3
|
Olivieri O, Turcato G, Cappellari M, Stefanoni F, Osti N, Pizzolo F, Friso S, Bassi A, Castagna A, Martinelli N. High Plasma Concentration of Apolipoprotein C-III Confers an Increased Risk of Cerebral Ischemic Events on Cardiovascular Patients Anticoagulated With Warfarin. Front Cardiovasc Med 2022; 8:781383. [PMID: 35187103 PMCID: PMC8854278 DOI: 10.3389/fcvm.2021.781383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Apolipoprotein C-III (Apo CIII) is a crucial regulator of triglyceride-rich lipoproteins (TRLs) and influences the risk of cardiovascular diseases. High levels of Apo CIII have been also associated with cerebrovascular events and earlier works showed procoagulant effects of Apo CIII. The main aim was to assess whether the plasma concentration of Apo CIII could confer an increased risk of cerebral ischemic events in anticoagulated patients at high-risk of cardioembolism. Methods We systematically checked medical records and quantified cerebral ischemic events in a selected cohort of 118 subjects [median age 68 with interquartile range (IQR) 59–75 years, 66.9% males, 52.5% with coronary artery disease (CAD)], taking anticoagulant therapy with warfarin because of atrial fibrillation (AF) and/or mechanical prosthetic heart valves. All the subjects, enrolled between May 1999 and December 2006, were prospectively followed until death or July 31, 2018. Assessments of complete plasma lipid and apolipoprotein profiles, including Apo A-I, B, CIII, and E, were available for all subjects at enrollment. Results After a median follow-up of 109 months (IQR, 58–187), 24 subjects (20.3%) had cerebral ischemic events: stroke (n = 15) and TIA (n = 9). Subjects with plasma concentration of Apo CIII above the median value (10.3 mg/dL) had an about three-fold increased risk of stroke/TIA than those with lower levels of Apo C-III [hazard ratio 3.08 (95%CI, 1.22–7.77)]. This result was confirmed in multiple Cox regression models adjusted for gender, age, CAD, AF, diabetes, hypertension, plasma lipids, and CHA2DS2-VASc score. By stratifying the sample on the basis of Apo CIII level and CHA2DS2-VASc score, an additive effect was observed with the highest risk in subjects with both high Apo C-III concentration and CHA2DS2-VASc score. Conclusion High Apo CIII plasma levels may be associated with an increased risk of ischemic stroke/TIA in high-risk cardiovascular patients anticoagulated with warfarin.
Collapse
Affiliation(s)
- Oliviero Olivieri
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- *Correspondence: Oliviero Olivieri
| | - Gianni Turcato
- Department of Emergency Medicine, Franz Tappeiner Hospital, Merano, Italy
| | | | - Filippo Stefanoni
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Nicola Osti
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Pizzolo
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Simonetta Friso
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Antonella Bassi
- Laboratory of Clinical Chemistry and Hematology, University Hospital of Verona, Verona, Italy
| | - Annalisa Castagna
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Nicola Martinelli
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- Nicola Martinelli
| |
Collapse
|
5
|
Dehkharghani S, Lansberg M, Venkatsubramanian C, Cereda C, Lima F, Coelho H, Rocha F, Qureshi A, Haerian H, Mont'Alverne F, Copeland K, Heit J. High-Performance Automated Anterior Circulation CT Angiographic Clot Detection in Acute Stroke: A Multireader Comparison. Radiology 2021; 298:665-670. [PMID: 33434110 DOI: 10.1148/radiol.2021202734] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Identification of large vessel occlusion (LVO) is critical to the management of acute ischemic stroke and prerequisite to endovascular therapy in recent trials. Increasing volumes and data complexity compel the development of fast, reliable, and automated tools for LVO detection to facilitate acute imaging triage. Purpose To investigate the performance of an anterior circulation LVO detection platform in a large mixed sample of individuals with and without LVO at cerebrovascular CT angiography (CTA). Materials and Methods In this retrospective analysis, CTA data from recent cerebrovascular trials (CRISP [ClinicalTrials.gov NCT01622517] and DASH) were enriched with local repositories from 11 worldwide sites to balance demographic and technical variables in LVO-positive and LVO-negative examinations. CTA findings were reviewed independently by two neuroradiologists from different institutions for intracranial internal carotid artery (ICA) or middle cerebral artery (MCA) M1 LVO; these observers were blinded to all clinical variables and outcomes. An automated analysis platform was developed and tested for prediction of LVO presence and location relative to reader consensus. Discordance between readers with respect to LVO presence or location was adjudicated by a blinded tertiary reader at a third institution. Sensitivity, specificity, and receiver operating characteristics were assessed by an independent statistician, and subgroup analyses were conducted. Prespecified performance thresholds were set at a lower bound of the 95% CI of sensitivity and specificity of 0.8 or greater at mean times to notification of less than 3.5 minutes. Results A total of 217 study participants (mean age, 64 years ± 16 [standard deviation]; 116 men; 109 with positive findings of LVO) were evaluated. Prespecified performance thresholds were exceeded (sensitivity, 105 of 109 [96%; 95% CI: 91, 99]; specificity, 106 of 108 [98%; 95% CI: 94, 100]). Sensitivity and specificity estimates across age, sex, location, and vendor subgroups exceeded 90%. The area under the receiver operating characteristic curve was 99% (95% CI: 97, 100). Mean processing and notification time was 3 minutes 18 seconds. Conclusion The results confirm the feasibility of fast automated high-performance detection of intracranial internal carotid artery and middle cerebral artery M1 occlusions. © RSNA, 2021 See also the editorial by Kloska in this issue.
