1
|
Marlair C, Lochy A, Crollen V. Frequency-tagging EEG reveals the effect of attentional focus on abstract magnitude processing. Psychon Bull Rev 2024:10.3758/s13423-024-02480-w. [PMID: 38467991 DOI: 10.3758/s13423-024-02480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/13/2024]
Abstract
While humans can readily access the common magnitude of various codes such as digits, number words, or dot sets, it remains unclear whether this process occurs automatically, or only when explicitly attending to magnitude information. We addressed this question by examining the neural distance effect, a robust marker of magnitude processing, with a frequency-tagging approach. Electrophysiological responses were recorded while participants viewed rapid sequences of a base numerosity presented at 6 Hz (e.g., "2") in randomly mixed codes: digits, number words, canonical dot, and finger configurations. A deviant numerosity either close (e.g., "3") or distant (e.g., "8") from the base was inserted every five items. Participants were instructed to focus their attention either on the magnitude number feature (from a previous study), the parity number feature, a nonnumerical color feature or no specific feature. In the four attentional conditions, we found clear discrimination responses of the deviant numerosity despite its code variation. Critically, the distance effect (larger responses when base/deviant are distant than close) was present when participants were explicitly attending to magnitude and parity, but it faded with color and simple viewing instructions. Taken together, these results suggest automatic access to an abstract number representation but highlight the role of selective attention in processing the underlying magnitude information. This study therefore provides insights into how attention can modulate the neural activity supporting abstract magnitude processing.
Collapse
Affiliation(s)
- Cathy Marlair
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium.
| | - Aliette Lochy
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
- Institute of Cognitive Science and Assessment, Department of Behavioral and Cognitive Sciences, Faculty of Humanities, Social and Educational Sciences, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Virginie Crollen
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Hagen S, Laguesse R, Rossion B. Extensive Visual Training in Adulthood Reduces an Implicit Neural Marker of the Face Inversion Effect. Brain Sci 2024; 14:146. [PMID: 38391720 PMCID: PMC10886861 DOI: 10.3390/brainsci14020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Face identity recognition (FIR) in humans is supported by specialized neural processes whose function is spectacularly impaired when simply turning a face upside-down: the face inversion effect (FIE). While the FIE appears to have a slow developmental course, little is known about the plasticity of the neural processes involved in this effect-and in FIR in general-at adulthood. Here, we investigate whether extensive training (2 weeks, ~16 h) in young human adults discriminating a large set of unfamiliar inverted faces can reduce an implicit neural marker of the FIE for a set of entirely novel faces. In all, 28 adult observers were trained to individuate 30 inverted face identities presented under different depth-rotated views. Following training, we replicate previous behavioral reports of a significant reduction (56% relative accuracy rate) in the behavioral FIE as measured with a challenging four-alternative delayed-match-to-sample task for individual faces across depth-rotated views. Most importantly, using EEG together with a validated frequency tagging approach to isolate a neural index of FIR, we observe the same substantial (56%) reduction in the neural FIE at the expected occipito-temporal channels. The reduction in the neural FIE correlates with the reduction in the behavioral FIE at the individual participant level. Overall, we provide novel evidence suggesting a substantial degree of plasticity in processes that are key for face identity recognition in the adult human brain.
Collapse
Affiliation(s)
- Simen Hagen
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Renaud Laguesse
- Psychological Sciences Research Institute, UCLouvain, 1348 Louvain-La-Neuve, Belgium
| | - Bruno Rossion
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| |
Collapse
|
3
|
Hagen S, Vuong QC, Jung L, Chin MD, Scott LS, Tanaka JW. A perceptual field test in object experts using gaze-contingent eye tracking. Sci Rep 2023; 13:11437. [PMID: 37454134 PMCID: PMC10349839 DOI: 10.1038/s41598-023-37695-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
A hallmark of expert object recognition is rapid and accurate subordinate-category recognition of visually homogenous objects. However, the perceptual strategies by which expert recognition is achieved is less known. The current study investigated whether visual expertise changes observers' perceptual field (e.g., their ability to use information away from fixation for recognition) for objects in their domain of expertise, using a gaze-contingent eye-tracking paradigm. In the current study, bird experts and novices were presented with two bird images sequentially, and their task was to determine whether the two images were of the same species (e.g., two different song sparrows) or different species (e.g., song sparrow and chipping sparrow). The first study bird image was presented in full view. The second test bird image was presented fully visible (full-view), restricted to a circular window centered on gaze position (central-view), or restricted to image regions beyond a circular mask centered on gaze position (peripheral-view). While experts and novices did not differ in their eye-movement behavior, experts' performance on the discrimination task for the fastest responses was less impaired than novices in the peripheral-view condition. Thus, the experts used peripheral information to a greater extent than novices, indicating that the experts have a wider perceptual field to support their speeded subordinate recognition.
