1
|
Yu H, Cao W, Fang T, Jin J, Pei G. EEG β oscillations in aberrant data perception under cognitive load modulation. Sci Rep 2024; 14:22995. [PMID: 39362975 PMCID: PMC11450174 DOI: 10.1038/s41598-024-74381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Data-driven decision making (DDDM) is becoming an indispensable component of work across various fields, and the perception of aberrant data (PAD) has emerged as an essential skill. Nonetheless, the neural processing mechanisms underpinning PAD remain incompletely elucidated. Direct evidence linking neural oscillations to PAD is currently lacking, and the impact of cognitive load remains ambiguous. We address this issue using EEG time-frequency analysis. Data were collected from 21 healthy participants. The experiment employed a 2 (low vs. high cognitive load) × 2 [PAD+ (aberrant data accurately identified as aberrant) vs. PAD- (non-aberrant data correctly recognized as normal)] within-subject laboratory design. Results indicate that upper β band oscillations (26-30 Hz) were significantly enhanced in the PAD + condition compared to PAD-, with consistent activity observed in the frontal (p < 0.001, [Formula: see text] = 0.41) and parietal lobes (p = 0.028, [Formula: see text] = 0.22) within the 300-350 ms time window. Additionally, as cognitive load increased, the time window of β oscillations for distinguishing PAD+ from PAD- shifted earlier. This study enriches our understanding of the PAD neural basis by exploring the distribution of neural oscillation frequencies, decision-making neural circuits, and the windowing effect induced by cognitive load. These findings have significant implications for elucidating the pathological mechanisms of neurodegenerative disorders, as well as in the initial screening, intervention, and treatment of diseases.
Collapse
Affiliation(s)
- Haihong Yu
- Maritime School, Ningbo University, Ningbo, China
- School of Economics and Management, Ningbo University of Technology, Ningbo, China
| | - Wei Cao
- Maritime School, Ningbo University, Ningbo, China
| | - Tie Fang
- Maritime School, Ningbo University, Ningbo, China
| | - Jia Jin
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, 550# Dalian West Road, Shanghai, 200083, China.
| | - Guanxiong Pei
- Zhejiang Laboratory of Philosophy and Social Sciences - Laboratory of Intelligent Society and Governance, Zhejiang Lab, 1818# Wenyixi Road, Hangzhou, 311121, China.
- Development Strategy and Cooperation Center, Zhejiang Lab, Hangzhou, China.
| |
Collapse
|
2
|
Alavash M, Obleser J. Brain Network Interconnectivity Dynamics Explain Metacognitive Differences in Listening Behavior. J Neurosci 2024; 44:e2322232024. [PMID: 38839303 PMCID: PMC11293451 DOI: 10.1523/jneurosci.2322-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Complex auditory scenes pose a challenge to attentive listening, rendering listeners slower and more uncertain in their perceptual decisions. How can we explain such behaviors from the dynamics of cortical networks that pertain to the control of listening behavior? We here follow up on the hypothesis that human adaptive perception in challenging listening situations is supported by modular reconfiguration of auditory-control networks in a sample of N = 40 participants (13 males) who underwent resting-state and task functional magnetic resonance imaging (fMRI). Individual titration of a spatial selective auditory attention task maintained an average accuracy of ∼70% but yielded considerable interindividual differences in listeners' response speed and reported confidence in their own perceptual decisions. Whole-brain network modularity increased from rest to task by reconfiguring auditory, cinguloopercular, and dorsal attention networks. Specifically, interconnectivity between the auditory network and cinguloopercular network decreased during the task relative to the resting state. Additionally, interconnectivity between the dorsal attention network and cinguloopercular network increased. These interconnectivity dynamics were predictive of individual differences in response confidence, the degree of which was more pronounced after incorrect judgments. Our findings uncover the behavioral relevance of functional cross talk between auditory and attentional-control networks during metacognitive assessment of one's own perception in challenging listening situations and suggest two functionally dissociable cortical networked systems that shape the considerable metacognitive differences between individuals in adaptive listening behavior.
