1
|
Khanra P, Nakuci J, Muldoon S, Watanabe T, Masuda N. Reliability of energy landscape analysis of resting-state functional MRI data. ARXIV 2024:arXiv:2305.19573v2. [PMID: 37396616 PMCID: PMC10312792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Energy landscape analysis is a data-driven method to analyze multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics of the data as movement of a noisy ball constrained on the energy landscape derived from the estimated Ising model. In the present study, we examine test-retest reliability of the energy landscape analysis. To this end, we construct a permutation test that assesses whether or not indices characterizing the energy landscape are more consistent across different sets of scanning sessions from the same participant (i.e., within-participant reliability) than across different sets of sessions from different participants (i.e., between-participant reliability). We show that the energy landscape analysis has significantly higher within-participant than between-participant test-retest reliability with respect to four commonly used indices. We also show that a variational Bayesian method, which enables us to estimate energy landscapes tailored to each participant, displays comparable test-retest reliability to that using the conventional likelihood maximization method. The proposed methodology paves the way to perform individual-level energy landscape analysis for given data sets with a statistically controlled reliability.
Collapse
Affiliation(s)
- Pitambar Khanra
- Department of Mathematics, State University of New York at Buffalo, Buffalo, USA
| | - Johan Nakuci
- School of Psychology, Georgia Institute of Technology, Atlanta, USA
| | - Sarah Muldoon
- Department of Mathematics, State University of New York at Buffalo, Buffalo, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, USA
| | - Takamitsu Watanabe
- International Research Centre for Neurointelligence, The University of Tokyo, Japan
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, USA
| |
Collapse
|
2
|
Khanra P, Nakuci J, Muldoon S, Watanabe T, Masuda N. Reliability of energy landscape analysis of resting-state functional MRI data. Eur J Neurosci 2024; 60:4265-4290. [PMID: 38837814 DOI: 10.1111/ejn.16390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
Energy landscape analysis is a data-driven method to analyse multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics of the data as movement of a noisy ball constrained on the energy landscape derived from the estimated Ising model. In the present study, we examine test-retest reliability of the energy landscape analysis. To this end, we construct a permutation test that assesses whether or not indices characterizing the energy landscape are more consistent across different sets of scanning sessions from the same participant (i.e. within-participant reliability) than across different sets of sessions from different participants (i.e. between-participant reliability). We show that the energy landscape analysis has significantly higher within-participant than between-participant test-retest reliability with respect to four commonly used indices. We also show that a variational Bayesian method, which enables us to estimate energy landscapes tailored to each participant, displays comparable test-retest reliability to that using the conventional likelihood maximization method. The proposed methodology paves the way to perform individual-level energy landscape analysis for given data sets with a statistically controlled reliability.
Collapse
Affiliation(s)
- Pitambar Khanra
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, USA
| | - Johan Nakuci
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sarah Muldoon
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, New York, USA
| | - Takamitsu Watanabe
- International Research Centre for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
3
|
Pei H, Ma S, Yan W, Liu Z, Wang Y, Yang Z, Li Q, Yao D, Jiang S, Luo C, Yu L. Functional and structural networks decoupling in generalized tonic-clonic seizures and its reorganization by drugs. Epilepsia Open 2023; 8:1038-1048. [PMID: 37394869 PMCID: PMC10472403 DOI: 10.1002/epi4.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
OBJECTIVE To investigate potential functional and structural large-scale network disturbances in untreated patients with generalized tonic-clonic seizures (GTCS) and the effects of antiseizure drugs. METHODS In this study, 41 patients with GTCS, comprising 21 untreated patients and 20 patients who received antiseizure medications (ASMs), and 29 healthy controls were recruited to construct large-scale brain networks based on resting-state functional magnetic resonance imaging and diffusion tensor imaging. Structural and functional connectivity and network-level weighted correlation probability (NWCP) were further investigated to identify network features that corresponded to response to ASMs. RESULTS Untreated patients showed more extensive enhancement of functional and structural connections than controls. Specifically, we observed abnormally enhanced connections between the default mode network (DMN) and the frontal-parietal network. In addition, treated patients showed similar functional connection strength to that of the control group. However, all patients exhibited similar structural network alterations. Moreover, the NWCP value was lower for connections within the DMN and between the DMN and other networks in the untreated patients; receiving ASMs could reverse this pattern. SIGNIFICANCE Our study identified alterations in structural and functional connectivity in patients with GTCS. The influence of ASMs may be more noticeable within the functional network; moreover, abnormalities in both the functional and structural coupling state may be improved by ASM treatment. Therefore, the coupling state of structural and functional connectivity may be used as an indicator of the efficacy of ASMs.
