1
|
Liu R, Rong P, Ma Y, Lv P, Dong N, Chen W, Yang F, Zhao Q, Yang S, Li M, Xin X, Chen J, Zhang X, Han X, Zhang B. Altered structural covariance of the cortex and hippocampal formation in patients with lung cancer after chemotherapy. Heliyon 2024; 10:e40284. [PMID: 39641051 PMCID: PMC11617865 DOI: 10.1016/j.heliyon.2024.e40284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Objective In this retrospective study, we aimed to investigate changes in brain morphology and structural topological networks in patients with lung cancer (LC) with or without chemotherapy. Methods We retrospectively recruited 191 participants for this cross-sectional study, including 113 patients with LC without chemotherapy (Ch-), 38 patients with LC with chemotherapy (Ch+), and 40 healthy controls (HC) matched for age, sex, and education. The gray matter volume (GMV) and cortical properties were compared among the three groups. We constructed the structural covariant network (SCN) based on cortical thickness, volumes of subcortical structures, and volumes of hippocampal subfields and the amygdala in all participants. The global and nodal topological properties of SCN were compared among groups. In addition, 23 patients with LC (8 Ch+ and 15 Ch-) who received two identical brain magnetic resonance scans were enrolled in the follow-up study. The paired t-test was used to compare group differences in brain morphology and topological properties in the structural network. Results The GMV of the bilateral caudate and thalamus were smaller in the Ch- and Ch + groups compared to the HC group using threshold-free cluster enhancement and permutation (P < 0.05, 5000 times permutations) for multiple comparison correction. The cortical SCN analysis suggested multiple enhanced nodal properties in several brain areas in Ch+ and Ch-compared to HC, mainly in the temporal gyrus, using permutations test and false discovery rate (FDR) (P < 0.05) corrections. Moreover, an increased sigma was found in the Ch + compared with HC (P = 0.0238). The reduced nodal degree (P = 0.0002) and betweenness (P = 0.0008) in the right amygdala of Ch + compared to HC were detected by subcortical SCN analysis. Furthermore, reduced gamma (P = 0.0342) and sigma (P < 0.0001) were found in Ch-compared with HC in the SCN analysis of subfields of the amygdala-hippocampal complex. In the follow-up study, reduced nodal degree (P < 0.0001) was found in the right anterior amygdala, and reduced clustering coefficient and local efficiency were found in patients with LC after the permutation test. Conclusions Our study showed GMV defects and structural topological property abnormalities related to LC and chemotherapy. Such morphological changes associated with LC and chemotherapy could be used as imaging markers for clinical assessments and pathological indicators.
Collapse
Affiliation(s)
- Renyuan Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Ping Rong
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Yiming Ma
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Ningyu Dong
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Wenqian Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Fan Yang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Qiuyue Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Shangwen Yang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Xiaowei Han
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
| |
Collapse
|
2
|
Zhang D, Zong F, Mei Y, Zhao K, Qiu D, Xiong Z, Li X, Tang H, Zhang P, Zhang M, Zhang Y, Yu X, Wang Z, Liu Y, Sui B, Wang Y. Morphological similarity and white matter structural mapping of new daily persistent headache: a structural connectivity and tract-specific study. J Headache Pain 2024; 25:191. [PMID: 39497095 PMCID: PMC11533401 DOI: 10.1186/s10194-024-01899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND New daily persistent headache (NDPH) is a rare primary headache disorder characterized by daily and persistent sudden onset headaches. Specific abnormalities in gray matter and white matter structure are associated with pain, but have not been well studied in NDPH. The objective of this work is to explore the fiber tracts and structural connectivity, which can help reveal unique gray and white matter structural abnormalities in NDPH. METHODS The regional radiomics similarity networks were calculated from T1 weighted (T1w) MRI to depict the gray matter structure. The fiber connectivity matrices weighted by diffusion metrics like fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) were built, meanwhile the fiber tracts were segmented by anatomically-guided superficial fiber segmentation (Anat-SFSeg) method to explore the white matter structure from diffusion MRI. The considerable different neuroimaging features between NDPH and healthy controls (HC) were extracted from the connectivity and tract-based analyses. Finally, decision tree regression was used to predict the clinical scores (i.e. pain intensity) from the above neuroimaging features. RESULTS T1w and diffusion MRI data were available in 51 participants after quality control: 22 patients with NDPH and 29 HCs. Significantly decreased morphological similarity was found between the right superior frontal gyrus and right hippocampus. The superficial white matter (SWM) showed significantly decreased FA in fiber tracts including the right superficial-frontal, left superficial-occipital, bilateral superficial-occipital-temporal (Sup-OT) and right superficial-temporal, meanwhile significant increased RD was found in the left Sup-OT. For the fiber connectivity, NDPH showed significantly decreased FA in the bilateral basal ganglion and temporal lobe, increased MD in the right frontal lobe, and increased RD in the right frontal lobe and left temporal-occipital lobe. Clinical scores could be predicted dominantly by the above significantly different neuroimaging features through decision tree regression. CONCLUSIONS Our research indicates the structural abnormalities of SWM and the neural pathways projected between regions like right hippocampus and left caudate nucleus, along with morphological similarity changes between the right superior frontal gyrus and right hippocampus, constitute the pathological features of NDPH. The decision tree regression demonstrates correlations between these structural changes and clinical scores.