Collapse
Affiliation(s)
- Seena Dehkharghani
- From the Department of Radiology, New York University Langone Medical Center, 660 First Ave, 2nd Floor, New York, NY 10016 (S.D.); Department of Neurology, Stanford University Hospital, Stanford, Calif (M.L., C.V., J.H.); Department of Neurology, Ente Ospedaliero Cantonale, Lugano, Switzerland (C.C.); Departments of Neurology (F.L., H.C., F.R.) and Radiology (F.M.), Hospital Geral de Fortaleza, Fortaleza, Brazil; Department of Neurology, Kansas University Medical Center, Kansas City, Kan (A.Q.); LifeBridge, Baltimore, Md (H.H.); and Boulder Statistics, Boulder, Colo (K.C.)
| | - Maarten Lansberg
- From the Department of Radiology, New York University Langone Medical Center, 660 First Ave, 2nd Floor, New York, NY 10016 (S.D.); Department of Neurology, Stanford University Hospital, Stanford, Calif (M.L., C.V., J.H.); Department of Neurology, Ente Ospedaliero Cantonale, Lugano, Switzerland (C.C.); Departments of Neurology (F.L., H.C., F.R.) and Radiology (F.M.), Hospital Geral de Fortaleza, Fortaleza, Brazil; Department of Neurology, Kansas University Medical Center, Kansas City, Kan (A.Q.); LifeBridge, Baltimore, Md (H.H.); and Boulder Statistics, Boulder, Colo (K.C.)
| | - Chitra Venkatsubramanian
- From the Department of Radiology, New York University Langone Medical Center, 660 First Ave, 2nd Floor, New York, NY 10016 (S.D.); Department of Neurology, Stanford University Hospital, Stanford, Calif (M.L., C.V., J.H.); Department of Neurology, Ente Ospedaliero Cantonale, Lugano, Switzerland (C.C.); Departments of Neurology (F.L., H.C., F.R.) and Radiology (F.M.), Hospital Geral de Fortaleza, Fortaleza, Brazil; Department of Neurology, Kansas University Medical Center, Kansas City, Kan (A.Q.); LifeBridge, Baltimore, Md (H.H.); and Boulder Statistics, Boulder, Colo (K.C.)
| | - Carlo Cereda
- From the Department of Radiology, New York University Langone Medical Center, 660 First Ave, 2nd Floor, New York, NY 10016 (S.D.); Department of Neurology, Stanford University Hospital, Stanford, Calif (M.L., C.V., J.H.); Department of Neurology, Ente Ospedaliero Cantonale, Lugano, Switzerland (C.C.); Departments of Neurology (F.L., H.C., F.R.) and Radiology (F.M.), Hospital Geral de Fortaleza, Fortaleza, Brazil; Department of Neurology, Kansas University Medical Center, Kansas City, Kan (A.Q.); LifeBridge, Baltimore, Md (H.H.); and Boulder Statistics, Boulder, Colo (K.C.)
| | - Fabricio Lima
- From the Department of Radiology, New York University Langone Medical Center, 660 First Ave, 2nd Floor, New York, NY 10016 (S.D.); Department of Neurology, Stanford University Hospital, Stanford, Calif (M.L., C.V., J.H.); Department of Neurology, Ente Ospedaliero Cantonale, Lugano, Switzerland (C.C.); Departments of Neurology (F.L., H.C., F.R.) and Radiology (F.M.), Hospital Geral de Fortaleza, Fortaleza, Brazil; Department of Neurology, Kansas University Medical Center, Kansas City, Kan (A.Q.); LifeBridge, Baltimore, Md (H.H.); and Boulder Statistics, Boulder, Colo (K.C.)
