1
|
Panico F, Luciano SM, Salzillo A, Sagliano L, Trojano L. Investigating Cerebello-Frontal Circuits Associated with Emotional Prosody: A Double-Blind tDCS and fNIRS study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2397-2407. [PMID: 39276299 PMCID: PMC11585498 DOI: 10.1007/s12311-024-01741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
The emotional and cognitive cerebellum has been explored by several studies in the past years. Recent evidence suggested the possible contribution of the cerebellum in processing emotional prosody, namely the ability to comprehend the emotional content of a given vocal utterance, likely mediated by anatomical and functional cerebello-prefrontal connections. In the present study, the involvement of a functional cerebello-prefrontal network in recognising emotional prosody was assessed by combining non-invasive anodal transcranial direct current stimulation (tDCS) over the right or the left cerebellum and functional Near Infrared Spectroscopy of the prefrontal cortex, in a double-blind within-subject experimental design on healthy participants. The results showed that right and, to a less extent, left cerebellar tDCS (as compared to sham stimulation) reduced neural activation in the prefrontal cortex while accuracy and reaction times at the vocal recognition task remained unchanged. These findings highlight functional properties of the cerebello-frontal connections and the psychophysiological effects of cerebellar brain stimulation, with possible clinical applications in psychiatric and neurological conditions.
Collapse
Affiliation(s)
- Francesco Panico
- University of Campania "Luigi Vanvitelli", Viale Ellittico 31, 81100, Caserta, Italy.
| | - Sharon Mara Luciano
- University of Campania "Luigi Vanvitelli", Viale Ellittico 31, 81100, Caserta, Italy
| | - Alessia Salzillo
- University of Campania "Luigi Vanvitelli", Viale Ellittico 31, 81100, Caserta, Italy
| | - Laura Sagliano
- University of Campania "Luigi Vanvitelli", Viale Ellittico 31, 81100, Caserta, Italy
| | - Luigi Trojano
- University of Campania "Luigi Vanvitelli", Viale Ellittico 31, 81100, Caserta, Italy
| |
Collapse
|
2
|
Panico F, Schintu S, Trojano L. Editorial: Uncovering the neural correlates of prism adaptation: Evidence from the brain network approach. Front Psychol 2022; 13:1076307. [PMID: 36457912 PMCID: PMC9706180 DOI: 10.3389/fpsyg.2022.1076307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Affiliation(s)
- Francesco Panico
- Department of Psychology, University of Campania ‘Luigi Vanvitelli', Caserta, Italy
| | - Selene Schintu
- CIMeC—Center for Mind/Brain Sciences, University of Trento, Trento, Italy
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
- Department of Psychological and Brain Sciences, The George Washington University, Washington, DC, United States
| | - Luigi Trojano
- Department of Psychology, University of Campania ‘Luigi Vanvitelli', Caserta, Italy
| |
Collapse
|
3
|
Farron N, Clarke S, Crottaz-Herbette S. Does hand modulate the reshaping of the attentional system during rightward prism adaptation? An fMRI study. Front Psychol 2022; 13:909815. [PMID: 35967619 PMCID: PMC9363778 DOI: 10.3389/fpsyg.2022.909815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Adaptation to right-deviating prisms (R-PA), that is, learning to point with the right hand to targets perceived through prisms, has been shown to change spatial topography within the inferior parietal lobule (IPL) by increasing responses to left, central, and right targets on the left hemisphere and decreasing responses to right and central targets on the right hemisphere. As pointed out previously, this corresponds to a switch of the dominance of the ventral attentional network from the right to the left hemisphere. Since the encoding of hand movements in pointing paradigms is side-dependent, the choice of right vs. left hand for pointing during R-PA may influence the visuomotor adaptation process and hence the reshaping of the attentional system. We have tested this hypothesis in normal subjects by comparing activation patterns to visual targets in left, central, and right fields elicited before and after adaptation to rightward-deviating prisms using the right hand (RWRH) with those in two control groups. The first control group underwent adaptation to rightward-deviating prisms using the left hand, whereas the second control group underwent adaptation to leftward-deviating prisms using the right hand. The present study confirmed the previously described enhancement of left and central visual field representation within left IPL following R-PA. It further showed that the use of right vs. left hand during adaptation modulates this enhancement in some but not all parts of the left IPL. Interestingly, in some clusters identified in this study, L-PA with right hand mimics partially the effect of R-PA by enhancing activation elicited by left stimuli in the left IPL and by decreasing activation elicited by right stimuli in the right IPL. Thus, the use of right vs. left hand modulates the R-PA-induced reshaping of the ventral attentional system. Whether the choice of hand during R-PA affects also the reshaping of the dorsal attentional system remains to be determined as well as possible clinical applications of this approach. Depending on the patients' conditions, using the right or the left hand during PA might potentiate the beneficial effects of this intervention.