Collapse
Affiliation(s)
- Di Zhang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing, 100876, China
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Hainan Lingshui Li'an International Education Innovation Pilot Zone, Lingshui, Hainan, 572426, China
| | - Fangrong Zong
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing, 100876, China.
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Hainan Lingshui Li'an International Education Innovation Pilot Zone, Lingshui, Hainan, 572426, China.
| | - Yanliang Mei
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing, 100876, China
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Hainan Lingshui Li'an International Education Innovation Pilot Zone, Lingshui, Hainan, 572426, China
| | - Dong Qiu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhonghua Xiong
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xiaoshuang Li
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Peng Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Mantian Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhe Wang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Xigang District, Dalian, Liaoning, 116011, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing, 100876, China
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Hainan Lingshui Li'an International Education Innovation Pilot Zone, Lingshui, Hainan, 572426, China
| | - Binbin Sui
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
3
|
Sun Y, Wang P, Zhao K, Chen P, Qu Y, Li Z, Zhong S, Zhou B, Lu J, Zhang X, Wang D, Han Y, Yao H, Liu Y. Structure-function coupling reveals the brain hierarchical structure dysfunction in Alzheimer's disease: A multicenter study. Alzheimers Dement 2024; 20:6305-6315. [PMID: 39072981 PMCID: PMC11497717 DOI: 10.1002/alz.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative condition characterized by cognitive decline. To date, the specific dysfunction in the brain's hierarchical structure in AD remains unclear. METHODS We introduced the structural decoupling index (SDI), based on a multi-site data set comprising functional and diffusion-weighted magnetic resonance imaging data from 793 subjects, to assess their brain hierarchy. RESULTS Compared to normal controls (NCs), individuals with AD exhibited increased SDI within the posterior superior temporal sulcus, insular gyrus, precuneus, hippocampus, amygdala, postcentral gyrus, and cingulate gyrus; meanwhile, the patients with AD demonstrated decreased SDI in the frontal lobe. The SDI in those regions also showed a significant correlation with cognitive ability. Moreover, the SDI was a robust AD neuroimaging biomarker capable of accurately distinguishing diagnostic status (area under the curve [AUC] = 0.86). DISCUSSION Our findings revealed the dysfunction of the brain's hierarchical structure in AD. Furthermore, the SDI could serve as a promising neuroimaging biomarker for AD. HIGHLIGHTS This study utilized multi-center, multi-modal data from East Asian populations. We found an increased spatial gradient of the structure decoupling index (SDI) from sensory-motor to higher-order cognitive regions. Changes in SDI are associated with energy metabolism and mitochondria. SDI can identify Alzheimer's disease (AD) and further uncover the disease mechanisms of AD.
