1
|
Mason SL, Junges L, Woldman W, Ftouni S, Anderson C, Terry JR, Bagshaw AP. Associating EEG functional networks and the effect of sleep deprivation as measured using psychomotor vigilance tests. Sci Rep 2024; 14:27999. [PMID: 39543217 PMCID: PMC11564749 DOI: 10.1038/s41598-024-78814-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
People are routinely forced to undertake cognitive challenges under the effect of sleep deprivation, due to professional and social obligations forcing them to ignore their circadian clock. However, low intra-individual and high inter-individual differences in behavioural outcomes are known to occur when people are sleep deprived, leading to the conclusion that trait-like differences to sleep deprivation could explain the differing levels of resilience. Within this study we consider if trait-like resilience to sleep deprivation, measured using psychomotor vigilance tests over a 40 h protocol, could be associated with graph metrics (mean node strength, clustering coefficient, characteristic path length and stability) calculated from EEG functional networks acquired when participants ([Formula: see text]) are well rested (baseline). Furthermore, we investigated how stability (the consistency of a participant's functional network over time measured using 2-D correlation) changed over the constant routine. We showed evidence of strong significant correlations between high mean node strength, low characteristic path length and high stability at baseline with a general resilience to extended sleep deprivation, although the same features lead to vulnerability during the period of natural sleep onset, highlighting non-uniform correlations over time. We also show significant differences in the levels of stability between resilient and vulnerable groups.
Collapse
Affiliation(s)
- Sophie L Mason
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, B15 2TT, UK.
- Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Leandro Junges
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, B15 2TT, UK
| | - Wessel Woldman
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, B15 2TT, UK
- Neuronostics Limited, Engine Shed, Station Approach, Bristol, UK
| | - Suzanne Ftouni
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Clare Anderson
- Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - John R Terry
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, B15 2TT, UK
- Neuronostics Limited, Engine Shed, Station Approach, Bristol, UK
| | - Andrew P Bagshaw
- Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Junges L, Galvis D, Winsor A, Treadwell G, Richards C, Seri S, Johnson S, Terry JR, Bagshaw AP. The impact of paediatric epilepsy and co-occurring neurodevelopmental disorders on functional brain networks in wake and sleep. PLoS One 2024; 19:e0309243. [PMID: 39186749 PMCID: PMC11346934 DOI: 10.1371/journal.pone.0309243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Epilepsy is one of the most common neurological disorders in children. Diagnosing epilepsy in children can be very challenging, especially as it often coexists with neurodevelopmental conditions like autism and ADHD. Functional brain networks obtained from neuroimaging and electrophysiological data in wakefulness and sleep have been shown to contain signatures of neurological disorders, and can potentially support the diagnosis and management of co-occurring neurodevelopmental conditions. In this work, we use electroencephalography (EEG) recordings from children, in restful wakefulness and sleep, to extract functional connectivity networks in different frequency bands. We explore the relationship of these networks with epilepsy diagnosis and with measures of neurodevelopmental traits, obtained from questionnaires used as screening tools for autism and ADHD. We explore differences in network markers between children with and without epilepsy in wake and sleep, and quantify the correlation between such markers and measures of neurodevelopmental traits. Our findings highlight the importance of considering the interplay between epilepsy and neurodevelopmental traits when exploring network markers of epilepsy.
Collapse
Affiliation(s)
- Leandro Junges
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Daniel Galvis
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Alice Winsor
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Grace Treadwell
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- School of Psychology, Keele University, Staffordshire, United Kingdom
| | - Caroline Richards
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Developmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stefano Seri
- Aston Institute of Health and Neurodevelopment, Aston University, Birmingham, United Kingdom
- Department of Clinical Neurophysiology, Birmingham Women’s and Children’s Hospital, Birmingham, United Kingdom
| | - Samuel Johnson
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| | - John R. Terry
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Neuronostics Ltd, Engine Shed, Station Approach, Bristol, United Kingdom
| | - Andrew P. Bagshaw
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Van Drunen R, Eckel-Mahan K. Circadian rhythms as modulators of brain health during development and throughout aging. Front Neural Circuits 2023; 16:1059229. [PMID: 36741032 PMCID: PMC9893507 DOI: 10.3389/fncir.2022.1059229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
The circadian clock plays a prominent role in neurons during development and throughout aging. This review covers topics pertinent to the role of 24-h rhythms in neuronal development and function, and their tendency to decline with aging. Pharmacological or behavioral modification that augment the function of our internal clock may be central to decline of cognitive disease and to future chronotherapy for aging-related diseases of the central nervous system.
Collapse
|
4
|
Romero Milà B, Remakanthakurup Sindhu K, Mytinger JR, Shrey DW, Lopour BA. EEG biomarkers for the diagnosis and treatment of infantile spasms. Front Neurol 2022; 13:960454. [PMID: 35968272 PMCID: PMC9366674 DOI: 10.3389/fneur.2022.960454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Early diagnosis and treatment are critical for young children with infantile spasms (IS), as this maximizes the possibility of the best possible child-specific outcome. However, there are major barriers to achieving this, including high rates of misdiagnosis or failure to recognize the seizures, medication failure, and relapse. There are currently no validated tools to aid clinicians in assessing objective diagnostic criteria, predicting or measuring medication response, or predicting the likelihood of relapse. However, the pivotal role of EEG in the clinical management of IS has prompted many recent studies of potential EEG biomarkers of the disease. These include both visual EEG biomarkers based on human visual interpretation of the EEG and computational EEG biomarkers in which computers calculate quantitative features of the EEG. Here, we review the literature on both types of biomarkers, organized based on the application (diagnosis, treatment response, prediction, etc.). Visual biomarkers include the assessment of hypsarrhythmia, epileptiform discharges, fast oscillations, and the Burden of AmplitudeS and Epileptiform Discharges (BASED) score. Computational markers include EEG amplitude and power spectrum, entropy, functional connectivity, high frequency oscillations (HFOs), long-range temporal correlations, and phase-amplitude coupling. We also introduce each of the computational measures and provide representative examples. Finally, we highlight remaining gaps in the literature, describe practical guidelines for future biomarker discovery and validation studies, and discuss remaining roadblocks to clinical implementation, with the goal of facilitating future work in this critical area.
