1
|
Nazari S, Jamshidi S. Efficient digital design of the nonlinear behavior of Hindmarsh-Rose neuron model in large-scale neural population. Sci Rep 2024; 14:3833. [PMID: 38360852 PMCID: PMC10869816 DOI: 10.1038/s41598-024-54525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
Spiking networks, as the third generation of neural networks, are of great interest today due to their low power consumption in cognitive processes. This important characteristic has caused the hardware implementation techniques of spiking networks in the form of neuromorphic systems attract a lot of attention. For the first time, the focus is on the digital implementation based on CORDIC approximation of the Hindmarsh-Rose (HR) neuron so that the hardware implementation cost is lower than previous studies. If the digital design of a neuron is done efficient, the possibility of implementing a population of neurons is provided for the feasibility of low-consumption implementation of high-level cognitive processes in hardware, which is considered in this paper through edge detector, noise removal and image magnification spiking networks based on the proposed CORDIC_HR model. While using less hardware resources, the proposed HR neuron model follows the behavior of the original neuron model in the time domain with much less error than previous study. Also, the complex nonlinear behavior of the original and the proposed model of HR neuron through the bifurcation diagram, phase space and nullcline space analysis under different system parameters was investigated and the good follow-up of the proposed model was confirmed from the original model. In addition to the fact that the individual behavior of the original and the proposed neurons is the same, the functional and behavioral performance of the randomly connected neuronal population of original and proposed neuron model is equal. In general, the main contribution of the paper is in presenting an efficient hardware model, which consumes less hardware resources, follows the behavior of the original model with high accuracy, and has an acceptable performance in image processing applications such as noise removal and edge detection.
Collapse
Affiliation(s)
- Soheila Nazari
- Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Shabnam Jamshidi
- Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Li H, Wan B, Fang Y, Li Q, Liu JK, An L. An FPGA implementation of Bayesian inference with spiking neural networks. Front Neurosci 2024; 17:1291051. [PMID: 38249589 PMCID: PMC10796689 DOI: 10.3389/fnins.2023.1291051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Spiking neural networks (SNNs), as brain-inspired neural network models based on spikes, have the advantage of processing information with low complexity and efficient energy consumption. Currently, there is a growing trend to design hardware accelerators for dedicated SNNs to overcome the limitation of running under the traditional von Neumann architecture. Probabilistic sampling is an effective modeling approach for implementing SNNs to simulate the brain to achieve Bayesian inference. However, sampling consumes considerable time. It is highly demanding for specific hardware implementation of SNN sampling models to accelerate inference operations. Hereby, we design a hardware accelerator based on FPGA to speed up the execution of SNN algorithms by parallelization. We use streaming pipelining and array partitioning operations to achieve model operation acceleration with the least possible resource consumption, and combine the Python productivity for Zynq (PYNQ) framework to implement the model migration to the FPGA while increasing the speed of model operations. We verify the functionality and performance of the hardware architecture on the Xilinx Zynq ZCU104. The experimental results show that the hardware accelerator of the SNN sampling model proposed can significantly improve the computing speed while ensuring the accuracy of inference. In addition, Bayesian inference for spiking neural networks through the PYNQ framework can fully optimize the high performance and low power consumption of FPGAs in embedded applications. Taken together, our proposed FPGA implementation of Bayesian inference with SNNs has great potential for a wide range of applications, it can be ideal for implementing complex probabilistic model inference in embedded systems.