Collapse
Affiliation(s)
- Yibao Sun
- Center for Artificial Intelligence in Medical ImagingSchool of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Pan Wang
- Department of NeurologyTianjin Huanhu HospitalTianjinChina
| | - Kun Zhao
- Center for Artificial Intelligence in Medical ImagingSchool of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Pindong Chen
- School of Artificial IntelligenceUniversity of Chinese Academy of Sciences & Brainnetome CenterInstitute of AutomationChinese Academy of SciencesBeijingChina
| | - Yida Qu
- School of Artificial IntelligenceUniversity of Chinese Academy of Sciences & Brainnetome CenterInstitute of AutomationChinese Academy of SciencesBeijingChina
| | - Zhuangzhuang Li
- Center for Artificial Intelligence in Medical ImagingSchool of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Suyu Zhong
- Center for Artificial Intelligence in Medical ImagingSchool of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Bo Zhou
- Department of Neurologythe Second Medical CentreNational Clinical Research Centre for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| | - Jie Lu
- Department of RadiologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Xi Zhang
- Department of Neurologythe Second Medical CentreNational Clinical Research Centre for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| | - Dawei Wang
- Department of RadiologySchool of Public HealthQilu Hospital of Shandong University & Department of Epidemiology and Health StatisticsJinanChina
| | - Ying Han
- School of Biomedical EngineeringHainan UniversityHaikouChina
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Hongxiang Yao
- Department of Radiologythe Second Medical CentreNational Clinical Research Centre for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| | - Yong Liu
- Center for Artificial Intelligence in Medical ImagingSchool of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of Sciences & Brainnetome CenterInstitute of AutomationChinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Zhang J, Luo Y, Zhong L, Liu H, Yang Z, Weng A, Zhang Y, Zhang W, Yan Z, Xu J, Liu G, Peng K, Ou Z. Topological alterations in white matter anatomical networks in cervical dystonia. BMC Neurol 2024; 24:179. [PMID: 38802755 PMCID: PMC11129473 DOI: 10.1186/s12883-024-03682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Accumulating neuroimaging evidence indicates that patients with cervical dystonia (CD) have changes in the cortico-subcortical white matter (WM) bundle. However, whether these patients' WM structural networks undergo reorganization remains largely unclear. We aimed to investigate topological changes in large-scale WM structural networks in patients with CD compared to healthy controls (HCs), and explore the network changes associated with clinical manifestations. METHODS Diffusion tensor imaging (DTI) was conducted in 30 patients with CD and 30 HCs, and WM network construction was based on the BNA-246 atlas and deterministic tractography. Based on the graph theoretical analysis, global and local topological properties were calculated and compared between patients with CD and HCs. Then, the AAL-90 atlas was used for the reproducibility analyses. In addition, the relationship between abnormal topological properties and clinical characteristics was analyzed. RESULTS Compared with HCs, patients with CD showed changes in network segregation and resilience, characterized by increased local efficiency and assortativity, respectively. In addition, a significant decrease of network strength was also found in patients with CD relative to HCs. Validation analyses using the AAL-90 atlas similarly showed increased assortativity and network strength in patients with CD. No significant correlations were found between altered network properties and clinical characteristics in patients with CD. CONCLUSION Our findings show that reorganization of the large-scale WM structural network exists in patients with CD. However, this reorganization is attributed to dystonia-specific abnormalities or hyperkinetic movements that need further identification.
Collapse
Affiliation(s)
- Jiana Zhang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Luo
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Linchang Zhong
- Department of Medical Imaging, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Huiming Liu
- Department of Medical Imaging, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhengkun Yang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ai Weng
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue Zhang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weixi Zhang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhicong Yan
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Gang Liu
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Kangqiang Peng
- Department of Medical Imaging, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Zilin Ou
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Huang Y, Wang N, Li W, Feng T, Zhang H, Fan X, Chen S, Wang Y, Shan Y, Wei P, Zhao G. Aberrant individual structure covariance network in patients with mesial temporal lobe epilepsy. Front Neurosci 2024; 18:1381385. [PMID: 38784092 PMCID: PMC11112066 DOI: 10.3389/fnins.2024.1381385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Objective Mesial temporal lobe epilepsy (mTLE) is a complex neurological disorder that has been recognized as a widespread global network disorder. The group-level structural covariance network (SCN) could reveal the structural connectivity disruption of the mTLE but could not reflect the heterogeneity at the individual level. Methods This study adopted a recently proposed individual structural covariance network (IDSCN) method to clarify the alternated structural covariance connection mode in mTLE and to associate IDSCN features with the clinical manifestations and regional brain atrophy. Results We found significant IDSCN abnormalities in the ipsilesional hippocampus, ipsilesional precentral gyrus, bilateral caudate, and putamen in mTLE patients than in healthy controls. Moreover, the IDSCNs of these areas were positively correlated with the gray matter atrophy rate. Finally, we identified several connectivities with weak associations with disease duration, frequency, and surgery outcome. Significance Our research highlights the role of hippo-thalamic-basal-cortical circuits in the pathophysiologic process of disrupted whole-brain morphological covariance networks in mTLE, and builds a bridge between brain-wide covariance network changes and regional brain atrophy.
