1
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Huang Y, Li H, Qiu S, Ding X, Li M, Liu W, Fan Z, Cheng X. Distinct serial dependence between small and large numerosity processing. PSYCHOLOGICAL RESEARCH 2024; 89:41. [PMID: 39739125 DOI: 10.1007/s00426-024-02071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
The serial dependence effect (SDE) is a perceptual bias where current stimuli are perceived as more similar to recently seen stimuli, possibly enhancing the stability and continuity of visual perception. Although SDE has been observed across many visual features, it remains unclear whether humans rely on a single mechanism of SDE to support numerosity processing across two distinct numerical ranges: subitizing (i.e., small numerosity processing, likely related to early object recognition) and estimation (i.e., large numerosity processing, likely related to ensemble numerosity extraction). Here, we show that subitizing and estimation exhibit distinct SDE patterns. Subitizing is characterized by an asymmetric SDE, whereas estimation demonstrates a symmetric SDE. Specifically, in subitizing, the SDE occurs only when the current magnitude is smaller than the previous magnitude but not when it is larger. In contrast, the SDE in estimation is present in both scenarios. We propose that these differences arise from distinct underlying mechanisms. A perceptual mechanism-namely, a 'temporal hysteresis' account, can explain the asymmetrical SDE in subitizing since object individuation resources are easily activated but resistant to deactivation. Conversely, a combination of perceptual and post-perceptual mechanisms can account for the SDEs in estimation, as both perceptual and post-perceptual interference can reduce the SDEs. Critically, a novel type of SDE characterized by reduced processing precision is found in subitizing only, implying that the continuity and stability of numerical processing can be dissociable in dynamic situations where numerical information is integrated over time. Our findings reveal the multifaceted nature of SDE mechanisms and suggest their engagement with cognitive modules likely subserving different functionalities.
Collapse
Affiliation(s)
- Yue Huang
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China
| | - Haokun Li
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100091, China
| | - Shiming Qiu
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China
| | - Xianfeng Ding
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China
| | - Min Li
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China
| | - Wangjuan Liu
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China
| | - Zhao Fan
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China.
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China.
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China.
| | - Xiaorong Cheng
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China.
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China.
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China.
| |
Collapse
|