Collapse
Affiliation(s)
- Simen Hagen
- Department of Psychology, University of Victoria, Victoria, Canada.
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France.
| | - Quoc C Vuong
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Liandra Jung
- Department of Psychology, University of Victoria, Victoria, Canada
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, USA
| | - Michael D Chin
- Department of Psychology, University of Victoria, Victoria, Canada
| | - Lisa S Scott
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - James W Tanaka
- Department of Psychology, University of Victoria, Victoria, Canada
| |
Collapse
|
4
|
Kanwisher N, Gupta P, Dobs K. CNNs reveal the computational implausibility of the expertise hypothesis. iScience 2023; 26:105976. [PMID: 36794151 PMCID: PMC9923184 DOI: 10.1016/j.isci.2023.105976] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Face perception has long served as a classic example of domain specificity of mind and brain. But an alternative "expertise" hypothesis holds that putatively face-specific mechanisms are actually domain-general, and can be recruited for the perception of other objects of expertise (e.g., cars for car experts). Here, we demonstrate the computational implausibility of this hypothesis: Neural network models optimized for generic object categorization provide a better foundation for expert fine-grained discrimination than do models optimized for face recognition.
Collapse
Affiliation(s)
- Nancy Kanwisher
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pranjul Gupta
- Department of Psychology, Justus-Liebig University Giessen, 35394 Giessen, Germany
| | - Katharina Dobs
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Psychology, Justus-Liebig University Giessen, 35394 Giessen, Germany,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig University, 35032 Marburg, Germany,Corresponding author
| |
Collapse
|
5
|
Rossion B, Retter TL, Liu‐Shuang J. Understanding human individuation of unfamiliar faces with oddball fast periodic visual stimulation and electroencephalography. Eur J Neurosci 2020; 52:4283-4344. [DOI: 10.1111/ejn.14865] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN UMR7039 Université de Lorraine F‐54000Nancy France
- Service de Neurologie, CHRU‐Nancy Université de Lorraine F‐54000Nancy France
| | - Talia L. Retter
- Department of Behavioural and Cognitive Sciences Faculty of Language and Literature Humanities, Arts and Education University of Luxembourg Luxembourg Luxembourg
| | - Joan Liu‐Shuang
- Institute of Research in Psychological Science Institute of Neuroscience Université de Louvain Louvain‐la‐Neuve Belgium
| |
Collapse
|
6
|
Wong ACN, Ng TYK, Lui KFH, Yip KHM, Wong YK. Visual training with musical notes changes late but not early electrophysiological responses in the visual cortex. J Vis 2019; 19:8. [PMID: 31318402 DOI: 10.1167/19.7.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Visual expertise with musical notation is unique. Fluent music readers show selectively higher activity to musical notes than to other visually similar patterns in both the retinotopic and higher-level visual areas and both very early (e.g., C1) and later (e.g., N170) visual event-related potential (ERP) components. This is different from domains such as face and letter perception, of which the neural expertise marker is typically found in the higher-level ventral visual areas and later (e.g., N170) ERP components. An intriguing question concerns whether the visual skills and neural selectivity observed in music-reading experts are a result of the effects of extensive visual experience with musical notation. The current study aimed to investigate the causal relationship between visual experience and its neural changes with musical notation. Novices with no formal musical training experience were trained to visually discriminate between note patterns in the laboratory for 10-26 hr such that their performance was comparable with fluent music readers. The N170 component became more selective for musical notes after training. Training was not, however, followed by changes in the earlier C1 component. The findings show that visual training is enough for causing changes in the responses of the higher-level visual areas to musical notation while the engagement of the early visual areas may involve additional nonvisual factors.