Collapse
Affiliation(s)
- Haonan Pei
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Shuai Ma
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
- Neurology DepartmentSichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Wei Yan
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Zetao Liu
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Yuehan Wang
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Zhihuan Yang
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Qifu Li
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouChina
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Liang Yu
- Neurology DepartmentSichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
4
|
John YJ, Sawyer KS, Srinivasan K, Müller EJ, Munn BR, Shine JM. It's about time: Linking dynamical systems with human neuroimaging to understand the brain. Netw Neurosci 2022; 6:960-979. [PMID: 36875012 PMCID: PMC9976648 DOI: 10.1162/netn_a_00230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022] Open
Abstract
Most human neuroscience research to date has focused on statistical approaches that describe stationary patterns of localized neural activity or blood flow. While these patterns are often interpreted in light of dynamic, information-processing concepts, the static, local, and inferential nature of the statistical approach makes it challenging to directly link neuroimaging results to plausible underlying neural mechanisms. Here, we argue that dynamical systems theory provides the crucial mechanistic framework for characterizing both the brain's time-varying quality and its partial stability in the face of perturbations, and hence, that this perspective can have a profound impact on the interpretation of human neuroimaging results and their relationship with behavior. After briefly reviewing some key terminology, we identify three key ways in which neuroimaging analyses can embrace a dynamical systems perspective: by shifting from a local to a more global perspective, by focusing on dynamics instead of static snapshots of neural activity, and by embracing modeling approaches that map neural dynamics using "forward" models. Through this approach, we envisage ample opportunities for neuroimaging researchers to enrich their understanding of the dynamic neural mechanisms that support a wide array of brain functions, both in health and in the setting of psychopathology.
Collapse
Affiliation(s)
- Yohan J. John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Kayle S. Sawyer
- Departments of Anatomy and Neurobiology, Boston University, Boston University, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Boston VA Healthcare System, Boston, MA, USA
- Sawyer Scientific, LLC, Boston, MA, USA
| | - Karthik Srinivasan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eli J. Müller
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| | - Brandon R. Munn
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| | - James M. Shine
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Aung T, Tenney JR, Bagić AI. Contributions of Magnetoencephalography to Understanding Mechanisms of Generalized Epilepsies: Blurring the Boundary Between Focal and Generalized Epilepsies? Front Neurol 2022; 13:831546. [PMID: 35572923 PMCID: PMC9092024 DOI: 10.3389/fneur.2022.831546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
According to the latest operational 2017 ILAE classification of epileptic seizures, the generalized epileptic seizure is still conceptualized as "originating at some point within and rapidly engaging, bilaterally distributed networks." In contrast, the focal epileptic seizure is defined as "originating within networks limited to one hemisphere." Hence, one of the main concepts of "generalized" and "focal" epilepsy comes from EEG descriptions before the era of source localization, and a presumed simultaneous bilateral onset and bi-synchrony of epileptiform discharges remains a hallmark for generalized seizures. Current literature on the pathophysiology of generalized epilepsy supports the concept of a cortical epileptogenic focus triggering rapidly generalized epileptic discharges involving intact corticothalamic and corticocortical networks, known as the cortical focus theory. Likewise, focal epilepsy with rich connectivity can give rise to generalized spike and wave discharges resulting from widespread bilateral synchronization. Therefore, making this key distinction between generalized and focal epilepsy may be challenging in some cases, and for the first time, a combined generalized and focal epilepsy is categorized in the 2017 ILAE classification. Nevertheless, treatment options, such as the choice of antiseizure medications or surgical treatment, are the reason behind the importance of accurate epilepsy classification. Over the past several decades, plentiful scientific research on the pathophysiology of generalized epilepsy has been conducted using non-invasive neuroimaging and postprocessing of the electromagnetic neural signal by measuring the spatiotemporal and interhemispheric latency of bi-synchronous or generalized epileptiform discharges as well as network analysis to identify diagnostic and prognostic biomarkers for accurate diagnosis of the two major types of epilepsy. Among all the advanced techniques, magnetoencephalography (MEG) and multiple other methods provide excellent temporal and spatial resolution, inherently suited to analyzing and visualizing the propagation of generalized EEG activities. This article aims to provide a comprehensive literature review of recent innovations in MEG methodology using source localization and network analysis techniques that contributed to the literature of idiopathic generalized epilepsy in terms of pathophysiology and clinical prognosis, thus further blurring the boundary between focal and generalized epilepsy.