Collapse
Affiliation(s)
- Mohsen Alavash
- Department of Psychology, University of Lübeck, Lübeck 23562, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck 23562, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck 23562, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
3
|
Levy J, Goldstein A, Influs M, Masalha S, Feldman R. Neural Rhythmic Underpinnings of Intergroup Bias: Implications for Peace-Building Attitudes and Dialogue. Soc Cogn Affect Neurosci 2021; 17:408-420. [PMID: 34519338 PMCID: PMC8972238 DOI: 10.1093/scan/nsab106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 11/14/2022] Open
Abstract
Intergroup bias is a ubiquitous socio-cognitive phenomenon that, while sustaining human dependence on group living, often leads to prejudice, inequity, and violence; yet, its neural underpinnings remain unclear. Framed within the Israeli-Palestinian conflict and targeting youth, this study utilized magnetoencephalography to describe intrinsic neural oscillatory processes that represent the intergroup bias and may link with engagement in peacemaking in order to shed further light on the neural mechanisms underpinning intergroup conflict. Across the oscillatory spectrum, from very low to very high frequency bands, the only rhythm found to underlie the intergroup bias was the alpha rhythm. Alpha was continuously activated across the task and integrated a rapid perceptual component in occipital cortex with a top-down cognitive-control component in medial cingulate cortex. These components were distinctly associated with real-life intergroup dialog style and expressed attitudes that promote active engagement in peacemaking. Our findings suggest that the cortical alpha rhythm plays a crucial role in sustaining intergroup bias and address its impact on concrete intergroup experiences. Results highlight the need to provide opportunities for active peace-building dialog to youth reared amidst intractable conflicts.
Collapse
Affiliation(s)
- Jonathan Levy
- Interdisciplinary Center, Herzliya 46150, Israel.,Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland
| | - Abraham Goldstein
- Gonda Multidisciplinary Brain Research Center and Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Moran Influs
- Interdisciplinary Center, Herzliya 46150, Israel
| | | | - Ruth Feldman
- Interdisciplinary Center, Herzliya 46150, Israel.,Child Study Center, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
4
|
González-Villar AJ, Triñanes Y, Gómez-Perretta C, Carrillo-de-la-Peña MT. Patients with fibromyalgia show increased beta connectivity across distant networks and microstates alterations in resting-state electroencephalogram. Neuroimage 2020; 223:117266. [PMID: 32853817 DOI: 10.1016/j.neuroimage.2020.117266] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023] Open
Abstract
Fibromyalgia (FM) is a chronic condition characterized by widespread pain of unknown etiology associated with alterations in the central nervous system. Although previous studies demonstrated altered patterns of brain activity during pain processing in patients with FM, alterations in spontaneous brain oscillations, in terms of functional connectivity or microstates, have been barely explored so far. Here we recorded the EEG from 43 patients with FM and 51 healthy controls during open-eyes resting-state. We analyzed the functional connectivity between different brain networks computing the phase lag index after group Independent Component Analysis, and also performed an EEG microstates analysis. Patients with FM showed increased beta band connectivity between different brain networks and alterations in some microstates parameters (specifically lower occurrence and coverage of microstate class C). We speculate that the observed alterations in spontaneous EEG may suggest the dominance of endogenous top-down influences; this could be related to limited processing of novel external events and the deterioration of flexible behavior and cognitive control frequently reported for FM. These findings provide the first evidence of alterations in long-distance phase connectivity and microstate indices at rest, and represent progress towards the understanding of the pathophysiology of fibromyalgia and the identification of novel biomarkers for its diagnosis.
Collapse
Affiliation(s)
- Alberto J González-Villar
- Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Psychological Neuroscience Lab, Psychology Research Centre, School of Psychology, University of Minho, Braga, Portugal.
