1
|
Neural correlates associated with impaired global motion perception in cerebral visual impairment (CVI). Neuroimage Clin 2022; 32:102821. [PMID: 34628303 PMCID: PMC8501506 DOI: 10.1016/j.nicl.2021.102821] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/07/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022]
Abstract
Cerebral visual impairment (CVI) is associated with impaired global motion processing. Mean motion coherence thresholds was higher in individuals with CVI. fMRI responses in area hMT+ showed an aberrant response profile in CVI. White matter tract reconstruction revealed cortico-cortical dysmyelination in CVI.
Cerebral visual impairment (CVI) is associated with a wide range of visual perceptual deficits including global motion processing. However, the underlying neurophysiological basis for these impairments remain poorly understood. We investigated global motion processing abilities in individuals with CVI compared to neurotypical controls using a combined behavioral and multi-modal neuroimaging approach. We found that CVI participants had a significantly higher mean motion coherence threshold (determined using a random dot kinematogram pattern simulating optic flow motion) compared to controls. Using functional magnetic resonance imaging (fMRI), we investigated activation response profiles in functionally defined early (i.e. primary visual cortex; area V1) and higher order (i.e. middle temporal cortex; area hMT+) stages of motion processing. In area V1, responses to increasing motion coherence were similar in both groups. However, in the CVI group, activation in area hMT+ was significantly reduced compared to controls, and consistent with a surround facilitation (rather than suppression) response profile. White matter tract reconstruction obtained from high angular resolution diffusion imaging (HARDI) revealed evidence of increased mean, axial, and radial diffusivities within cortico-cortical (i.e. V1-hMT+), but not thalamo-hMT+ connections. Overall, our results suggest that global motion processing deficits in CVI may be associated with impaired signal integration and segregation mechanisms, as well as white matter integrity at the level of area hMT+.
Collapse
|
2
|
Durant S, Zanker JM. The combined effect of eye movements improve head centred local motion information during walking. PLoS One 2020; 15:e0228345. [PMID: 31999777 PMCID: PMC6992003 DOI: 10.1371/journal.pone.0228345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/13/2020] [Indexed: 11/18/2022] Open
Abstract
Eye movements play multiple roles in human behaviour—small stabilizing movements are important for keeping the image of the scene steady during locomotion, whilst large scanning movements search for relevant information. It has been proposed that eye movement induced retinal motion interferes with the estimation of self-motion based on optic flow. We investigated the effect of eye movements on retinal motion information during walking. Observers walked towards a target, wearing eye tracking glasses that simultaneously recorded the scene ahead and tracked the movements of both eyes. By realigning the frames of the recording from the scene ahead, relative to the centre of gaze, we could mimic the input received by the retina (retinocentric coordinates) and compare this to the input received by the scene camera (head centred coordinates). We asked which of these coordinate frames resulted in the least noisy motion information. Motion noise was calculated by finding the error in between the optic flow signal and a noise-free motion expansion pattern. We found that eye movements improved the optic flow information available, even when large diversions away from target were made.
Collapse
Affiliation(s)
- Szonya Durant
- Department of Psychology, University of London, Egham, England, United Kingdom
- * E-mail:
| | - Johannes M. Zanker
- Department of Psychology, University of London, Egham, England, United Kingdom
| |
Collapse
|
3
|
Correa Mesa JF, Álvarez Peña PA. Neurología de la anticipación y sus implicaciones en el deporte. REVISTA DE LA FACULTAD DE MEDICINA 2016. [DOI: 10.15446/revfacmed.v64n1.50473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>El movimiento es una acción que involucra interconexiones complejas, por lo cual se requiere profundizar en los procesos de adaptación, predicción y anticipación que permiten entender la importancia de estos aspectos desde sus bases filogenéticas y ontogenéticas hasta su implicación en movimientos complejos. Parte de la optimización de los procesos descritos se haya en la calidad de información aferente, la cual permite la relación con el entorno —especialmente la entrada visual— que reconoce un flujo de imágenes y una proyección al contexto en el que se está inmerso. Las estructuras e interconexiones implicadas en la anticipación y predicción de movimientos son descritas de modo que se evidencia la congruencia y continuidad del flujo de información que caracteriza esta especialidad neuromecánica de movimiento. Por otro lado, se aborda la integración de centros puntuales del sistema nervioso central y redes neuronales que permiten el entramado de procesos de aprendizaje por observación, además de proveer equilibrio y eficiencia al sistema en la recepción de estímulos y su relación con la generación de eferencias motoras que cumplan con objetivos específicos. En el ámbito deportivo estos procesos favorecen la eficiencia del gesto optimizando el movimiento.</p>