Collapse
Affiliation(s)
- Thandar Aung
- Department of Neurology, University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Jeffrey R. Tenney
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Anto I. Bagić
- Department of Neurology, University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
6
|
Zhu M, Wang Q, Luo J. Emotion Recognition Based on Dynamic Energy Features Using a Bi-LSTM Network. Front Comput Neurosci 2022; 15:741086. [PMID: 35264939 PMCID: PMC8900638 DOI: 10.3389/fncom.2021.741086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022] Open
Abstract
Among electroencephalogram (EEG) signal emotion recognition methods based on deep learning, most methods have difficulty in using a high-quality model due to the low resolution and the small sample size of EEG images. To solve this problem, this study proposes a deep network model based on dynamic energy features. In this method, first, to reduce the noise superposition caused by feature analysis and extraction, the concept of an energy sequence is proposed. Second, to obtain the feature set reflecting the time persistence and multicomponent complexity of EEG signals, the construction method of the dynamic energy feature set is given. Finally, to make the network model suitable for small datasets, we used fully connected layers and bidirectional long short-term memory (Bi-LSTM) networks. To verify the effectiveness of the proposed method, we used leave one subject out (LOSO) and 10-fold cross validation (CV) strategies to carry out experiments on the SEED and DEAP datasets. The experimental results show that the accuracy of the proposed method can reach 89.42% (SEED) and 77.34% (DEAP).
Collapse
Affiliation(s)
- Meili Zhu
- Modern Animation Technology Engineering Research Center of Jilin Higher Learning Institutions, Jilin Animation Institute, Changchun, China
| | | | | |
Collapse
|
7
|
Yuan J, Ji S, Luo L, Lv J, Liu T. Control energy assessment of spatial interactions among
macro‐scale
brain networks. Hum Brain Mapp 2022; 43:2181-2203. [PMID: 35072300 PMCID: PMC8996365 DOI: 10.1002/hbm.25780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022] Open
Abstract
Many recent studies have revealed that spatial interactions of functional brain networks derived from fMRI data can well model functional connectomes of the human brain. However, it has been rarely explored what the energy consumption characteristics are for such spatial interactions of macro‐scale functional networks, which remains crucial for the understanding of brain organization, behavior, and dynamics. To explore this unanswered question, this article presents a novel framework for quantitative assessment of energy consumptions of macro‐scale functional brain network's spatial interactions via two main effective computational methodologies. First, we designed a novel scheme combining dictionary learning and hierarchical clustering to derive macro‐scale consistent brain network templates that can be used to define a common reference space for brain network interactions and energy assessments. Second, the control energy consumption for driving the brain networks during their spatial interactions is computed from the viewpoint of the linear network control theory. Especially, the energetically favorable brain networks were identified and their energy characteristics were comprehensively analyzed. Experimental results on the Human Connectome Project (HCP) task‐based fMRI (tfMRI) data showed that the proposed methods can reveal meaningful, diverse energy consumption patterns of macro‐scale network interactions. In particular, those networks present remarkable differences in energy consumption. The energetically least favorable brain networks are stable and consistent across HCP tasks such as motor, language, social, and working memory tasks. In general, our framework provides a new perspective to characterize human brain functional connectomes by quantitative assessment for the energy consumption of spatial interactions of macro‐scale brain networks.