| | - Yolanda Triñanes
- Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - María T Carrillo-de-la-Peña
- Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Al‐Ozzi TM, Botero-Posada LF, Lopez Rios AL, Hutchison WD. Single unit and beta oscillatory activities in subthalamic nucleus are modulated during visual choice preference. Eur J Neurosci 2020; 53:2220-2233. [DOI: 10.1111/ejn.14750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Tameem M. Al‐Ozzi
- Department of Physiology University of Toronto Toronto ON Canada
- Department of Surgery University of Toronto Toronto ON Canada
- Krembil Research Institute Toronto ON Canada
| | - Luis F. Botero-Posada
- Hospital Universitario y Centros Especializados de Saint Vicente Fundacion Rionegro/Medellin Colombia
| | - Adriana L. Lopez Rios
- Hospital Universitario y Centros Especializados de Saint Vicente Fundacion Rionegro/Medellin Colombia
| | - William D. Hutchison
- Department of Physiology University of Toronto Toronto ON Canada
- Department of Surgery University of Toronto Toronto ON Canada
- Krembil Research Institute Toronto ON Canada
- Hospital Universitario y Centros Especializados de Saint Vicente Fundacion Rionegro/Medellin Colombia
- Division of Neurosurgery Toronto Western Hospital – University Health Network Toronto ON Canada
| |
Collapse
|
6
|
La Rocca D, Ciuciu P, Engemann DA, van Wassenhove V. Emergence of β and γ networks following multisensory training. Neuroimage 2020; 206:116313. [PMID: 31676416 PMCID: PMC7355235 DOI: 10.1016/j.neuroimage.2019.116313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Our perceptual reality relies on inferences about the causal structure of the world given by multiple sensory inputs. In ecological settings, multisensory events that cohere in time and space benefit inferential processes: hearing and seeing a speaker enhances speech comprehension, and the acoustic changes of flapping wings naturally pace the motion of a flock of birds. Here, we asked how a few minutes of (multi)sensory training could shape cortical interactions in a subsequent unisensory perceptual task. For this, we investigated oscillatory activity and functional connectivity as a function of individuals' sensory history during training. Human participants performed a visual motion coherence discrimination task while being recorded with magnetoencephalography. Three groups of participants performed the same task with visual stimuli only, while listening to acoustic textures temporally comodulated with the strength of visual motion coherence, or with auditory noise uncorrelated with visual motion. The functional connectivity patterns before and after training were contrasted to resting-state networks to assess the variability of common task-relevant networks, and the emergence of new functional interactions as a function of sensory history. One major finding is the emergence of a large-scale synchronization in the high γ (gamma: 60-120Hz) and β (beta: 15-30Hz) bands for individuals who underwent comodulated multisensory training. The post-training network involved prefrontal, parietal, and visual cortices. Our results suggest that the integration of evidence and decision-making strategies become more efficient following congruent multisensory training through plasticity in network routing and oscillatory regimes.
Collapse
Affiliation(s)
- Daria La Rocca
- CEA/DRF/Joliot, Université Paris-Saclay, 91191, Gif-sur-Yvette, France; Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France
| | - Philippe Ciuciu
- CEA/DRF/Joliot, Université Paris-Saclay, 91191, Gif-sur-Yvette, France; Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France
| | - Denis-Alexander Engemann
- CEA/DRF/Joliot, Université Paris-Saclay, 91191, Gif-sur-Yvette, France; Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France
| | - Virginie van Wassenhove
- CEA/DRF/Joliot, Université Paris-Saclay, 91191, Gif-sur-Yvette, France; Cognitive Neuroimaging Unit, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Zhang G, Li Y, Zhang J. Tracking the Dynamic Functional Network Interactions During Goal-Directed Auditory Tasks by Brain State Clustering. Front Neurosci 2019; 13:1220. [PMID: 31803006 PMCID: PMC6872968 DOI: 10.3389/fnins.2019.01220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/29/2019] [Indexed: 12/03/2022] Open
Abstract
Both perceiving and processing external sound stimuli as well as actively maintaining and updating relevant information (i.e., working memory) are critical for communication and problem solving in everyday acoustic environments. The translation of sensory information into perceptual decisions for goal-directed tasks hinges on dynamic changes in neural activity. However, the underlying brain network dynamics involved in this process are not well specified. In this study, we collected functional MRI data of participants engaging in auditory discrimination and auditory working memory tasks. Independent component analysis (ICA) was performed to extract the brain networks involved and the sliding-window functional connectivity (FC) among networks was calculated. Next, a temporal clustering technique was used to identify the brain states underlying auditory processing. Our results identified seven networks configured into four brain states. The number of brain state transitions was negatively correlated with auditory discrimination performance, and the fractional dwell time of State 2-which included connectivity among the triple high-order cognitive networks and the auditory network (AN)-was positively correlated with working memory performance. A comparison of the two tasks showed significant differences in the connectivity of the frontoparietal, default mode, and sensorimotor networks (SMNs), which is consistent with previous studies of the modulation of task load on brain network interaction. In summary, the dynamic network analysis employed in this study allowed us to isolate moment-to-moment fluctuations in inter-network synchrony, find network configuration in each state, and identify the specific state that enables fast, effective performance during auditory processing. This information is important for understanding the key neural mechanisms underlying goal-directed auditory tasks.