Collapse
Affiliation(s)
- Alan C-N Wong
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Terri Y K Ng
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Kelvin F H Lui
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ken H M Yip
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Yetta Kwailing Wong
- Department of Educational Psychology, Faculty of Education, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
7
|
Rossion B. Damasio's error - Prosopagnosia with intact within-category object recognition. J Neuropsychol 2018; 12:357-388. [PMID: 29845731 DOI: 10.1111/jnp.12162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/18/2018] [Indexed: 11/29/2022]
Abstract
The sudden inability to recognize individual faces following brain damage was first reported in a scientific journal 150 years ago and termed 'prosopagnosia' 70 years ago. While the term originally identified a face-selective neurological condition, it is now obscured by a sequence of imprecisions. First, prosopagnosia is routinely used to define symptoms of individual face recognition (IFR) difficulties in the context of visual object agnosia or other neurological conditions, or even in the normal population. Second, this over-expansive definition has lent support to a long-standing within-category recognition account of prosopagnosia, that is, that the impairment of IFR reflects a general impairment in recognizing within-category objects. However, stringent experimental studies of classical cases of prosopagnosia following brain damage show that their core impairment is not in recognizing physically similar exemplars within non-face object categories. Instead, the impairment presents specifically for recognizing exemplars of the category of faces. Moreover, compared to typical observers, the impairment appears even more severe for recognizing individual faces against physically dissimilar than similar distractors. Here, I argue that we need to limit accordingly our definition of prosopagnosia to a clinical (i.e., neurological) condition in which there is no basic-level object recognition impairment. Other criteria for prosopagnosia are proposed, with the hope that this conservative definition enables the study of human IFR processes in isolation, and supports progress in understanding the nature of these processes.
Collapse
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN, Université de Lorraine, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-5400, France
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Belgium
| |
Collapse
|
8
|
De Keyser R, Mouraux A, Quek GL, Torta DM, Legrain V. Fast periodic visual stimulation to study tool-selective processing in the human brain. Exp Brain Res 2018; 236:2751-2763. [PMID: 30019235 DOI: 10.1007/s00221-018-5331-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/13/2018] [Indexed: 01/23/2023]
Abstract
Because tools are manipulated for the purpose of action, they are often considered to be a specific object category that associates perceptual and motor properties. Their neural processing has been studied extensively by comparing the cortical activity elicited by the separate presentation of tool and non-tool objects, assuming that observed differences are solely due to activity selective for processing tools. Here, using a fast periodic visual stimulation (FPVS) paradigm, we isolated EEG activity selectively related to the processing of tool objects embedded in a stream of non-tool objects. Participants saw a continuous sequence of tool and non-tool images at a 3.7 Hz presentation rate, arranged as a repeating pattern of four non-tool images followed by one tool image. We expected the stimulation to generate an EEG response at the frequency of image presentation (3.7 Hz) and its harmonics, reflecting activity common to the processing of tool and non-tool images. Most importantly, if tool and non-tool images evoked different neural responses, we expected this differential activity to generate an additional response at the frequency of tool images (3.7 Hz/5 = 0.74 Hz). To ensure that this response was not due to unaccounted for systematic differences in low-level visual features, we also tested a phase-scrambled version of the sequence. The periodic insertion of tool stimuli within a stream of non-tool stimuli elicited a significant EEG response at the tool-selective frequency and its harmonics. This response was reduced when the images were phase-scrambled. We conclude that FPVS is a promising technique to selectively measure tool-related activity.
Collapse
Affiliation(s)
- Roxane De Keyser
- Institute of Neuroscience (IoNS), Faculty of Medicine, Université catholique de Louvain, 1200, Brussels, Belgium.
| | - André Mouraux
- Institute of Neuroscience (IoNS), Faculty of Medicine, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Genevieve L Quek
- Institute of Neuroscience (IoNS), Faculty of Medicine, Université catholique de Louvain, 1200, Brussels, Belgium.,Psychological Sciences Research Institute, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium.,Donders Center for Cognition, Radbound University Nijmegen, Nijmegen, The Netherlands
| | - Diana M Torta
- Institute of Neuroscience (IoNS), Faculty of Medicine, Université catholique de Louvain, 1200, Brussels, Belgium.,Research Unit for Health Psychology, University of Leuven, 3000, Louvain, Belgium
| | - Valéry Legrain
- Institute of Neuroscience (IoNS), Faculty of Medicine, Université catholique de Louvain, 1200, Brussels, Belgium.,Psychological Sciences Research Institute, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|