Collapse
Affiliation(s)
- Jing Yuan
- College of Artificial Intelligence Nankai University Tianjin China
| | - Senquan Ji
- College of Artificial Intelligence Nankai University Tianjin China
| | - Liao Luo
- College of Artificial Intelligence Nankai University Tianjin China
| | - Jinglei Lv
- School of Biomedical Engineering The University of Sydney Sydney New South Wales Australia
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Laboratory, Department of Computer Science and Bioimaging Research Center The University of Georgia Athens Georgia USA
| |
Collapse
|
8
|
The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states. Nat Commun 2021; 12:6016. [PMID: 34650039 PMCID: PMC8516926 DOI: 10.1038/s41467-021-26268-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Models of cognitive function typically focus on the cerebral cortex and hence overlook functional links to subcortical structures. This view does not consider the role of the highly-conserved ascending arousal system's role and the computational capacities it provides the brain. We test the hypothesis that the ascending arousal system modulates cortical neural gain to alter the low-dimensional energy landscape of cortical dynamics. Here we use spontaneous functional magnetic resonance imaging data to study phasic bursts in both locus coeruleus and basal forebrain, demonstrating precise time-locked relationships between brainstem activity, low-dimensional energy landscapes, network topology, and spatiotemporal travelling waves. We extend our analysis to a cohort of experienced meditators and demonstrate locus coeruleus-mediated network dynamics were associated with internal shifts in conscious awareness. Together, these results present a view of brain organization that highlights the ascending arousal system's role in shaping both the dynamics of the cerebral cortex and conscious awareness.
Collapse
|
9
|
Dharan AL, Bowden SC, Lai A, Peterson ADH, Cheung MWL, Woldman W, D'Souza WJ. Resting-state functional connectivity in the idiopathic generalized epilepsies: A systematic review and meta-analysis of EEG and MEG studies. Epilepsy Behav 2021; 124:108336. [PMID: 34607215 DOI: 10.1016/j.yebeh.2021.108336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022]
Abstract
For idiopathic generalized epilepsies (IGE), brain network analysis is emerging as a biomarker for potential use in clinical care. To determine whether people with IGE show alterations in resting-state brain connectivity compared to healthy controls, and to quantify these differences, we conducted a systematic review and meta-analysis of EEG and magnetoencephalography (MEG) functional connectivity and network studies. The review was conducted according to PRISMA guidelines. Twenty-two studies were eligible for inclusion. Outcomes from individual studies supported hypotheses for interictal, resting-state brain connectivity alterations in IGE patients compared to healthy controls. In contrast, meta-analysis from six studies of common network metrics clustering coefficient, path length, mean degree and nodal strength showed no significant differences between IGE and control groups (effect sizes ranged from -0.151 -1.78). The null findings of the meta-analysis and the heterogeneity of the included studies highlights the importance of developing standardized, validated methodologies for future research. Network neuroscience has significant potential as both a diagnostic and prognostic biomarker in epilepsy, though individual variability in network dynamics needs to be better understood and accounted for.
Collapse
Affiliation(s)
- Anita L Dharan
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Stephen C Bowden
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Clinical Neurosciences, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Alan Lai
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Andre D H Peterson
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Mike W-L Cheung
- Department of Psychology, National University of Singapore, Singapore
| | - Wessel Woldman
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Edgbaston, United Kingdom
| | - Wendyl J D'Souza
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
10
|
Klepl D, He F, Wu M, Marco MD, Blackburn DJ, Sarrigiannis PG. Characterising Alzheimer's Disease with EEG-based Energy Landscape Analysis. IEEE J Biomed Health Inform 2021; 26:992-1000. [PMID: 34406951 DOI: 10.1109/jbhi.2021.3105397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, with around 50 million patients worldwide. Accessible and non-invasive methods of diagnosing and characterising AD are therefore urgently required. Electroencephalography (EEG) fulfils these criteria and is often used when studying AD. Several features derived from EEG were shown to predict AD with high accuracy, e.g. signal complexity and synchronisation. However, the dynamics of how the brain transitions between stable states have not been properly studied in the case of AD and EEG. Energy landscape analysis is a method that can be used to quantify these dynamics. This work presents the first application of this method to both AD and EEG. Energy landscape assigns energy value to each possible state, i.e. pattern of activations across brain regions. The energy is inversely proportional to the probability of occurrence. By studying the features of energy landscapes of 20 AD patients and 20 age-matched healthy counterparts (HC), significant differences are found. The dynamics of AD patients' EEG are shown to be more constrained - with more local minima, less variation in basin size, and smaller basins. We show that energy landscapes can predict AD with high accuracy, performing significantly better than baseline models. Moreover, these findings are replicated in a separate dataset including 9 AD and 10 HC above 70 years old.