Collapse
Affiliation(s)
- Gaoyan Zhang
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Yuexuan Li
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Jinliang Zhang
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Tóth B, Farkas D, Urbán G, Szalárdy O, Orosz G, Hunyadi L, Hajdu B, Kovács A, Szabó BT, Shestopalova LB, Winkler I. Attention and speech-processing related functional brain networks activated in a multi-speaker environment. PLoS One 2019; 14:e0212754. [PMID: 30818389 PMCID: PMC6394951 DOI: 10.1371/journal.pone.0212754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 02/10/2019] [Indexed: 11/19/2022] Open
Abstract
Human listeners can focus on one speech stream out of several concurrent ones. The present study aimed to assess the whole-brain functional networks underlying a) the process of focusing attention on a single speech stream vs. dividing attention between two streams and 2) speech processing on different time-scales and depth. Two spoken narratives were presented simultaneously while listeners were instructed to a) track and memorize the contents of a speech stream and b) detect the presence of numerals or syntactic violations in the same ("focused attended condition") or in the parallel stream ("divided attended condition"). Speech content tracking was found to be associated with stronger connectivity in lower frequency bands (delta band- 0,5-4 Hz), whereas the detection tasks were linked with networks operating in the faster alpha (8-10 Hz) and beta (13-30 Hz) bands. These results suggest that the oscillation frequencies of the dominant brain networks during speech processing may be related to the duration of the time window within which information is integrated. We also found that focusing attention on a single speaker compared to dividing attention between two concurrent speakers was predominantly associated with connections involving the frontal cortices in the delta (0.5-4 Hz), alpha (8-10 Hz), and beta bands (13-30 Hz), whereas dividing attention between two parallel speech streams was linked with stronger connectivity involving the parietal cortices in the delta and beta frequency bands. Overall, connections strengthened by focused attention may reflect control over information selection, whereas connections strengthened by divided attention may reflect the need for maintaining two streams in parallel and the related control processes necessary for performing the tasks.
Collapse
Affiliation(s)
- Brigitta Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dávid Farkas
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gábor Urbán
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Orsolya Szalárdy
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Institute of Behavioural Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Orosz
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Social and Educational Psychology, Eötvös Loránd University, Budapest, Hungary
| | - László Hunyadi
- Department of General and Applied Linguistic, University of Debrecen, Debrecen, Hungary
| | - Botond Hajdu
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Annamária Kovács
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Telecommunication and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Beáta Tünde Szabó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Piliscsaba, Hungary
| | | | - István Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
9
|
Modular reconfiguration of an auditory control brain network supports adaptive listening behavior. Proc Natl Acad Sci U S A 2018; 116:660-669. [PMID: 30587584 PMCID: PMC6329957 DOI: 10.1073/pnas.1815321116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How do brain networks shape our listening behavior? We here develop and test the hypothesis that, during challenging listening situations, intrinsic brain networks are reconfigured to adapt to the listening demands and thus, to enable successful listening. We find that, relative to a task-free resting state, networks of the listening brain show higher segregation of temporal auditory, ventral attention, and frontal control regions known to be involved in speech processing, sound localization, and effortful listening. Importantly, the relative change in modularity of this auditory control network predicts individuals’ listening success. Our findings shed light on how cortical communication dynamics tune selection and comprehension of speech in challenging listening situations and suggest modularity as the network principle of auditory attention. Speech comprehension in noisy, multitalker situations poses a challenge. Successful behavioral adaptation to a listening challenge often requires stronger engagement of auditory spatial attention and context-dependent semantic predictions. Human listeners differ substantially in the degree to which they adapt behaviorally and can listen successfully under such circumstances. How cortical networks embody this adaptation, particularly at the individual level, is currently unknown. We here explain this adaptation from reconfiguration of brain networks for a challenging listening task (i.e., a linguistic variant of the Posner paradigm with concurrent speech) in an age-varying sample of n = 49 healthy adults undergoing resting-state and task fMRI. We here provide evidence for the hypothesis that more successful listeners exhibit stronger task-specific reconfiguration (hence, better adaptation) of brain networks. From rest to task, brain networks become reconfigured toward more localized cortical processing characterized by higher topological segregation. This reconfiguration is dominated by the functional division of an auditory and a cingulo-opercular module and the emergence of a conjoined auditory and ventral attention module along bilateral middle and posterior temporal cortices. Supporting our hypothesis, the degree to which modularity of this frontotemporal auditory control network is increased relative to resting state predicts individuals’ listening success in states of divided and selective attention. Our findings elucidate how fine-tuned cortical communication dynamics shape selection and comprehension of speech. Our results highlight modularity of the auditory control network as a key organizational principle in cortical implementation of auditory spatial attention in challenging listening situations.