Collapse
Affiliation(s)
- Yuda Huang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Ningrui Wang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Wei Li
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Tao Feng
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Huaqiang Zhang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xiaotong Fan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Sichang Chen
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yihe Wang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Yu H, Ding Y, Wei Y, Dyrba M, Wang D, Kang X, Xu W, Zhao K, Liu Y. Morphological connectivity differences in Alzheimer's disease correlate with gene transcription and cell-type. Hum Brain Mapp 2023; 44:6364-6374. [PMID: 37846762 PMCID: PMC10681645 DOI: 10.1002/hbm.26512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent forms of dementia in older individuals. Convergent evidence suggests structural connectome abnormalities in specific brain regions are linked to AD progression. The biological basis underpinnings of these connectome changes, however, have remained elusive. We utilized an individual regional mean connectivity strength (RMCS) derived from a regional radiomics similarity network to capture altered morphological connectivity in 1654 participants (605 normal controls, 766 mild cognitive impairment [MCI], and 283 AD). Then, we also explored the biological basis behind these morphological changes through gene enrichment analysis and cell-specific analysis. We found that RMCS probes of the hippocampus and medial temporal lobe were significantly altered in AD and MCI, with these differences being spatially related to the expression of AD-risk genes. In addition, gene enrichment analysis revealed that the modulation of chemical synaptic transmission is the most relevant biological process associated with the altered RMCS in AD. Notably, neuronal cells were found to be the most pertinent cells in the altered RMCS. Our findings shed light on understanding the biological basis of structural connectome changes in AD, which may ultimately lead to more effective diagnostic and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Huiying Yu
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Yanhui Ding
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Yongbin Wei
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Dong Wang
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Xiaopeng Kang
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Weizhi Xu
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Kun Zhao
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Yong Liu
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | | |
Collapse
|
7
|
Cai M, Ma J, Wang Z, Zhao Y, Zhang Y, Wang H, Xue H, Chen Y, Zhang Y, Wang C, Zhao Q, Xue K, Liu F. Individual-level brain morphological similarity networks: Current methodologies and applications. CNS Neurosci Ther 2023; 29:3713-3724. [PMID: 37519018 PMCID: PMC10651978 DOI: 10.1111/cns.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
AIMS The human brain is an extremely complex system in which neurons, clusters of neurons, or regions are connected to form a complex network. With the development of neuroimaging techniques, magnetic resonance imaging (MRI)-based brain networks play a key role in our understanding of the intricate architecture of human brain. Among them, the structural MRI-based brain morphological network approach has attracted increasing attention due to the advantages in data acquisition, image quality, and in revealing the structural organizing principles intrinsic to the brain. This review is to summarize the methodology and related applications of individual-level morphological networks. BACKGROUND There have been a growing number of studies related to brain morphological similarity networks. Conventional morphological networks are intersubject covariance networks constructed using a certain morphological indicator of a group of subjects; individual-level morphological networks, on the other hand, measure the morphological similarity between brain regions for individual brains and can reflect the morphological information of single subjects. In recent years, individual morphological networks have demonstrated significant worth in exploring the topological changes of the human brain under both normal and disease conditions. Such studies provided novel perspectives for understanding human brain development and exploring the pathological mechanisms of neuropsychiatric disorders. CONCLUSION This paper mainly focuses on the studies of brain morphological networks at the individual level, introduces several ways for network construction, reviews representative work in this field, and finally points out current problems and future directions.