Collapse
|
4
|
Clarke S, Farron N, Crottaz-Herbette S. Choosing Sides: Impact of Prismatic Adaptation on the Lateralization of the Attentional System. Front Psychol 2022; 13:909686. [PMID: 35814089 PMCID: PMC9260393 DOI: 10.3389/fpsyg.2022.909686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Seminal studies revealed differences between the effect of adaptation to left- vs. right-deviating prisms (L-PA, R-PA) in normal subjects. Whereas L-PA leads to neglect-like shift in attention, demonstrated in numerous visuo-spatial and cognitive tasks, R-PA has only minor effects in specific aspects of a few tasks. The paucity of R-PA effects in normal subjects contrasts with the striking alleviation of neglect symptoms in patients with right hemispheric lesions. Current evidence from activation studies in normal subjects highlights the contribution of regions involved in visuo-motor control during prism exposure and a reorganization of spatial representations within the ventral attentional network (VAN) after the adaptation. The latter depends on the orientation of prisms used. R-PA leads to enhancement of the ipsilateral visual and auditory space within the left inferior parietal lobule (IPL), switching thus the dominance of VAN from the right to the left hemisphere. L-PA leads to enhancement of the ipsilateral space in right IPL, emphasizing thus the right hemispheric dominance of VAN. Similar reshaping has been demonstrated in patients. We propose here a model, which offers a parsimonious explanation of the effect of L-PA and R-PA both in normal subjects and in patients with hemispheric lesions. The model posits that prismatic adaptation induces instability in the synaptic organization of the visuo-motor system, which spreads to the VAN. The effect is lateralized, depending on the side of prism deviation. Successful pointing with prisms implies reaching into the space contralateral, and not ipsilateral, to the direction of prism deviation. Thus, in the hemisphere contralateral to prism deviation, reach-related neural activity decreases, leading to instability of the synaptic organization, which induces a reshuffling of spatial representations in IPL. Although reshuffled spatial representations in IPL may be functionally relevant, they are most likely less efficient than regular representations and may thus cause partial dysfunction. The former explains, e.g., the alleviation of neglect symptoms after R-PA in patients with right hemispheric lesions, the latter the occurrence of neglect-like symptoms in normal subjects after L-PA. Thus, opting for R- vs. L-PA means choosing the side of major IPL reshuffling, which leads to its partial dysfunction in normal subjects and to recruitment of alternative or enhanced spatial representations in patients with hemispheric lesions.
Collapse
Affiliation(s)
- Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
5
|
A Crucial Role of the Frontal Operculum in Task-Set Dependent Visuomotor Performance Monitoring. eNeuro 2022; 9:ENEURO.0524-21.2021. [PMID: 35165200 PMCID: PMC8896555 DOI: 10.1523/eneuro.0524-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/21/2022] Open
Abstract
For adaptive goal-directed action, the brain needs to monitor action performance and detect errors. The corresponding information may be conveyed via different sensory modalities; for instance, visual and proprioceptive body position cues may inform about current manual action performance. Thereby, contextual factors such as the current task set may also determine the relative importance of each sensory modality for action guidance. Here, we analyzed human behavioral, functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG) data from two virtual reality-based hand-target phase-matching studies to identify the neuronal correlates of performance monitoring and error processing under instructed visual or proprioceptive task sets. Our main result was a general, modality-independent response of the bilateral frontal operculum (FO) to poor phase-matching accuracy, as evident from increased BOLD signal and increased source-localized gamma power. Furthermore, functional connectivity of the bilateral FO to the right posterior parietal cortex (PPC) increased under a visual versus proprioceptive task set. These findings suggest that the bilateral FO generally monitors manual action performance; and, moreover, that when visual action feedback is used to guide action, the FO may signal an increased need for control to visuomotor regions in the right PPC following errors.
