1
|
Bizelli VF, Alécio Viotto AH, Delamura IF, Baggio AMP, Ramos EU, Faverani LP, Bassi APF. Inflammatory Profile of Different Absorbable Membranes Used for Bone Regeneration: An In Vivo Study. Biomimetics (Basel) 2024; 9:431. [PMID: 39056872 PMCID: PMC11275136 DOI: 10.3390/biomimetics9070431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Guided bone regeneration (GBR) has become a necessary practice in implantology. Absorbable membranes have shown advantages over non-absorbable membranes, such as blood support of bone tissue. This study aimed to evaluate five collagen membranes in rat calvaria critical-size defects through a histomorphometric analysis of the inflammatory profile during the initial phase of bone repair. MATERIALS AND METHODS A total of 72 Albinus Wistar rats were used for the study, divided into six groups, with 12 animals per group, and two experimental periods, 7 and 15 days. The groups were as follows: the CG (clot), BG (Bio-Gide®), JS (Jason®), CS (Collprotect®), GD (GemDerm®), and GDF (GemDerm Flex®). RESULTS Data showed that the BG group demonstrated an inflammatory profile with an ideal number of inflammatory cells and blood vessels, indicating a statistically significant difference between the JS and CS groups and the BG group in terms of the number of inflammatory cells and a statistically significant difference between the JS and CS groups and the GD group in terms of angiogenesis (p < 0.05). CONCLUSIONS We conclude that different origins and ways of obtaining them, as well as the thickness of the membrane, can interfere with the biological response of the material.
Collapse
Affiliation(s)
- Vinícius Ferreira Bizelli
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University, UNESP, Araçatuba 16015-050, SP, Brazil; (A.H.A.V.); (I.F.D.); (A.M.P.B.); (E.U.R.); (L.P.F.); (A.P.F.B.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Bizelli VF, Ramos EU, Veras ASC, Teixeira GR, Faverani LP, Bassi APF. Calvaria Critical Size Defects Regeneration Using Collagen Membranes to Assess the Osteopromotive Principle: An Animal Study. MEMBRANES 2022; 12:membranes12050461. [PMID: 35629786 PMCID: PMC9143843 DOI: 10.3390/membranes12050461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Guided bone regeneration (GBR) is a common practice in implantology, and it is necessary to use membranes in this process. The present study aimed to evaluate the osteopromotive principle of two porcine collagen membranes in critical-size defects at rats calvaria. Ninety-six Albinus Wistar rats were divided into BG (positive control), JS, CS, and CG (negative control) groups and were sacrificed at 7, 15, 30, and 60 days postoperatively. The samples were assessed by histological, histometric, immunohistochemical, and microtomographic analyses. More intense inflammatory profile was seen in the JS and CS groups (p < 0.05). At 60 days, the JS group showed a satisfactory osteopromotive behavior compared to BG (p = 0.193), while CS did not demonstrate the capacity to promote bone formation. At the immunohistochemical analysis, the CS showed mild labeling for osteocalcin (OC) and osteopontin (OP), the JS demonstrated mild to moderate for OC and OP and the BG demonstrated moderate to intense for OC and OP. The tridimensional analysis found the lowest average for the total volume of newly formed bone in the CS (84,901 mm2), compared to the BG (319,834 mm2) (p < 0.05). We conclude that the different thicknesses and treatment techniques of each membrane may interfere with its biological behavior.
Collapse
Affiliation(s)
- Vinícius Ferreira Bizelli
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (E.U.R.); (L.P.F.); (A.P.F.B.)
- Correspondence: ; Tel.: +55-(014)-981713458
| | - Edith Umasi Ramos
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (E.U.R.); (L.P.F.); (A.P.F.B.)
| | - Allice Santos Cruz Veras
- Multicenter Graduate Program in Physiological Sciences, SBFIS, São Paulo State University (UNESP), Rua Roberto Simonsen, 305, Presidente Prudente 19060-900, SP, Brazil; (A.S.C.V.); (G.R.T.)
| | - Giovana Rampazzo Teixeira
- Multicenter Graduate Program in Physiological Sciences, SBFIS, São Paulo State University (UNESP), Rua Roberto Simonsen, 305, Presidente Prudente 19060-900, SP, Brazil; (A.S.C.V.); (G.R.T.)
| | - Leonardo P. Faverani
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (E.U.R.); (L.P.F.); (A.P.F.B.)
| | - Ana Paula Farnezi Bassi
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (E.U.R.); (L.P.F.); (A.P.F.B.)
| |
Collapse
|
3
|
Omar O, Elgali I, Dahlin C, Thomsen P. Barrier membranes: More than the barrier effect? J Clin Periodontol 2019; 46 Suppl 21:103-123. [PMID: 30667525 PMCID: PMC6704362 DOI: 10.1111/jcpe.13068] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
AIM To review the knowledge on the mechanisms controlling membrane-host interactions in guided bone regeneration (GBR) and investigate the possible role of GBR membranes as bioactive compartments in addition to their established role as barriers. MATERIALS AND METHODS A narrative review was utilized based on in vitro, in vivo and available clinical studies on the cellular and molecular mechanisms underlying GBR and the possible bioactive role of membranes. RESULTS Emerging data demonstrate that the membrane contributes bioactively to the regeneration of underlying defects. The cellular and molecular activities in the membrane are intimately linked to the promoted bone regeneration in the underlying defect. Along with the native bioactivity of GBR membranes, incorporating growth factors and cells in membranes or with graft materials may augment the regenerative processes in underlying defects. CONCLUSION In parallel with its barrier function, the membrane plays an active role in hosting and modulating the molecular activities of the membrane-associated cells during GBR. The biological events in the membrane are linked to the bone regenerative and remodelling processes in the underlying defect. Furthermore, the bone-promoting environments in the two compartments can likely be boosted by strategies targeting both material aspects of the membrane and host tissue responses.