Collapse
Affiliation(s)
- Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Juanwei Ma
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yao Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yijing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - He Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yujie Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Chunyang Wang
- Department of Scientific ResearchTianjin Medical University General HospitalTianjinChina
| | - Qiyu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
8
|
Zhao K, Chen P, Alexander-Bloch A, Wei Y, Dyrba M, Yang F, Kang X, Wang D, Fan D, Ye S, Tang Y, Yao H, Zhou B, Lu J, Yu C, Wang P, Liao Z, Chen Y, Huang L, Zhang X, Han Y, Li S, Liu Y. A neuroimaging biomarker for Individual Brain-Related Abnormalities In Neurodegeneration (IBRAIN): a cross-sectional study. EClinicalMedicine 2023; 65:102276. [PMID: 37954904 PMCID: PMC10632687 DOI: 10.1016/j.eclinm.2023.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023] Open
Abstract
Background Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that poses a worldwide public health challenge. A neuroimaging biomarker would significantly improve early diagnosis and intervention, ultimately enhancing the quality of life for affected individuals and reducing the burden on healthcare systems. Methods Cross-sectional and longitudinal data (10,099 participants with 13,380 scans) from 12 independent datasets were used in the present study (this study was performed between September 1, 2021 and February 15, 2023). The Individual Brain-Related Abnormalities In Neurodegeneration (IBRAIN) score was developed via integrated regional- and network-based measures under an ensemble machine learning model based on structural MRI data. We systematically assessed whether IBRAIN could be a neuroimaging biomarker for AD. Findings IBRAIN accurately differentiated individuals with AD from NCs (AUC = 0.92) and other neurodegenerative diseases, including Frontotemporal dementia (FTD), Parkinson's disease (PD), Vascular dementia (VaD) and Amyotrophic Lateral Sclerosis (ALS) (AUC = 0.92). IBRAIN was significantly correlated to clinical measures and gene expression, enriched in immune process and protein metabolism. The IBRAIN score exhibited a significant ability to reveal the distinct progression of prodromal AD (i.e., Mild cognitive impairment, MCI) (Hazard Ratio (HR) = 6.52 [95% CI: 4.42∼9.62], p < 1 × 10-16), which offers similar powerful performance with Cerebrospinal Fluid (CSF) Aβ (HR = 3.78 [95% CI: 2.63∼5.43], p = 2.13 × 10-14) and CSF Tau (HR = 3.77 [95% CI: 2.64∼5.39], p = 9.53 × 10-15) based on the COX and Log-rank test. Notably, the IBRAIN shows comparable sensitivity (beta = -0.70, p < 1 × 10-16) in capturing longitudinal changes in individuals with conversion to AD than CSF Aβ (beta = -0.26, p = 4.40 × 10-9) and CSF Tau (beta = 0.12, p = 1.02 × 10-5). Interpretation Our findings suggested that IBRAIN is a biologically relevant, specific, and sensitive neuroimaging biomarker that can serve as a clinical measure to uncover prodromal AD progression. It has strong potential for application in future clinical practice and treatment trials. Funding Science and Technology Innovation 2030 Major Projects, the National Natural Science Foundation of China, Beijing Natural Science Funds, the Fundamental Research Funds for the CentralUniversity, and the Startup Funds for Talents at Beijing Normal University.
Collapse
Affiliation(s)
- Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Pindong Chen
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Centre, Chinese Academy of Sciences, Beijing, China
| | - Aaron Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Martin Dyrba
- German Centre for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Fan Yang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China
| | - Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Centre, Chinese Academy of Sciences, Beijing, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Shan Ye
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Yi Tang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hongxiang Yao
- Department of Radiology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bo Zhou
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhengluan Liao
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yan Chen
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Longjian Huang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xi Zhang
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- National Clinical Research Centre for Geriatric Disorders, Beijing, China
- Centre of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuyu Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Centre, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Qiu X, Li J, Pan F, Yang Y, Zhou W, Chen J, Wei N, Lu S, Weng X, Huang M, Wang J. Aberrant single-subject morphological brain networks in first-episode, treatment-naive adolescents with major depressive disorder. PSYCHORADIOLOGY 2023; 3:kkad017. [PMID: 38666133 PMCID: PMC10939346 DOI: 10.1093/psyrad/kkad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 04/28/2024]
Abstract