Collapse
Affiliation(s)
- Blanca Romero Milà
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, Barcelona, Spain
| | | | - John R. Mytinger
- Division of Pediatric Neurology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States
| | - Daniel W. Shrey
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Beth A. Lopour
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Beth A. Lopour
| |
Collapse
|
5
|
Zhang J, Villringer A, Nikulin VV. Dopaminergic Modulation of Local Non-oscillatory Activity and Global-Network Properties in Parkinson's Disease: An EEG Study. Front Aging Neurosci 2022; 14:846017. [PMID: 35572144 PMCID: PMC9106139 DOI: 10.3389/fnagi.2022.846017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic medication for Parkinson's disease (PD) modulates neuronal oscillations and functional connectivity (FC) across the basal ganglia-thalamic-cortical circuit. However, the non-oscillatory component of the neuronal activity, potentially indicating a state of excitation/inhibition balance, has not yet been investigated and previous studies have shown inconsistent changes of cortico-cortical connectivity as a response to dopaminergic medication. To further elucidate changes of regional non-oscillatory component of the neuronal power spectra, FC, and to determine which aspects of network organization obtained with graph theory respond to dopaminergic medication, we analyzed a resting-state electroencephalography (EEG) dataset including 15 PD patients during OFF and ON medication conditions. We found that the spectral slope, typically used to quantify the broadband non-oscillatory component of power spectra, steepened particularly in the left central region in the ON compared to OFF condition. In addition, using lagged coherence as a FC measure, we found that the FC in the beta frequency range between centro-parietal and frontal regions was enhanced in the ON compared to the OFF condition. After applying graph theory analysis, we observed that at the lower level of topology the node degree was increased, particularly in the centro-parietal area. Yet, results showed no significant difference in global topological organization between the two conditions: either in global efficiency or clustering coefficient for measuring global and local integration, respectively. Interestingly, we found a close association between local/global spectral slope and functional network global efficiency in the OFF condition, suggesting a crucial role of local non-oscillatory dynamics in forming the functional global integration which characterizes PD. These results provide further evidence and a more complete picture for the engagement of multiple cortical regions at various levels in response to dopaminergic medication in PD.
Collapse
Affiliation(s)
- Juanli Zhang
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Vadim V. Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Hu DK, Goetz PW, To PD, Garner C, Magers AL, Skora C, Tran N, Yuen T, Hussain SA, Shrey DW, Lopour BA. Evolution of Cortical Functional Networks in Healthy Infants. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:893826. [PMID: 36926103 PMCID: PMC10013075 DOI: 10.3389/fnetp.2022.893826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022]
Abstract
During normal childhood development, functional brain networks evolve over time in parallel with changes in neuronal oscillations. Previous studies have demonstrated differences in network topology with age, particularly in neonates and in cohorts spanning from birth to early adulthood. Here, we evaluate the developmental changes in EEG functional connectivity with a specific focus on the first 2 years of life. Functional connectivity networks (FCNs) were calculated from the EEGs of 240 healthy infants aged 0-2 years during wakefulness and sleep using a cross-correlation-based measure and the weighted phase lag index. Topological features were assessed via network strength, global clustering coefficient, characteristic path length, and small world measures. We found that cross-correlation FCNs maintained a consistent small-world structure, and the connection strengths increased after the first 3 months of infancy. The strongest connections in these networks were consistently located in the frontal and occipital regions across age groups. In the delta and theta bands, weighted phase lag index networks decreased in strength after the first 3 months in both wakefulness and sleep, and a similar result was found in the alpha and beta bands during wakefulness. However, in the alpha band during sleep, FCNs exhibited a significant increase in strength with age, particularly in the 21-24 months age group. During this period, a majority of the strongest connections in the networks were located in frontocentral regions, and a qualitatively similar distribution was seen in the beta band during sleep for subjects older than 3 months. Graph theory analysis suggested a small world structure for weighted phase lag index networks, but to a lesser degree than those calculated using cross-correlation. In general, graph theory metrics showed little change over time, with no significant differences between age groups for the clustering coefficient (wakefulness and sleep), characteristics path length (sleep), and small world measure (sleep). These results suggest that infant FCNs evolve during the first 2 years with more significant changes to network strength than features of the network structure. This study quantifies normal brain networks during infant development and can serve as a baseline for future investigations in health and neurological disease.
Collapse
Affiliation(s)
- Derek K Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Parker W Goetz
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Phuc D To
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Cristal Garner
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States
| | - Amber L Magers
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States
| | - Clare Skora
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States
| | - Nhi Tran
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States
| | - Tammy Yuen
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States
| | - Shaun A Hussain
- Division of Pediatric Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel W Shrey
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States.,Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Beth A Lopour
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|