Collapse
|
11
|
Lee DA, Ko J, Lee HJ, Kim HC, Park BS, Park S, Kim IH, Park JH, Lee YJ, Park KM. Alterations of the intrinsic amygdala-hippocampal network in juvenile myoclonic epilepsy. Brain Behav 2021; 11:e2274. [PMID: 34227259 PMCID: PMC8413739 DOI: 10.1002/brb3.2274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Several lines of evidence suggest that the amygdala-hippocampus is involved in the epileptogenic network of juvenile myoclonic epilepsy (JME). The aim of this study was to investigate the alterations in the individual nuclei of the amygdala and hippocampal subfields, and the intrinsic amygdala-hippocampal network of patients with JME compared to healthy controls. METHODS This retrospective study conducted at a single tertiary hospital involved 35 patients with newly diagnosed JME, and 34 healthy subjects. We calculated the individual structural volumes of 18 nuclei in the amygdala, and 38 hippocampal subfields using three-dimensional volumetric T1-weighted imaging and FreeSurfer program. We also performed an analysis of the intrinsic amygdala-hippocampal global and local network based on these volumes using a graph theory and Brain Analysis using Graph Theory (BRAPH) program. We investigated the differences in these volumes and network measures between patients with JME and healthy controls. RESULTS There were no significant volume differences in the nuclei of the amygdala and hippocampal subfields between patients with JME and healthy controls. However, we found significant differences in the global network between patients with JME and healthy controls. The mean clustering coefficient was significantly decreased in patients with JME compared to healthy controls (0.473 vs. 0.653, p = .047). In addition, specific regions in the hippocampal subfields showed significant differences in the local network between the two groups. The betweenness centrality of the right CA1-head, right hippocampus-amygdala-transition area, left hippocampal fissure, left fimbria, and left CA3-head, was increased in patients with JME compared to healthy controls. CONCLUSION The intrinsic amygdala-hippocampal global and local networks differed in patients with JME compared to healthy controls, which may be related to the pathogenesis of JME, and memory dysfunction in patients with JME.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Junghae Ko
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Hyung Chan Kim
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Bong Soo Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Sihyung Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Il Hwan Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jin Han Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Yoo Jin Lee
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
12
|
Lopes MA, Krzemiński D, Hamandi K, Singh KD, Masuda N, Terry JR, Zhang J. A computational biomarker of juvenile myoclonic epilepsy from resting-state MEG. Clin Neurophysiol 2021; 132:922-927. [PMID: 33636607 PMCID: PMC7992031 DOI: 10.1016/j.clinph.2020.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 11/29/2022]
Abstract
Computational modelling is combined with MEG to differentiate people with juvenile myoclonic epilepsy from healthy controls. Brain network ictogenicity (BNI) was found higher in people with juvenile myoclonic epilepsy relative to healthy controls. BNI’s classification accuracy in our cohort was 73%.
Objective For people with idiopathic generalized epilepsy, functional networks derived from their resting-state scalp electrophysiological recordings have shown an inherent higher propensity to generate seizures than those from healthy controls when assessed using the concept of brain network ictogenicity (BNI). Herein we tested whether the BNI framework is applicable to resting-state magnetoencephalography (MEG) from people with juvenile myoclonic epilepsy (JME). Methods The BNI framework consists in deriving a functional network from apparently normal brain activity, placing a mathematical model of ictogenicity into the network and then computing how often such network generates seizures in silico. We considered data from 26 people with JME and 26 healthy controls. Results We found that resting-state MEG functional networks from people with JME are characterized by a higher propensity to generate seizures (i.e., higher BNI) than those from healthy controls. We found a classification accuracy of 73%. Conclusions The BNI framework is applicable to MEG and was capable of differentiating people with epilepsy from healthy controls. Significance The BNI framework may be applied to resting-state MEG to aid in epilepsy diagnosis.