Collapse
|
6
|
Fleury L, Panico F, Foncelle A, Revol P, Delporte L, Jacquin-Courtois S, Collet C, Rossetti Y. Does anodal cerebellar tDCS boost transfer of after-effects from throwing to pointing during prism adaptation? Front Psychol 2022; 13:909565. [PMID: 36237677 PMCID: PMC9552335 DOI: 10.3389/fpsyg.2022.909565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Prism Adaptation (PA) is a useful method to study the mechanisms of sensorimotor adaptation. After-effects following adaptation to the prismatic deviation constitute the probe that adaptive mechanisms occurred, and current evidence suggests an involvement of the cerebellum at this level. Whether after-effects are transferable to another task is of great interest both for understanding the nature of sensorimotor transformations and for clinical purposes. However, the processes of transfer and their underlying neural substrates remain poorly understood. Transfer from throwing to pointing is known to occur only in individuals who had previously reached a good level of expertise in throwing (e.g., dart players), not in novices. The aim of this study was to ascertain whether anodal stimulation of the cerebellum could boost after-effects transfer from throwing to pointing in novice participants. Healthy participants received anodal or sham transcranial direction current stimulation (tDCS) of the right cerebellum during a PA procedure involving a throwing task and were tested for transfer on a pointing task. Terminal errors and kinematic parameters were in the dependent variables for statistical analyses. Results showed that active stimulation had no significant beneficial effects on error reduction or throwing after-effects. Moreover, the overall magnitude of transfer to pointing did not change. Interestingly, we found a significant effect of the stimulation on the longitudinal evolution of pointing errors and on pointing kinematic parameters during transfer assessment. These results provide new insights on the implication of the cerebellum in transfer and on the possibility to use anodal tDCS to enhance cerebellar contribution during PA in further investigations. From a network approach, we suggest that cerebellum is part of a more complex circuitry responsible for the development of transfer which is likely embracing the primary motor cortex due to its role in motor memories consolidation. This paves the way for further work entailing multiple-sites stimulation to explore the role of M1-cerebellum dynamic interplay in transfer.
Collapse
Affiliation(s)
- Lisa Fleury
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- Defitech Chair for Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL) Valais, Sion, Switzerland
- *Correspondence: Lisa Fleury,
| | - Francesco Panico
- Department of Psychology, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Alexandre Foncelle
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Patrice Revol
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Ludovic Delporte
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Sophie Jacquin-Courtois
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Christian Collet
- Inter-University Laboratory of Human Movement Biology, Villeurbanne, France
| | - Yves Rossetti
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
7
|
Petitet P, Spitz G, Emir UE, Johansen-Berg H, O'Shea J. Age-related decline in cortical inhibitory tone strengthens motor memory. Neuroimage 2021; 245:118681. [PMID: 34728243 PMCID: PMC8752967 DOI: 10.1016/j.neuroimage.2021.118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/02/2022] Open
Abstract
Ageing disrupts the finely tuned excitation/inhibition balance (E:I) across cortex via a natural decline in inhibitory tone (γ-amino butyric acid, GABA), causing functional decrements. However, in young adults, experimentally lowering GABA in sensorimotor cortex enhances a specific domain of sensorimotor function: adaptation memory. Here, we tested the hypothesis that as sensorimotor cortical GABA declines naturally with age, adaptation memory would increase, and the former would explain the latter. Results confirmed this prediction. To probe causality, we used brain stimulation to further lower sensorimotor cortical GABA during adaptation. Across individuals, how stimulation changed memory depended on sensorimotor cortical E:I. In those with low E:I, stimulation increased memory; in those with high E:I stimulation reduced memory. Thus, we identified a form of motor memory that is naturally strengthened by age, depends causally on sensorimotor cortex neurochemistry, and may be a potent target for motor skill preservation strategies in healthy ageing and neurorehabilitation.
Collapse
Affiliation(s)
- Pierre Petitet
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Centre de Recherche en Neurosciences de Lyon, Equipe Trajectoires, Inserm UMR-S 1028, CNRS UMR 5292, Université Lyon 1, Bron, France.
| | - Gershon Spitz
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia.
