1
|
Feng H, Zhou D, Daly P, Wang X, Wei L. Characterization and Functional Importance of Two Glycoside Hydrolase Family 16 Genes from the Rice White Tip Nematode Aphelenchoides besseyi. Animals (Basel) 2021; 11:ani11020374. [PMID: 33540794 PMCID: PMC7913077 DOI: 10.3390/ani11020374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The rice white tip nematode Aphelenchoides besseyi is a plant parasite but can also feed on fungi if this alternative nutrient source is available. Glucans are a major nutrient source found in fungi, and β-linked glucans from fungi can be hydrolyzed by β-glucanases from the glycoside hydrolase family 16 (GH16). The GH16 family is abundant in A. besseyi, but their functions have not been well studied, prompting the analysis of two GH16 members (AbGH16-1 and AbGH16-2). AbGH16-1 and AbGH16-2 are most similar to GH16s from fungi and probably originated from fungi via a horizontal gene transfer event. These two genes are important for feeding on fungi: transcript levels increased when cultured with the fungus Botrytis cinerea, and the purified AbGH16-1 and AbGH16-2 proteins inhibited the growth of B. cinerea. When AbGH16-1 and AbGH16-2 expression was silenced, the reproduction ability of A. besseyi was reduced. These findings have proved for the first time that GH16s contribute to the feeding and reproduction of A. besseyi, which thus provides novel insights into how plant-parasitic nematodes can obtain nutrition from sources other than their plant hosts. Abstract The glycoside hydrolase family 16 (GH16) is widely found in prokaryotes and eukaryotes, and hydrolyzes the β-1,3(4)-linkages in polysaccharides. Notably, the rice white tip nematode Aphelenchoides besseyi harbors a higher number of GH16s compared with other plant-parasitic nematodes. In this work, two GH16 genes, namely AbGH16-1 and AbGH16-2, were isolated and characterized from A. besseyi. The deduced amino acid sequences of AbGH16-1 and AbGH16-2 contained an N-terminal signal peptide and a fungal Lam16A glucanase domain. Phylogenetic analysis revealed that AbGH16-1 and AbGH16-2 clustered with ascomycete GH16s, suggesting AbGH16-1 and AbGH16-2 were acquired by horizontal gene transfer from fungi. In situ hybridization showed that both AbGH16-1 and AbGH16-2 were specifically expressed in the nematode gonads, correlating with qPCR analysis that showed the high transcript levels of the two genes in the female nematodes. AbGH16-1 and AbGH16-2 were also significantly induced in nematodes feeding on Botrytis cinerea. Characterization of the recombinant protein showed AbGH16-1 and AbGH16-2 displayed pronounced inhibition of both conidial germination and germ tube elongation of B. cinerea. In addition, silencing of AbGH16-1 and AbGH16-2 by RNA interference significantly decreased the reproduction ability of A. besseyi and had a profound impact on the development process of offspring in this nematode. These findings have firstly proved that GH16s may play important roles in A.besseyi feeding and reproduction on fungi, which thus provides novel insights into the function of GH16s in plant-parasitic nematodes.
Collapse
|
2
|
Mathew R, Opperman CH. The genome of the migratory nematode, Radopholus similis, reveals signatures of close association to the sedentary cyst nematodes. PLoS One 2019; 14:e0224391. [PMID: 31652297 PMCID: PMC6814228 DOI: 10.1371/journal.pone.0224391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/11/2019] [Indexed: 11/19/2022] Open
Abstract
Radopholus similis, commonly known as the burrowing nematode, is an important pest of myriad crops and ornamentals including banana (Musa spp.) and Citrus spp. In order to characterize the potential role of putative effectors encoded by R. similis genes we compared predicted proteins from a draft R. similis genome with other plant-parasitic nematodes in order to define the suite of excreted/secreted proteins that enable it to function as a parasite and to ascertain the phylogenetic position of R. similis in the Tylenchida order. Identification and analysis of candidate genes encoding for key plant cell-wall degrading enzymes including GH5 cellulases, PL3 pectate lyases and GH28 polygalactouranase revealed a pattern of occurrence similar to other PPNs, although with closest phylogenetic associations to the sedentary cyst nematodes. We also observed the absence of a suite of effectors essential for feeding site formation in the cyst nematodes. Clustering of various orthologous genes shared by R. similis with other nematodes showed higher overlap with the cyst nematodes than with the root-knot or other migratory endoparasitic nematodes. The data presented here support the hypothesis that R. similis is evolutionarily closer to the cyst nematodes, however, differences in the effector repertoire delineate ancient divergence of parasitism, probably as a consequence of niche specialization. These similarities and differences further underscore distinct evolutionary relationships during the evolution of parasitism in this group of nematodes.