Collapse
Affiliation(s)
- Marinho A Lopes
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom.
| | - Dominik Krzemiński
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Cardiff CF14 4XW, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Naoki Masuda
- Department of Mathematics, University at Buffalo, State University of New York, USA; Computational and Data-Enabled Science and Engineering Program, University at Buffalo, State University of New York, USA
| | - John R Terry
- EPSRC Centre for Predictive Modelling in Healthcare, University of Birmingham, Birmingham, United Kingdom; Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Edgbaston, United Kingdom; Institute for Metabolism and Systems Research, University of Birmingham, Edgbaston, United Kingdom
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
13
|
Ashourvan A, Shah P, Pines A, Gu S, Lynn CW, Bassett DS, Davis KA, Litt B. Pairwise maximum entropy model explains the role of white matter structure in shaping emergent co-activation states. Commun Biol 2021; 4:210. [PMID: 33594239 PMCID: PMC7887247 DOI: 10.1038/s42003-021-01700-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
A major challenge in neuroscience is determining a quantitative relationship between the brain's white matter structural connectivity and emergent activity. We seek to uncover the intrinsic relationship among brain regions fundamental to their functional activity by constructing a pairwise maximum entropy model (MEM) of the inter-ictal activation patterns of five patients with medically refractory epilepsy over an average of ~14 hours of band-passed intracranial EEG (iEEG) recordings per patient. We find that the pairwise MEM accurately predicts iEEG electrodes' activation patterns' probability and their pairwise correlations. We demonstrate that the estimated pairwise MEM's interaction weights predict structural connectivity and its strength over several frequencies significantly beyond what is expected based solely on sampled regions' distance in most patients. Together, the pairwise MEM offers a framework for explaining iEEG functional connectivity and provides insight into how the brain's structural connectome gives rise to large-scale activation patterns by promoting co-activation between connected structures.
Collapse
Affiliation(s)
- Arian Ashourvan
- grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA USA
| | - Preya Shah
- grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA USA
| | - Adam Pines
- grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | - Shi Gu
- grid.54549.390000 0004 0369 4060Department of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Christopher W. Lynn
- grid.25879.310000 0004 1936 8972Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA USA
| | - Danielle S. Bassett
- grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.411115.10000 0004 0435 0884Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA USA
| | - Kathryn A. Davis
- grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA USA
| | - Brian Litt
- grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA USA ,grid.411115.10000 0004 0435 0884Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
14
|
Lopes MA, Zhang J, Krzemiński D, Hamandi K, Chen Q, Livi L, Masuda N. Recurrence quantification analysis of dynamic brain networks. Eur J Neurosci 2020; 53:1040-1059. [PMID: 32888203 DOI: 10.1111/ejn.14960] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 01/02/2023]
Abstract
Evidence suggests that brain network dynamics are a key determinant of brain function and dysfunction. Here we propose a new framework to assess the dynamics of brain networks based on recurrence analysis. Our framework uses recurrence plots and recurrence quantification analysis to characterize dynamic networks. For resting-state magnetoencephalographic dynamic functional networks (dFNs), we have found that functional networks recur more quickly in people with epilepsy than in healthy controls. This suggests that recurrence of dFNs may be used as a biomarker of epilepsy. For stereo electroencephalography data, we have found that dFNs involved in epileptic seizures emerge before seizure onset, and recurrence analysis allows us to detect seizures. We further observe distinct dFNs before and after seizures, which may inform neurostimulation strategies to prevent seizures. Our framework can also be used for understanding dFNs in healthy brain function and in other neurological disorders besides epilepsy.
Collapse
Affiliation(s)
- Marinho A Lopes
- Department of Engineering Mathematics, University of Bristol, Bristol, UK.,Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Dominik Krzemiński
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Qi Chen
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, China
| | - Lorenzo Livi
- Departments of Computer Science and Mathematics, University of Manitoba, Winnipeg, MB, Canada.,Department of Computer Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Naoki Masuda
- Department of Engineering Mathematics, University of Bristol, Bristol, UK.,Department of Mathematics, University at Buffalo, State University of New York, Buffalo, NY, USA.,Computational and Data-Enabled Science and Engineering Program, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|