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity (OHBA), University of Oxford Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxford, United Kingdom.
| |
Collapse
|
8
|
Scheffels JF, Korabova S, Eling P, Kastrup A, Hildebrandt H. The Effects of Continuous vs. Intermittent Prism Adaptation Protocols for Treating Visuospatial Neglect: A Randomized Controlled Trial. Front Neurol 2021; 12:742727. [PMID: 34867725 PMCID: PMC8639507 DOI: 10.3389/fneur.2021.742727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Visuospatial neglect may interfere with activities of daily living (ADL). Prism adaptation (PA) is one treatment option and may involve two components: recalibration (more strategic) and realignment (more implicit). We examined whether recalibration or realignment is the driving force in neglect rehabilitation using PA. In a randomized controlled trial with two recruitment series and a cross-over design, 24 neglect patients were allocated to a continuous (PA-c) or intermittent (PA-i) PA procedure. During the PA-c condition, goggles were worn without doffing. In the PA-i condition, patients donned goggles twice (first series of patients) or three times (second series) during training to induce more recalibrations. Primary outcome parameters were performance (omissions) on the Apples Cancellation Test and ADL scores. To assess the efficacy of the PA treatment, we compared effect sizes of the current study with those from three groups from previous studies at the same rehabilitation unit: (1) a passive treatment with a similar intensity, (2) a placebo treatment with a similar intensity, and (3) a PA treatment with fewer therapy sessions. Treatment conditions did not significantly predict scores on primary and most secondary outcome parameters. However, the spontaneous ipsilesional body orientation improved only in patients receiving the PA-i condition and this improvement also appeared in patients showing a strong after-effect (irrespective of condition). Effect sizes for the Apples Cancellation Test and the Functional Independence Measure were larger for both PA treatment protocols than the historical control groups. We conclude that more recalibrations during an intermittent PA treatment may have a beneficial effect on spontaneous body orientation but not on other aspects of neglect or on ADL performance. Clinical Trial Registration: German Clinical Trials Register, identifier: DRKS00018813, DRKS00021539.
Collapse
Affiliation(s)
- Jannik Florian Scheffels
- Department of Neurology, Klinikum Bremen-Ost, Bremen, Germany
- Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Sona Korabova
- Department of Neurology, Klinikum Bremen-Ost, Bremen, Germany
- Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Paul Eling
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Andreas Kastrup
- Department of Neurology, Klinikum Bremen-Ost, Bremen, Germany
| | - Helmut Hildebrandt
- Department of Neurology, Klinikum Bremen-Ost, Bremen, Germany
- Department of Psychology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Engagement of a parieto-cerebellar network in prism adaptation. A double-blind high-definition transcranial direct current stimulation study on healthy individuals. Cortex 2021; 146:39-49. [PMID: 34818617 DOI: 10.1016/j.cortex.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/12/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
Prism Adaptation (PA) is a non-invasive method to investigate visuomotor control. Recent neurostimulation studies have proposed an interpretation of the mechanisms underlying PA based on functioning of brain networks, instead of focusing on single brain areas. To test the functioning of the network during a classical PA procedure, here we used for the first time High-Definition transcranial Direct Current Stimulation (HD-tDCS) to simultaneously inhibit or facilitate brain activity in two main nodes of the network, namely the parietal cortex and the cerebellum, in healthy individuals. The main results showed that simultaneous anodal HD-tDCS over the two regions reduced terminal errors during exposure to prism glasses as compared to cathodal and sham stimulation. Conversely, cathodal HD-tDCS reduced after-effect as compared to anodal and sham stimulation following prism removal. Overall, these results provide new insights on the network related to the deployment of PA mechanisms and demonstrate the feasibility of using non-invasive HD-tDCS to modulate the adaptive mechanisms of PA.
Collapse
|
10
|
Panico F, Arini A, Cantone P, Crisci C, Trojano L. Integrating visual search, eye movement training and reversing prism exposure in the treatment of Balint-Holmes syndrome: a single case report. Top Stroke Rehabil 2021; 29:280-285. [PMID: 33960916 DOI: 10.1080/10749357.2021.1923319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: For the first time, we administered reversing prism exposure to treat optic ataxia in a single patient with Balint-Holmes Syndrome (BHS), who also underwent specific trainings for simultanagnosia and ocular apraxia.Method and Results: By an introduction and withdrawal experimental design, we observed that the active treatment periods improved patient's visuospatial defects and functional autonomy.Conclusions: We thus provided a proof of principle supporting the use of reversing prism exposure in optic ataxia within an integrated and personalized rehabilitative approach for BHS.