Background Neuroimaging-based connectome studies have indicated that major depressive disorder (MDD) is associated with disrupted topological organization of large-scale brain networks. However, the disruptions and their clinical and cognitive relevance are not well established for morphological brain networks in adolescent MDD. Objective To investigate the topological alterations of single-subject morphological brain networks in adolescent MDD. Methods Twenty-five first-episode, treatment-naive adolescents with MDD and 19 healthy controls (HCs) underwent T1-weighted magnetic resonance imaging and a battery of neuropsychological tests. Single-subject morphological brain networks were constructed separately based on cortical thickness, fractal dimension, gyrification index, and sulcus depth, and topologically characterized by graph-based approaches. Between-group differences were inferred by permutation testing. For significant alterations, partial correlations were used to examine their associations with clinical and neuropsychological variables in the patients. Finally, a support vector machine was used to classify the patients from controls. Results Compared with the HCs, the patients exhibited topological alterations only in cortical thickness-based networks characterized by higher nodal centralities in parietal (left primary sensory cortex) but lower nodal centralities in temporal (left parabelt complex, right perirhinal ectorhinal cortex, right area PHT and right ventral visual complex) regions. Moreover, decreased nodal centralities of some temporal regions were correlated with cognitive dysfunction and clinical characteristics of the patients. These results were largely reproducible for binary and weighted network analyses. Finally, topological properties of the cortical thickness-based networks were able to distinguish the MDD adolescents from HCs with 87.6% accuracy. Conclusion Adolescent MDD is associated with disrupted topological organization of morphological brain networks, and the disruptions provide potential biomarkers for diagnosing and monitoring the disease.
Collapse
Affiliation(s)
- Xiaofan Qiu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Fen Pan
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Yuping Yang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Weihua Zhou
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Jinkai Chen
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Ning Wei
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Shaojia Lu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou 510631, China
| | - Manli Huang
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou 510631, China
| |
Collapse
|
10
|
Zhang Y, Li H, Zheng Q. A comprehensive characterization of hippocampal feature ensemble serves as individualized brain signature for Alzheimer's disease: deep learning analysis in 3238 participants worldwide. Eur Radiol 2023; 33:5385-5397. [PMID: 36892643 DOI: 10.1007/s00330-023-09519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 02/02/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVES Hippocampal characterization is one of the most significant hallmarks of Alzheimer's disease (AD); rather, the single-level feature is insufficient. A comprehensive hippocampal characterization is pivotal for developing a well-performing biomarker for AD. To verify whether a comprehensive characterization of hippocampal features of gray matter volume, segmentation probability, and radiomics features could better distinguish AD from normal control (NC), and to investigate whether the classification decision score could serve as a robust and individualized brain signature. METHODS A total of 3238 participants' structural MRI from four independent databases were employed to conduct a 3D residual attention network (3DRA-Net) to classify NC, mild cognitive impairment (MCI), and AD. The generalization was validated under inter-database cross-validation. The neurobiological basis of the classification decision score as a neuroimaging biomarker was systematically investigated by association with clinical profiles, as well as longitudinal trajectory analysis to reveal AD progression. All image analyses were performed only upon the single modality of T1-weighted MRI. RESULTS Our study exhibited an outstanding performance (ACC = 91.6%, AUC = 0.95) of the comprehensive characterization of hippocampal features in distinguishing AD (n = 282) from NC (n = 603) in Alzheimer's Disease Neuroimaging Initiative cohort, and ACC = 89.2% and AUC = 0.93 under external validation. More importantly, the constructed score was significantly correlated with clinical profiles (p < 0.05), and dynamically altered over the AD longitudinal progression, provided compelling evidence of a solid neurobiological basis. CONCLUSIONS This systemic study highlights the potential of the comprehensive characterization of hippocampal features to provide an individualized, generalizable, and biologically plausible neuroimaging biomarker for early detection of AD. KEY POINTS • The comprehensive characterization of hippocampal features exhibited ACC = 91.6% (AUC = 0.95) in classifying AD from NC under intra-database cross-validation, and ACC = 89.2% (AUC = 0.93) in external validation. • The constructed classification score was significantly associated with clinical profiles, and dynamically altered over the AD longitudinal progression, which highlighted its potential of being an individualized, generalizable, and biologically plausible neuroimaging biomarker for early detection of AD.