Collapse
|
4
|
Temporal statistics of natural image sequences generated by movements with insect flight characteristics. PLoS One 2014; 9:e110386. [PMID: 25340761 PMCID: PMC4207754 DOI: 10.1371/journal.pone.0110386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022] Open
Abstract
Many flying insects, such as flies, wasps and bees, pursue a saccadic flight and gaze strategy. This behavioral strategy is thought to separate the translational and rotational components of self-motion and, thereby, to reduce the computational efforts to extract information about the environment from the retinal image flow. Because of the distinguishing dynamic features of this active flight and gaze strategy of insects, the present study analyzes systematically the spatiotemporal statistics of image sequences generated during saccades and intersaccadic intervals in cluttered natural environments. We show that, in general, rotational movements with saccade-like dynamics elicit fluctuations and overall changes in brightness, contrast and spatial frequency of up to two orders of magnitude larger than translational movements at velocities that are characteristic of insects. Distinct changes in image parameters during translations are only caused by nearby objects. Image analysis based on larger patches in the visual field reveals smaller fluctuations in brightness and spatial frequency composition compared to small patches. The temporal structure and extent of these changes in image parameters define the temporal constraints imposed on signal processing performed by the insect visual system under behavioral conditions in natural environments.
Collapse
|
5
|
Putcha D, Ross RS, Rosen ML, Norton DJ, Cronin-Golomb A, Somers DC, Stern CE. Functional correlates of optic flow motion processing in Parkinson's disease. Front Integr Neurosci 2014; 8:57. [PMID: 25071484 PMCID: PMC4086480 DOI: 10.3389/fnint.2014.00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/24/2014] [Indexed: 11/13/2022] Open
Abstract
The visual input created by the relative motion between an individual and the environment, also called optic flow, influences the sense of self-motion, postural orientation, veering of gait, and visuospatial cognition. An optic flow network comprising visual motion areas V6, V3A, and MT+, as well as visuo-vestibular areas including posterior insula vestibular cortex (PIVC) and cingulate sulcus visual area (CSv), has been described as uniquely selective for parsing egomotion depth cues in humans. Individuals with Parkinson’s disease (PD) have known behavioral deficits in optic flow perception and visuospatial cognition compared to age- and education-matched control adults (MC). The present study used functional magnetic resonance imaging (fMRI) to investigate neural correlates related to impaired optic flow perception in PD. We conducted fMRI on 40 non-demented participants (23 PD and 17 MC) during passive viewing of simulated optic flow motion and random motion. We hypothesized that compared to the MC group, PD participants would show abnormal neural activity in regions comprising this optic flow network. MC participants showed robust activation across all regions in the optic flow network, consistent with studies in young adults, suggesting intact optic flow perception at the neural level in healthy aging. PD participants showed diminished activity compared to MC particularly within visual motion area MT+ and the visuo-vestibular region CSv. Further, activation in visuo-vestibular region CSv was associated with disease severity. These findings suggest that behavioral reports of impaired optic flow perception and visuospatial performance may be a result of impaired neural processing within visual motion and visuo-vestibular regions in PD.
Collapse
Affiliation(s)
- Deepti Putcha
- Department of Psychology, Center for Memory and Brain, Boston University Boston, MA, USA ; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Boston, MA, USA
| | - Robert S Ross
- Department of Psychology, Center for Memory and Brain, Boston University Boston, MA, USA ; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Boston, MA, USA ; Department of Psychology, University of New Hampshire Durham, NH, USA
| | - Maya L Rosen
- Department of Psychology, Center for Memory and Brain, Boston University Boston, MA, USA ; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Boston, MA, USA
| | - Daniel J Norton
- Department of Psychology, Center for Memory and Brain, Boston University Boston, MA, USA
| | - Alice Cronin-Golomb
- Department of Psychology, Center for Memory and Brain, Boston University Boston, MA, USA
| | - David C Somers
- Department of Psychology, Center for Memory and Brain, Boston University Boston, MA, USA ; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Boston, MA, USA
| | - Chantal E Stern
- Department of Psychology, Center for Memory and Brain, Boston University Boston, MA, USA ; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Boston, MA, USA
| |
Collapse
|