Collapse
Affiliation(s)
- Francesco Panico
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Angela Arini
- Neurorehabilitation Unit, Clinic Center Rehabilitation Institute, Napoli, Italy
| | - Pierluigi Cantone
- Neurorehabilitation Unit, Clinic Center Rehabilitation Institute, Napoli, Italy
| | - Claudio Crisci
- Neurorehabilitation Unit, Clinic Center Rehabilitation Institute, Napoli, Italy
| | - Luigi Trojano
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
11
|
Fleury L, Panico F, Foncelle A, Revol P, Delporte L, Jacquin-Courtois S, Collet C, Rossetti Y. Non-invasive brain stimulation shows possible cerebellar contribution in transfer of prism adaptation after-effects from pointing to throwing movements. Brain Cogn 2021; 151:105735. [PMID: 33945939 DOI: 10.1016/j.bandc.2021.105735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022]
Abstract
Whether sensorimotor adaptation can be generalized from one context to others represents a crucial interest in the field of neurological rehabilitation. Nonetheless, the mechanisms underlying transfer to another task remain unclear. Prism Adaptation (PA) is a useful method employed both to study short-term plasticity and for rehabilitation. Neuro-imaging and neuro-stimulation studies show that the cerebellum plays a substantial role in online control, strategic control (rapid error reduction), and realignment (after-effects) in PA. However, the contribution of the cerebellum to transfer is still unknown. The aim of this study was to test whether interfering with the activity of the cerebellum affected transfer of prism after-effects from a pointing to a throwing task. For this purpose, we delivered cathodal cerebellar transcranial Direct Current Stimulation (tDCS) to healthy participants during PA while a control group received cerebellar Sham Stimulation. We assessed longitudinal evolutions of pointing and throwing errors and pointing trajectories orientations during pre-tests, exposure and post-tests. Results revealed that participants who received active cerebellar stimulation showed (1) altered error reduction and pointing trajectories during the first trials of exposure; (2) increased magnitude but reduced robustness of pointing after-effects; and, crucially, (3) slightly altered transfer of after-effects to the throwing task. Therefore, the present study confirmed that cathodal cerebellar tDCS interferes with processes at work during PA and provides evidence for a possible contribution of the cerebellum in after-effects transfer.
Collapse
Affiliation(s)
- Lisa Fleury
- Lyon Neuroscience Research Center (CRNL), Trajectoires team, INSERM UMR-S U1028, CNRS UMS 5292, 69500 Bron, France; University of Claude, Bernard Lyon 1, 69100 Villeurbanne, France; Inter-University Laboratory of Human Movement Biology (LIBM), EA 7424, 69100 Villeurbanne, France
| | - Francesco Panico
- Department of Psychology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Alexandre Foncelle
- Lyon Neuroscience Research Center (CRNL), Trajectoires team, INSERM UMR-S U1028, CNRS UMS 5292, 69500 Bron, France
| | - Patrice Revol
- Lyon Neuroscience Research Center (CRNL), Trajectoires team, INSERM UMR-S U1028, CNRS UMS 5292, 69500 Bron, France; "Mouvement et Handicap" platform, Hôpital Henry Gabrielle & Hôpital Neurologique, Hospices Civils de Lyon, 69500 Bron, France
| | - Ludovic Delporte
- Lyon Neuroscience Research Center (CRNL), Trajectoires team, INSERM UMR-S U1028, CNRS UMS 5292, 69500 Bron, France; "Mouvement et Handicap" platform, Hôpital Henry Gabrielle & Hôpital Neurologique, Hospices Civils de Lyon, 69500 Bron, France
| | - Sophie Jacquin-Courtois
- Lyon Neuroscience Research Center (CRNL), Trajectoires team, INSERM UMR-S U1028, CNRS UMS 5292, 69500 Bron, France; "Mouvement et Handicap" platform, Hôpital Henry Gabrielle & Hôpital Neurologique, Hospices Civils de Lyon, 69500 Bron, France
| | - Christian Collet
- University of Claude, Bernard Lyon 1, 69100 Villeurbanne, France; Inter-University Laboratory of Human Movement Biology (LIBM), EA 7424, 69100 Villeurbanne, France
| | - Yves Rossetti
- Lyon Neuroscience Research Center (CRNL), Trajectoires team, INSERM UMR-S U1028, CNRS UMS 5292, 69500 Bron, France; "Mouvement et Handicap" platform, Hôpital Henry Gabrielle & Hôpital Neurologique, Hospices Civils de Lyon, 69500 Bron, France
| |
Collapse
|