Collapse
Affiliation(s)
- Reny Mathew
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| | - Charles H. Opperman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| |
Collapse
|
3
|
Łopieńska-Biernat E, Paukszto Ł, Jastrzębski JP, Makowczenko K, Stryiński R. Genes expression and in silico studies of functions of trehalases, a highly dispersed Anisakis simplex s. l. specific gene family. Int J Biol Macromol 2019; 129:957-964. [DOI: 10.1016/j.ijbiomac.2019.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
|
4
|
Wang DW, Xu CL, Ding SW, Huang X, Cheng X, Zhang C, Chen C, Xie H. Identification and function of FAR protein family genes from a transcriptome analysis of Aphelenchoides besseyi. Bioinformatics 2018; 34:2936-2943. [DOI: 10.1093/bioinformatics/bty209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/29/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dong-Wei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Shan-Wen Ding
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xin Huang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xi Cheng
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Chao Zhang
- Institute of Genetic Engineering, Department of biochemistry, College of Basic Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Chun Chen
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Danchin EGJ, Perfus-Barbeoch L, Rancurel C, Thorpe P, Da Rocha M, Bajew S, Neilson R, Guzeeva ES, Da Silva C, Guy J, Labadie K, Esmenjaud D, Helder J, Jones JT, den Akker SEV. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes. Genes (Basel) 2017; 8:genes8100287. [PMID: 29065523 PMCID: PMC5664137 DOI: 10.3390/genes8100287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022] Open
Abstract
Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum.
Collapse
Affiliation(s)
- Etienne G J Danchin
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis Cedex, France.
| | | | - Corinne Rancurel
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis Cedex, France.
| | - Peter Thorpe
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | - Martine Da Rocha
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis Cedex, France.
| | - Simon Bajew
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | - Roy Neilson
- Ecological Sciences Group, IPM@Hutton, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | - Elena Sokolova Guzeeva
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
- Centre of Parasitology of the A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii Prospect 33, Moscow 119071, Russia.
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 92057, Evry, France.
| | - Julie Guy
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 92057, Evry, France.
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 92057, Evry, France.
| | - Daniel Esmenjaud
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis Cedex, France.
| | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
- School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9TZ, UK.
| | - Sebastian Eves-van den Akker
- Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
6
|
Xiang Y, Wang DW, Li JY, Xie H, Xu CL, Li Y. Transcriptome Analysis of the Chrysanthemum Foliar Nematode, Aphelenchoides ritzemabosi (Aphelenchida: Aphelenchoididae). PLoS One 2016; 11:e0166877. [PMID: 27875578 PMCID: PMC5119785 DOI: 10.1371/journal.pone.0166877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/04/2016] [Indexed: 01/21/2023] Open
Abstract
The chrysanthemum foliar nematode (CFN), Aphelenchoides ritzemabosi, is a plant parasitic nematode that attacks many plants. In this study, a transcriptomes of mixed-stage population of CFN was sequenced on the Illumina HiSeq 2000 platform. 68.10 million Illumina high quality paired end reads were obtained which generated 26,817 transcripts with a mean length of 1,032 bp and an N50 of 1,672 bp, of which 16,467 transcripts were annotated against six databases. In total, 20,311 coding region sequences (CDS), 495 simple sequence repeats (SSRs) and 8,353 single-nucleotide polymorphisms (SNPs) were predicted, respectively. The CFN with the most shared sequences was B. xylophilus with 16,846 (62.82%) common transcripts and 10,543 (39.31%) CFN transcripts matched sequences of all of four plant parasitic nematodes compared. A total of 111 CFN transcripts were predicted as homologues of 7 types of carbohydrate-active enzymes (CAZymes) with plant/fungal cell wall-degrading activities, fewer transcripts were predicted as homologues of plant cell wall-degrading enzymes than fungal cell wall-degrading enzymes. The phylogenetic analysis of GH5, GH16, GH43 and GH45 proteins between CFN and other organisms showed CFN and other nematodes have a closer phylogenetic relationship. In the CFN transcriptome, sixteen types of genes orthologues with seven classes of protein families involved in the RNAi pathway in C. elegans were predicted. This research provides comprehensive gene expression information at the transcriptional level, which will facilitate the elucidation of the molecular mechanisms of CFN and the distribution of gene functions at the macro level, potentially revealing improved methods for controlling CFN.
