID: PMC7485732 DOI: 10.18632/aging.103629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Understanding the microstructural changes related to physiological aging of the cerebral cortex is pivotal to differentiate healthy aging from neurodegenerative processes. The aim of this study was to investigate the age-related global changes of cortical microstructure and regional patterns using multiparametric quantitative MRI (qMRI) in healthy subjects with a wide age range. 40 healthy participants (age range: 2nd to 8th decade) underwent high-resolution qMRI including T1, PD as well as T2, T2* and T2′ mapping at 3 Tesla. Cortical reconstruction was performed with the FreeSurfer toolbox, followed by tests for correlations between qMRI parameters and age. Cortical T1 values were negatively correlated with age (p=0.007) and there was a widespread age-related decrease of cortical T1 involving the frontal and the parietotemporal cortex, while T2 was correlated positively with age, both in frontoparietal areas and globally (p=0.004). Cortical T2′ values showed the most widespread associations across the cortex and strongest correlation with age (r= -0.724, p=0.0001). PD and T2* did not correlate with age. Multiparametric qMRI allows to characterize cortical aging, unveiling parameter-specific patterns. Quantitative T2′ mapping seems to be a promising imaging biomarker of cortical age-related changes, suggesting that global cortical iron deposition is a prominent process in healthy aging.
Collapse
Affiliation(s)
- Alexander Seiler
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Sophie Schöngrundner
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Benjamin Stock
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Johannes C Klein
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Simon Baudrexel
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Marlies Wagner
- Department of Neuroradiology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Seiler A, Brandhofe A, Gracien RM, Pfeilschifter W, Hattingen E, Deichmann R, Nöth U, Wagner M. Microstructural Alterations Analogous to Accelerated Aging of the Cerebral Cortex in Carotid Occlusive Disease. Clin Neuroradiol 2020; 31:709-720. [PMID: 32638029 PMCID: PMC8463359 DOI: 10.1007/s00062-020-00928-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/10/2020] [Indexed: 11/28/2022]
Abstract
Purpose To investigate cortical thickness and cortical quantitative T2 values as imaging markers of microstructural tissue damage in patients with unilateral high-grade internal carotid artery occlusive disease (ICAOD). Methods A total of 22 patients with ≥70% stenosis (mean age 64.8 years) and 20 older healthy control subjects (mean age 70.8 years) underwent structural magnetic resonance imaging (MRI) and high-resolution quantitative (q)T2 mapping. Generalized linear mixed models (GLMM) controlling for age and white matter lesion volume were employed to investigate the effect of ICAOD on imaging parameters of cortical microstructural integrity in multivariate analyses. Results There was a significant main effect (p < 0.05) of the group (patients/controls) on both cortical thickness and cortical qT2 values with cortical thinning and increased cortical qT2 in patients compared to controls, irrespective of the hemisphere. The presence of upstream carotid stenosis had a significant main effect on cortical qT2 values (p = 0.01) leading to increased qT2 in the poststenotic hemisphere, which was not found for cortical thickness. The GLMM showed that in general cortical thickness was decreased and cortical qT2 values were increased with increasing age (p < 0.05). Conclusion Unilateral high-grade carotid occlusive disease is associated with widespread cortical thinning and prolongation of cortical qT2, presumably reflecting hypoperfusion-related microstructural cortical damage similar to accelerated aging of the cerebral cortex. Cortical thinning and increase of cortical qT2 seem to reflect different aspects and different pathophysiological states of cortical degeneration. Quantitative T2 mapping might be a sensitive imaging biomarker for early cortical microstructural damage.
Collapse
Affiliation(s)
- Alexander Seiler
- Department of Neurology, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany. .,Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany.
| | - Annemarie Brandhofe
- Department of Neurology, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany.,Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany.,Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Department of Neurology, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|