Collapse
|
10
|
Villena-González M, Palacios-García I, Rodríguez E, López V. Beta Oscillations Distinguish Between Two Forms of Mental Imagery While Gamma and Theta Activity Reflects Auditory Attention. Front Hum Neurosci 2018; 12:389. [PMID: 30337865 PMCID: PMC6178143 DOI: 10.3389/fnhum.2018.00389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022] Open
Abstract
Visual sensory processing of external events decreases when attention is internally oriented toward self-generated thoughts and also differences in attenuation have been shown depending on the thought’s modality (visual or auditory thought). The present study aims to assess whether such modulations occurs also in auditory modality. In order to investigate auditory sensory modulations, we compared a passive listening condition with two conditions in which attention was internally oriented as a part of a task; a visual imagery condition and an inner speech condition. EEG signal was recorded from 20 participants while they were exposed to auditory probes during these three conditions. ERP results showed no differences in N1 auditory response comparing the three conditions reflecting maintenance of evoked electrophysiological reactivity for auditory modality. Nonetheless, time-frequency analyses showed that gamma and theta power in frontal regions was higher for passive listening than for internal attentional conditions. Specifically, the reduced amplitude in early gamma and theta band during both inward attention conditions may reflect reduced conscious attention of the current auditory stimulation. Finally, different pattern of beta band activity was observed only during visual imagery which can reflect cross-modal integration between visual and auditory modalities and it can distinguish this form of mental imagery from the inner speech. Taken together, these results showed that attentional suppression mechanisms in auditory modality are different from visual modality during mental imagery processes. Our results about oscillatory activity also confirm the important role of gamma oscillations in auditory processing and the differential neural dynamics underlying the visual and auditory/verbal imagery.
Collapse
Affiliation(s)
- Mario Villena-González
- Laboratorio de Psicología Experimental, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Neurociencia Cognitiva y Social, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Ismael Palacios-García
- Laboratorio de Neurodinámica, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eugenio Rodríguez
- Laboratorio de Neurodinámica, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vladimir López
- Laboratorio de Psicología Experimental, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Neurodinámica, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Dopaminergic modulation of hemodynamic signal variability and the functional connectome during cognitive performance. Neuroimage 2018; 172:341-356. [DOI: 10.1016/j.neuroimage.2018.01.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 11/19/2022] Open
|
12
|
Wilsch A, Neuling T, Obleser J, Herrmann CS. Transcranial alternating current stimulation with speech envelopes modulates speech comprehension. Neuroimage 2018; 172:766-774. [PMID: 29355765 DOI: 10.1016/j.neuroimage.2018.01.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 02/03/2023] Open
Abstract
Cortical entrainment of the auditory cortex to the broadband temporal envelope of a speech signal is crucial for speech comprehension. Entrainment results in phases of high and low neural excitability, which structure and decode the incoming speech signal. Entrainment to speech is strongest in the theta frequency range (4-8 Hz), the average frequency of the speech envelope. If a speech signal is degraded, entrainment to the speech envelope is weaker and speech intelligibility declines. Besides perceptually evoked cortical entrainment, transcranial alternating current stimulation (tACS) entrains neural oscillations by applying an electric signal to the brain. Accordingly, tACS-induced entrainment in auditory cortex has been shown to improve auditory perception. The aim of the current study was to modulate speech intelligibility externally by means of tACS such that the electric current corresponds to the envelope of the presented speech stream (i.e., envelope-tACS). Participants performed the Oldenburg sentence test with sentences presented in noise in combination with envelope-tACS. Critically, tACS was induced at time lags of 0-250 ms in 50-ms steps relative to sentence onset (auditory stimuli were simultaneous to or preceded tACS). We performed single-subject sinusoidal, linear, and quadratic fits to the sentence comprehension performance across the time lags. We could show that the sinusoidal fit described the modulation of sentence comprehension best. Importantly, the average frequency of the sinusoidal fit was 5.12 Hz, corresponding to the peaks of the amplitude spectrum of the stimulated envelopes. This finding was supported by a significant 5-Hz peak in the average power spectrum of individual performance time series. Altogether, envelope-tACS modulates intelligibility of speech in noise, presumably by enhancing and disrupting (time lag with in- or out-of-phase stimulation, respectively) cortical entrainment to the speech envelope in auditory cortex.