Collapse
Affiliation(s)
- Haoran Li
- Guangzhou Institute of Technology, Xidian University, Guangzhou, China
| | - Bo Wan
- School of Computer Science and Technology, Xidian University, Xi'an, China
- Key Laboratory of Smart Human Computer Interaction and Wearable Technology of Shaanxi Province, Xi'an, China
| | - Ying Fang
- College of Computer and Cyber Security, Fujian Normal University, Fuzhou, China
- Digital Fujian Internet-of-Thing Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou, China
| | - Qifeng Li
- Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Jian K. Liu
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Lingling An
- Guangzhou Institute of Technology, Xidian University, Guangzhou, China
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
3
|
Liu G, Deng W, Xie X, Huang L, Tang H. Human-Level Control Through Directly Trained Deep Spiking Q-Networks. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:7187-7198. [PMID: 36063509 DOI: 10.1109/tcyb.2022.3198259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the third-generation neural networks, spiking neural networks (SNNs) have great potential on neuromorphic hardware because of their high energy efficiency. However, deep spiking reinforcement learning (DSRL), that is, the reinforcement learning (RL) based on SNNs, is still in its preliminary stage due to the binary output and the nondifferentiable property of the spiking function. To address these issues, we propose a deep spiking Q -network (DSQN) in this article. Specifically, we propose a directly trained DSRL architecture based on the leaky integrate-and-fire (LIF) neurons and deep Q -network (DQN). Then, we adapt a direct spiking learning algorithm for the DSQN. We further demonstrate the advantages of using LIF neurons in DSQN theoretically. Comprehensive experiments have been conducted on 17 top-performing Atari games to compare our method with the state-of-the-art conversion method. The experimental results demonstrate the superiority of our method in terms of performance, stability, generalization and energy efficiency. To the best of our knowledge, our work is the first one to achieve state-of-the-art performance on multiple Atari games with the directly trained SNN.
Collapse
|
4
|
Yuan Y, Zhu Y, Wang J, Li R, Xu X, Fang T, Huo H, Wan L, Li Q, Liu N, Yang S. Incorporating structural plasticity into self-organization recurrent networks for sequence learning. Front Neurosci 2023; 17:1224752. [PMID: 37592946 PMCID: PMC10427342 DOI: 10.3389/fnins.2023.1224752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Spiking neural networks (SNNs), inspired by biological neural networks, have received a surge of interest due to its temporal encoding. Biological neural networks are driven by multiple plasticities, including spike timing-dependent plasticity (STDP), structural plasticity, and homeostatic plasticity, making network connection patterns and weights to change continuously during the lifecycle. However, it is unclear how these plasticities interact to shape neural networks and affect neural signal processing. Method Here, we propose a reward-modulated self-organization recurrent network with structural plasticity (RSRN-SP) to investigate this issue. Specifically, RSRN-SP uses spikes to encode information, and incorporate multiple plasticities including reward-modulated spike timing-dependent plasticity (R-STDP), homeostatic plasticity, and structural plasticity. On the one hand, combined with homeostatic plasticity, R-STDP is presented to guide the updating of synaptic weights. On the other hand, structural plasticity is utilized to simulate the growth and pruning of synaptic connections. Results and discussion Extensive experiments for sequential learning tasks are conducted to demonstrate the representational ability of the RSRN-SP, including counting task, motion prediction, and motion generation. Furthermore, the simulations also indicate that the characteristics arose from the RSRN-SP are consistent with biological observations.
Collapse
Affiliation(s)
- Ye Yuan
- School of Health Science and Engineering, Institute of Machine Intelligence, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongtong Zhu
- School of Health Science and Engineering, Institute of Machine Intelligence, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiaqi Wang
- School of Health Science and Engineering, Institute of Machine Intelligence, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruoshi Li
- School of Health Science and Engineering, Institute of Machine Intelligence, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Xu
- School of Health Science and Engineering, Institute of Machine Intelligence, University of Shanghai for Science and Technology, Shanghai, China
| | - Tao Fang
- Automation of Department, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Huo
- Automation of Department, Shanghai Jiao Tong University, Shanghai, China
| | - Lihong Wan
- Origin Dynamics Intelligent Robot Co., Ltd., Zhengzhou, China
| | - Qingdu Li
- School of Health Science and Engineering, Institute of Machine Intelligence, University of Shanghai for Science and Technology, Shanghai, China
| | - Na Liu
- School of Health Science and Engineering, Institute of Machine Intelligence, University of Shanghai for Science and Technology, Shanghai, China
| | - Shiyan Yang
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
5
|
Wu D, Yi X, Huang X. A Little Energy Goes a Long Way: Build an Energy-Efficient, Accurate Spiking Neural Network From Convolutional Neural Network. Front Neurosci 2022; 16:759900. [PMID: 35692427 PMCID: PMC9179229 DOI: 10.3389/fnins.2022.759900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
This article conforms to a recent trend of developing an energy-efficient Spiking Neural Network (SNN), which takes advantage of the sophisticated training regime of Convolutional Neural Network (CNN) and converts a well-trained CNN to an SNN. We observe that the existing CNN-to-SNN conversion algorithms may keep a certain amount of residual current in the spiking neurons in SNN, and the residual current may cause significant accuracy loss when inference time is short. To deal with this, we propose a unified framework to equalize the output of the convolutional or dense layer in CNN and the accumulated current in SNN, and maximally align the spiking rate of a neuron with its corresponding charge. This framework enables us to design a novel explicit current control (ECC) method for the CNN-to-SNN conversion which considers multiple objectives at the same time during the conversion, including accuracy, latency, and energy efficiency. We conduct an extensive set of experiments on different neural network architectures, e.g., VGG, ResNet, and DenseNet, to evaluate the resulting SNNs. The benchmark datasets include not only the image datasets such as CIFAR-10/100 and ImageNet but also the Dynamic Vision Sensor (DVS) image datasets such as DVS-CIFAR-10. The experimental results show the superior performance of our ECC method over the state-of-the-art.