Collapse
Affiliation(s)
- Omar Omar
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ibrahim Elgali
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Christer Dahlin
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Oral Maxillofacial Surgery/ENTNU‐Hospital OrganisationTrollhättanSweden
| | - Peter Thomsen
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
4
|
In vitro evaluation of decontamination effects on mechanical properties of fibrin membrane. Med J Islam Repub Iran 2018; 32:2. [PMID: 29977870 PMCID: PMC6025911 DOI: 10.14196/mjiri.32.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Indexed: 11/18/2022] Open
Abstract
Background: Tissue engineering has been investigated as a potential method for healing traumatized tissues. Biomaterials are material devices or implants used to repair or replace native body tissues and organs. The present study was conducted to evaluate the effects of decontamination methods on biological/mechanical properties and degradation/adhesion test of the platelet-rich fibrin (PRF) membranes to compare these properties with intact membranes as a biological biomaterial.
Methods: The in vitro degradation tests were conducted by placing the equal sizes of (i) intact PRF membrane, (ii) PRF membrane sterilized by autoclave (iii), ultraviolet (UV), and (iiii) gamma irradiation in phosphate buffer solution on a shaker. The degradation profiles were expressed. Adhesion test was performed by counting adhered mouse fibroblast and sterilized fibrin membrane was compared to normal fibrin membrane by different sterilization methods.
Results: The preliminary findings of sterilized PRF membranes showed that UV exposure (p<0.05) and autoclaved fibrin membranes (p<0.01) have significantly lower degradability compared to normal fibrin membranes. Gamma irradiation is similar to normal membrane in degradability. Cell adherence in all groups of fibrin membrane was significantly lower than the group without membrane, but there was no significant difference between intact and sterilized groups of fibrin membranes.
Conclusion: Sterilization of fibrin membrane with different protocols does not have any adverse effects on cell adhesion; however, cell adherence is naturally very weak even in normal membranes. Also, it seems that ultraviolet ray polymerizes fibrin filaments and merges them to each other and increases the ability of fibrin membrane against degradation. Autoclaved fibrin membrane content proteins are denatured because of pressure and heat and show an increase in hardness and stability against degradation.
Collapse
|
5
|
Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci 2017; 125:315-337. [PMID: 28833567 PMCID: PMC5601292 DOI: 10.1111/eos.12364] [Citation(s) in RCA: 418] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Guided bone regeneration (GBR) is commonly used in combination with the installment of titanium implants. The application of a membrane to exclude non‐osteogenic tissues from interfering with bone regeneration is a key principle of GBR. Membrane materials possess a number of properties which are amenable to modification. A large number of membranes have been introduced for experimental and clinical verification. This prompts the need for an update on membrane properties and the biological outcomes, as well as a critical assessment of the biological mechanisms governing bone regeneration in defects covered by membranes. The relevant literature for this narrative review was assessed after a MEDLINE/PubMed database search. Experimental data suggest that different modifications of the physicochemical and mechanical properties of membranes may promote bone regeneration. Nevertheless, the precise role of membrane porosities for the barrier function of GBR membranes still awaits elucidation. Novel experimental findings also suggest an active role of the membrane compartment per se in promoting the regenerative processes in the underlying defect during GBR, instead of being purely a passive barrier. The optimization of membrane materials by systematically addressing both the barrier and the bioactive properties is an important strategy in this field of research.
Collapse
Affiliation(s)
- Ibrahim Elgali
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden.,Department of Oral Maxillofacial Surgery/ENT, NU-Hospital organisation, Trollhättan, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Hwang JW, Kim S, Kim SW, Lee JH. Effect of Extracellular Matrix Membrane on Bone Formation in a Rabbit Tibial Defect Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6715295. [PMID: 27047963 PMCID: PMC4800078 DOI: 10.1155/2016/6715295] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/31/2015] [Accepted: 02/01/2016] [Indexed: 11/17/2022]
Abstract
Absorbable extracellular matrix (ECM) membrane has recently been used as a barrier membrane (BM) in guided tissue regeneration (GTR) and guided bone regeneration (GBR). Absorbable BMs are mostly based on collagen, which is more biocompatible than synthetic materials. However, implanted absorbable BMs can be rapidly degraded by enzymes in vivo. In a previous study, to delay degradation time, collagen fibers were treated with cross-linking agents. These compounds prevented the enzymatic degradation of BMs. However, cross-linked BMs can exhibit delayed tissue integration. In addition, the remaining cross-linker could induce inflammation. Here, we attempted to overcome these problems using a natural ECM membrane. The membrane consisted of freshly harvested porcine pericardium that was stripped from cells and immunoreagents by a cleaning process. Acellular porcine pericardium (APP) showed a bilayer structure with a smooth upper surface and a significantly coarser bottom layer. APP is an ECM with a thin layer (0.18-0.35 mm) but with excellent mechanical properties. Tensile strength of APP was 14.15 ± 2.24 MPa. In in vivo experiments, APP was transplanted into rabbit tibia. The biocompatible material was retained for up to 3 months without the need for cross-linking. Therefore, we conclude that APP could support osteogenesis as a BM for up to 3 months.
Collapse
Affiliation(s)
- Jin Wook Hwang
- Department of New Materials, Oscotec Inc., Seongnam-si 13488, Republic of Korea
| | - Sungtae Kim
- Department of Periodontology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Se Won Kim
- Department of New Materials, Oscotec Inc., Seongnam-si 13488, Republic of Korea
| | - Jong Ho Lee
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|