Collapse
Affiliation(s)
- Anna Wilsch
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Toralf Neuling
- Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, 26129 Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany.
| |
Collapse
|
13
|
Beyond the Status Quo: A Role for Beta Oscillations in Endogenous Content (Re)Activation. eNeuro 2017; 4:eN-REV-0170-17. [PMID: 28785729 PMCID: PMC5539431 DOI: 10.1523/eneuro.0170-17.2017] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022] Open
Abstract
Among the rhythms of the brain, oscillations in the beta frequency range (∼13-30 Hz) have been considered the most enigmatic. Traditionally associated with sensorimotor functions, beta oscillations have recently become more broadly implicated in top-down processing, long-range communication, and preservation of the current brain state. Here, we extend and refine these views based on accumulating new findings of content-specific beta-synchronization during endogenous information processing in working memory (WM) and decision making. We characterize such content-specific beta activity as short-lived, flexible network dynamics supporting the endogenous (re)activation of cortical representations. Specifically, we suggest that beta-mediated ensemble formation within and between cortical areas may awake, rather than merely preserve, an endogenous cognitive set in the service of current task demands. This proposal accommodates key aspects of content-specific beta modulations in monkeys and humans, integrates with timely computational models, and outlines a functional role for beta that fits its transient temporal characteristics.
Collapse
|
14
|
Alavash M, Daube C, Wöstmann M, Brandmeyer A, Obleser J. Large-scale network dynamics of beta-band oscillations underlie auditory perceptual decision-making. Netw Neurosci 2017; 1:166-191. [PMID: 29911668 PMCID: PMC5988391 DOI: 10.1162/netn_a_00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/01/2017] [Indexed: 11/24/2022] Open
Abstract
Perceptual decisions vary in the speed at which we make them. Evidence suggests that translating sensory information into perceptual decisions relies on distributed interacting neural populations, with decision speed hinging on power modulations of the neural oscillations. Yet the dependence of perceptual decisions on the large-scale network organization of coupled neural oscillations has remained elusive. We measured magnetoencephalographic signals in human listeners who judged acoustic stimuli composed of carefully titrated clouds of tone sweeps. These stimuli were used in two task contexts, in which the participants judged the overall pitch or direction of the tone sweeps. We traced the large-scale network dynamics of the source-projected neural oscillations on a trial-by-trial basis using power-envelope correlations and graph-theoretical network discovery. In both tasks, faster decisions were predicted by higher segregation and lower integration of coupled beta-band (∼16-28 Hz) oscillations. We also uncovered the brain network states that promoted faster decisions in either lower-order auditory or higher-order control brain areas. Specifically, decision speed in judging the tone sweep direction critically relied on the nodal network configurations of anterior temporal, cingulate, and middle frontal cortices. Our findings suggest that global network communication during perceptual decision-making is implemented in the human brain by large-scale couplings between beta-band neural oscillations.
Collapse
Affiliation(s)
- Mohsen Alavash
- Department of Psychology, University of Lübeck, Germany
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christoph Daube
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Malte Wöstmann
- Department of Psychology, University of Lübeck, Germany
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alex Brandmeyer
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Germany
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|