Collapse
Affiliation(s)
- Yiyu Zhang
- School of Computer and Control Engineering, Yantai University, No. 30, Qingquan Road, Laishan District, Yantai City, 264005, Shandong Province, China
| | - Hongming Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qiang Zheng
- School of Computer and Control Engineering, Yantai University, No. 30, Qingquan Road, Laishan District, Yantai City, 264005, Shandong Province, China.
| |
Collapse
|
11
|
Zheng Q, Zhang Y, Li H, Tong X, Ouyang M. How segmentation methods affect hippocampal radiomic feature accuracy in Alzheimer's disease analysis? Eur Radiol 2022; 32:6965-6976. [PMID: 35999372 DOI: 10.1007/s00330-022-09081-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Hippocampal radiomic features (HRFs) can serve as biomarkers in Alzheimer's disease (AD). However, how different hippocampal segmentation methods affect HRFs in AD is still unknown. The aim of the study was to investigate how different segmentation methods affect HRF accuracy in AD analysis. METHODS A total of 1650 subjects were identified from the Alzheimer's Disease Neuroimaging Initiative database (ADNI). The mini-mental state examination (MMSE) and Alzheimer's disease assessment scale (ADAS-cog13) were also adopted. After calculating the HRFs of intensity, shape, and textural features from each side of the hippocampus in structural magnetic resonance imaging (sMRI), the consistency of HRFs calculated from 7 different hippocampal segmentation methods was validated, and the performance of machine learning-based classification of AD vs. normal control (NC) adopting the different HRFs was also examined. Additional 571 subjects from the European DTI Study on Dementia database (EDSD) were to validate the consistency of results. RESULTS Between different segmentations, HRFs showed a high measurement consistency (R > 0.7), a high significant consistency between NC, mild cognitive impairment (MCI), and AD (T-value plot, R > 0.8), and consistent significant correlations between HRFs and MMSE/ADAS-cog13 (p < 0.05). The best NC vs. AD classification was obtained when the hippocampus was sufficiently segmented by primitive majority voting (threshold = 0.2). High consistent results were reproduced from independent EDSD cohort. CONCLUSIONS HRFs exhibited high consistency across different hippocampal segmentation methods, and the best performance in AD classification was obtained when HRFs were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy. KEY POINTS • The hippocampal radiomic features exhibited high measurement/statistical/clinical consistency across different hippocampal segmentation methods. • The best performance in AD classification was obtained when hippocampal radiomics were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy.
Collapse
Affiliation(s)
- Qiang Zheng
- School of Computer and Control Engineering, Yantai University, No30, Qingquan Road, Laishan District, Yantai, 264005, Shandong, China.
| | - Yiyu Zhang
- School of Computer and Control Engineering, Yantai University, No30, Qingquan Road, Laishan District, Yantai, 264005, Shandong, China
| | - Honglun Li
- Departments of Medical Oncology and Radiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, 264000, China
| | - Xiangrong Tong
- School of Computer and Control Engineering, Yantai University, No30, Qingquan Road, Laishan District, Yantai, 264005, Shandong, China
| | - Minhui Ouyang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| |
Collapse
|
12
|
Abstract
Recent advances in imaging and tracing technology provide increasingly detailed reconstructions of brain connectomes. Concomitant analytic advances enable rigorous identification and quantification of functionally important features of brain network architecture. Null models are a flexible tool to statistically benchmark the presence or magnitude of features of interest, by selectively preserving specific architectural properties of brain networks while systematically randomizing others. Here we describe the logic, implementation and interpretation of null models of connectomes. We introduce randomization and generative approaches to constructing null networks, and outline a taxonomy of network methods for statistical inference. We highlight the spectrum of null models - from liberal models that control few network properties, to conservative models that recapitulate multiple properties of empirical networks - that allow us to operationalize and test detailed hypotheses about the structure and function of brain networks. We review emerging scenarios for the application of null models in network neuroscience, including for spatially embedded networks, annotated networks and correlation-derived networks. Finally, we consider the limits of null models, as well as outstanding questions for the field.