| | - Henrique Coelho
- From the Department of Radiology, New York University Langone Medical Center, 660 First Ave, 2nd Floor, New York, NY 10016 (S.D.); Department of Neurology, Stanford University Hospital, Stanford, Calif (M.L., C.V., J.H.); Department of Neurology, Ente Ospedaliero Cantonale, Lugano, Switzerland (C.C.); Departments of Neurology (F.L., H.C., F.R.) and Radiology (F.M.), Hospital Geral de Fortaleza, Fortaleza, Brazil; Department of Neurology, Kansas University Medical Center, Kansas City, Kan (A.Q.); LifeBridge, Baltimore, Md (H.H.); and Boulder Statistics, Boulder, Colo (K.C.)
| | - Felipe Rocha
- From the Department of Radiology, New York University Langone Medical Center, 660 First Ave, 2nd Floor, New York, NY 10016 (S.D.); Department of Neurology, Stanford University Hospital, Stanford, Calif (M.L., C.V., J.H.); Department of Neurology, Ente Ospedaliero Cantonale, Lugano, Switzerland (C.C.); Departments of Neurology (F.L., H.C., F.R.) and Radiology (F.M.), Hospital Geral de Fortaleza, Fortaleza, Brazil; Department of Neurology, Kansas University Medical Center, Kansas City, Kan (A.Q.); LifeBridge, Baltimore, Md (H.H.); and Boulder Statistics, Boulder, Colo (K.C.)
| | - Abid Qureshi
- From the Department of Radiology, New York University Langone Medical Center, 660 First Ave, 2nd Floor, New York, NY 10016 (S.D.); Department of Neurology, Stanford University Hospital, Stanford, Calif (M.L., C.V., J.H.); Department of Neurology, Ente Ospedaliero Cantonale, Lugano, Switzerland (C.C.); Departments of Neurology (F.L., H.C., F.R.) and Radiology (F.M.), Hospital Geral de Fortaleza, Fortaleza, Brazil; Department of Neurology, Kansas University Medical Center, Kansas City, Kan (A.Q.); LifeBridge, Baltimore, Md (H.H.); and Boulder Statistics, Boulder, Colo (K.C.)
| | - Hafez Haerian
- From the Department of Radiology, New York University Langone Medical Center, 660 First Ave, 2nd Floor, New York, NY 10016 (S.D.); Department of Neurology, Stanford University Hospital, Stanford, Calif (M.L., C.V., J.H.); Department of Neurology, Ente Ospedaliero Cantonale, Lugano, Switzerland (C.C.); Departments of Neurology (F.L., H.C., F.R.) and Radiology (F.M.), Hospital Geral de Fortaleza, Fortaleza, Brazil; Department of Neurology, Kansas University Medical Center, Kansas City, Kan (A.Q.); LifeBridge, Baltimore, Md (H.H.); and Boulder Statistics, Boulder, Colo (K.C.)
| | - Francisco Mont'Alverne
- From the Department of Radiology, New York University Langone Medical Center, 660 First Ave, 2nd Floor, New York, NY 10016 (S.D.); Department of Neurology, Stanford University Hospital, Stanford, Calif (M.L., C.V., J.H.); Department of Neurology, Ente Ospedaliero Cantonale, Lugano, Switzerland (C.C.); Departments of Neurology (F.L., H.C., F.R.) and Radiology (F.M.), Hospital Geral de Fortaleza, Fortaleza, Brazil; Department of Neurology, Kansas University Medical Center, Kansas City, Kan (A.Q.); LifeBridge, Baltimore, Md (H.H.); and Boulder Statistics, Boulder, Colo (K.C.)
| | - Karen Copeland
- From the Department of Radiology, New York University Langone Medical Center, 660 First Ave, 2nd Floor, New York, NY 10016 (S.D.); Department of Neurology, Stanford University Hospital, Stanford, Calif (M.L., C.V., J.H.); Department of Neurology, Ente Ospedaliero Cantonale, Lugano, Switzerland (C.C.); Departments of Neurology (F.L., H.C., F.R.) and Radiology (F.M.), Hospital Geral de Fortaleza, Fortaleza, Brazil; Department of Neurology, Kansas University Medical Center, Kansas City, Kan (A.Q.); LifeBridge, Baltimore, Md (H.H.); and Boulder Statistics, Boulder, Colo (K.C.)
| | - Jeremy Heit
- From the Department of Radiology, New York University Langone Medical Center, 660 First Ave, 2nd Floor, New York, NY 10016 (S.D.); Department of Neurology, Stanford University Hospital, Stanford, Calif (M.L., C.V., J.H.); Department of Neurology, Ente Ospedaliero Cantonale, Lugano, Switzerland (C.C.); Departments of Neurology (F.L., H.C., F.R.) and Radiology (F.M.), Hospital Geral de Fortaleza, Fortaleza, Brazil; Department of Neurology, Kansas University Medical Center, Kansas City, Kan (A.Q.); LifeBridge, Baltimore, Md (H.H.); and Boulder Statistics, Boulder, Colo (K.C.)
| |
Collapse
|