Collapse
Affiliation(s)
- Dengyu Wu
- Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Dengyu Wu
| | - Xinping Yi
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Xiaowei Huang
- Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Javanshir A, Nguyen TT, Mahmud MAP, Kouzani AZ. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks. Neural Comput 2022; 34:1289-1328. [PMID: 35534005 DOI: 10.1162/neco_a_01499] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/18/2022] [Indexed: 11/04/2022]
Abstract
Artificial neural networks (ANNs) have experienced a rapid advancement for their success in various application domains, including autonomous driving and drone vision. Researchers have been improving the performance efficiency and computational requirement of ANNs inspired by the mechanisms of the biological brain. Spiking neural networks (SNNs) provide a power-efficient and brain-inspired computing paradigm for machine learning applications. However, evaluating large-scale SNNs on classical von Neumann architectures (central processing units/graphics processing units) demands a high amount of power and time. Therefore, hardware designers have developed neuromorphic platforms to execute SNNs in and approach that combines fast processing and low power consumption. Recently, field-programmable gate arrays (FPGAs) have been considered promising candidates for implementing neuromorphic solutions due to their varied advantages, such as higher flexibility, shorter design, and excellent stability. This review aims to describe recent advances in SNNs and the neuromorphic hardware platforms (digital, analog, hybrid, and FPGA based) suitable for their implementation. We present that biological background of SNN learning, such as neuron models and information encoding techniques, followed by a categorization of SNN training. In addition, we describe state-of-the-art SNN simulators. Furthermore, we review and present FPGA-based hardware implementation of SNNs. Finally, we discuss some future directions for research in this field.
Collapse
Affiliation(s)
| | - Thanh Thi Nguyen
- School of Information Technology, Deakin University (Burwood Campus) Burwood, VIC 3125, Australia
| | - M A Parvez Mahmud
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
7
|
A Cost-Efficient High-Speed VLSI Architecture for Spiking Convolutional Neural Network Inference Using Time-Step Binary Spike Maps. SENSORS 2021; 21:s21186006. [PMID: 34577214 PMCID: PMC8471769 DOI: 10.3390/s21186006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
Neuromorphic hardware systems have been gaining ever-increasing focus in many embedded applications as they use a brain-inspired, energy-efficient spiking neural network (SNN) model that closely mimics the human cortex mechanism by communicating and processing sensory information via spatiotemporally sparse spikes. In this paper, we fully leverage the characteristics of spiking convolution neural network (SCNN), and propose a scalable, cost-efficient, and high-speed VLSI architecture to accelerate deep SCNN inference for real-time low-cost embedded scenarios. We leverage the snapshot of binary spike maps at each time-step, to decompose the SCNN operations into a series of regular and simple time-step CNN-like processing to reduce hardware resource consumption. Moreover, our hardware architecture achieves high throughput by employing a pixel stream processing mechanism and fine-grained data pipelines. Our Zynq-7045 FPGA prototype reached a high processing speed of 1250 frames/s and high recognition accuracies on the MNIST and Fashion-MNIST image datasets, demonstrating the plausibility of our SCNN hardware architecture for many embedded applications.
Collapse
|