Collapse
|
13
|
Fu Z, Zhao M, He Y, Wang X, Li X, Kang G, Han Y, Li S. Aberrant topological organization and age-related differences in the human connectome in subjective cognitive decline by using regional morphology from magnetic resonance imaging. Brain Struct Funct 2022; 227:2015-2033. [PMID: 35579698 DOI: 10.1007/s00429-022-02488-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
Subjective cognitive decline (SCD) is characterized by self-experienced deficits in cognitive capacity with normal performance in objective cognitive tests. Previous structural covariance studies showed specific insights into understanding the structural alterations of the brain in neurodegenerative diseases. Moreover, in subjects with neurodegenerative diseases, accelerated brain degeneration with aging was shown. However, the age-related variations in coordinated topological patterns of morphological networks in individuals with SCD remain poorly understood. In this study, 77 individual morphological networks were constructed, including 42 normal controls (NCs) and 35 SCD individuals, from structural magnetic resonance imaging (sMRI). A stepwise linear regression model and partial correlation analysis were constructed to evaluate the differences in age-related alterations of the network properties in individuals with SCD compared with NCs. Compared with NC, the properties of integration and segregation in individuals with SCD were lower, and the aberrant metrics were negatively correlated with age in SCD. The rich-club connections persevered, but the paralimbic system connections were disrupted in individuals with SCD compared with NCs. In addition, age-related differences in nodal global efficiency are distributed mainly in prefrontal cortex regions. In conclusion, the age-related disruption of topological organizations in individuals with SCD may indicate that the degeneration of brain efficiency with aging was accelerated in individuals with SCD.
Collapse
Affiliation(s)
- Zhenrong Fu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing, China
| | - Mingyan Zhao
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei, China
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Yirong He
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing, China
| | - Xuetong Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing, China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, China
| | - Guixia Kang
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ying Han
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
- Biomedical Engineering Institute, Hainan University, Haikou, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Shuyu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing, China.
| |
Collapse
|
14
|
Zhao K, Zheng Q, Dyrba M, Rittman T, Li A, Che T, Chen P, Sun Y, Kang X, Li Q, Liu B, Liu Y, Li S. Regional Radiomics Similarity Networks Reveal Distinct Subtypes and Abnormality Patterns in Mild Cognitive Impairment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104538. [PMID: 35098696 PMCID: PMC9036024 DOI: 10.1002/advs.202104538] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/30/2021] [Indexed: 05/28/2023]
Abstract
Individuals with mild cognitive impairment (MCI) of different subtypes show distinct alterations in network patterns. The first aim of this study is to identify the subtypes of MCI by employing a regional radiomics similarity network (R2SN). The second aim is to characterize the abnormality patterns associated with the clinical manifestations of each subtype. An individual-level R2SN is constructed for N = 605 normal controls (NCs), N = 766 MCI patients, and N = 283 Alzheimer's disease (AD) patients. MCI patients' R2SN profiles are clustered into two subtypes using nonnegative matrix factorization. The patterns of brain alterations, gene expression, and the risk of cognitive decline in each subtype are evaluated. MCI patients are clustered into "similar to the pattern of NCs" (N-CI, N = 252) and "similar to the pattern of AD" (A-CI, N = 514) subgroups. Significant differences are observed between the subtypes with respect to the following: 1) clinical measures; 2) multimodal neuroimaging; 3) the proportion of progression to dementia (61.54% for A-CI and 21.77% for N-CI) within three years; 4) enriched genes for potassium-ion transport and synaptic transmission. Stratification into the two subtypes provides new insight for risk assessment and precise early intervention for MCI patients.
Collapse
Affiliation(s)
- Kun Zhao
- Beijing Advanced Innovation Centre for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100191China
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijing100876China
| | - Qiang Zheng
- School of Computer and Control EngineeringYantai UniversityYantai264005China
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE)Rostock18147Germany
| | - Timothy Rittman
- Department of Clinical NeurosciencesUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0SZUK
| | - Ang Li
- State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Tongtong Che
- Beijing Advanced Innovation Centre for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100191China
| | - Pindong Chen
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Yuqing Sun
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Xiaopeng Kang
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Qiongling Li
- State Key Laboratory of Cognition Neuroscience & LearningBeijing Normal UniversityBeijing100875China
| | - Bing Liu
- State Key Laboratory of Cognition Neuroscience & LearningBeijing Normal UniversityBeijing100875China
| | - Yong Liu
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijing100876China
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190China
| | - Shuyu Li
- Beijing Advanced Innovation Centre for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100191China
- State Key Laboratory of Cognition Neuroscience & LearningBeijing Normal UniversityBeijing100875China
| | | |
Collapse
|