Collapse
Affiliation(s)
- Yu Xiang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Dong-Wei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Jun-Yi Li
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
- * E-mail:
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Yu Li
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Wu GL, Kuo TH, Tsay TT, Tsai IJ, Chen PJ. Glycoside Hydrolase (GH) 45 and 5 Candidate Cellulases in Aphelenchoides besseyi Isolated from Bird's-Nest Fern. PLoS One 2016; 11:e0158663. [PMID: 27391812 PMCID: PMC4938546 DOI: 10.1371/journal.pone.0158663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/20/2016] [Indexed: 11/18/2022] Open
Abstract
Five Aphelenchoides besseyi isolates collected from bird's-nest ferns or rice possess different parasitic capacities in bird's-nest fern. Two different glycoside hydrolase (GH) 45 genes were identified in the fern isolates, and only one was found in the rice isolates. A Abe GH5-1 gene containing an SCP-like family domain was found only in the fern isolates. Abe GH5-1 gene has five introns suggesting a eukaryotic origin. A maximum likelihood phylogeny revealed that Abe GH5-1 is part of the nematode monophyletic group that can be clearly distinguished from those of other eukaryotic and bacterial GH5 sequences with high bootstrap support values. The fern A. besseyi isolates were the first parasitic plant nematode found to possess both GH5 and GH45 genes. Surveying the genome of the five A. besseyi isolates by Southern blotting using an 834 bp probe targeting the GH5 domain suggests the presence of at least two copies in the fern-origin isolates but none in the rice-origin isolates. The in situ hybridization shows that the Abe GH5-1 gene is expressed in the nematode ovary and testis. Our study provides insights into the diversity of GH in isolates of plant parasitic nematodes of different host origins.
Collapse
Affiliation(s)
- Guan-Long Wu
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Tzu-Hao Kuo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Tung-Tsuan Tsay
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Isheng J. Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Peichen J. Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Feng H, Wei L, Chen H, Zhou Y. Calreticulin is required for responding to stress, foraging, and fertility in the white-tip nematode, Aphelenchoides besseyi. Exp Parasitol 2015; 155:58-67. [PMID: 25999293 DOI: 10.1016/j.exppara.2015.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/10/2015] [Accepted: 05/11/2015] [Indexed: 11/26/2022]
Abstract
Calreticulin (CRT) regulates a wide array of cellular responses in physiological and pathological processes. A full-length cDNA-encoding CRT protein, namely AbCRT-1, was isolated from Aphelenchoides besseyi, an ectoparasitic plant nematode and the agent of white tip disease of rice. The deduced amino acid sequence of AbCRT-1 was highly homologous with other nematode CRTs, and showed the closest evolutionary relationship with BxCRT-1. In-situ hybridization showed that AbCRT-1 is specifically located in the oesophageal gland and gonads of A. besseyi, suggesting its potential role in parasitism and reproduction. Quantity real-time PCR analysis showed that AbCRT-1 is highly expressed in female nematodes but poorly expressed in eggs, juveniles, and male nematodes. Exposing the nematode to relatively low osmotic stress promotes the transcription of AbCRT-1 whereas extreme desiccation suppresses the transcription significantly. Nematodes in which AbCRT-1 mRNA level had been knocked down by soaking them in AbCRT-1 dsRNA solution distributed randomly and did not aggregate temporally, with a decreased capacity of food discernment. Thus the affected nematodes were markedly less fecund. These results demonstrate that AbCRT-1 is required in A. besseyi for responding to stress, foraging, and fertility.
Collapse
Affiliation(s)
- Hui Feng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
9
|
Quist CW, Smant G, Helder J. Evolution of plant parasitism in the phylum Nematoda. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:289-310. [PMID: 26047569 DOI: 10.1146/annurev-phyto-080614-120057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Within the species-rich and trophically diverse phylum Nematoda, at least four independent major lineages of plant parasites have evolved, and in at least one of these major lineages plant parasitism arose independently multiple times. Ribosomal DNA data, sequence information from nematode-produced, plant cell wall-modifying enzymes, and the morphology and origin of the style(t), a protrusible piercing device used to penetrate the plant cell wall, all suggest that facultative and obligate plant parasites originate from fungivorous ancestors. Data on the nature and diversification of plant cell wall-modifying enzymes point at multiple horizontal gene transfer events from soil bacteria to bacterivorous nematodes resulting in several distinct lineages of fungal or oomycete-feeding nematodes. Ribosomal DNA frameworks with sequence data from more than 2,700 nematode taxa combined with detailed morphological information allow for explicit hypotheses on the origin of agronomically important plant parasites, such as root-knot, cyst, and lesion nematodes.
Collapse
Affiliation(s)
- Casper W Quist
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands; , ,
| | | | | |
Collapse
|
10
|
Palomares-Rius JE, Hirooka Y, Tsai IJ, Masuya H, Hino A, Kanzaki N, Jones JT, Kikuchi T. Distribution and evolution of glycoside hydrolase family 45 cellulases in nematodes and fungi. BMC Evol Biol 2014; 14:69. [PMID: 24690293 PMCID: PMC3997829 DOI: 10.1186/1471-2148-14-69] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/17/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) has been suggested as the mechanism by which various plant parasitic nematode species have obtained genes important in parasitism. In particular, cellulase genes have been acquired by plant parasitic nematodes that allow them to digest plant cell walls. Unlike the typical glycoside hydrolase (GH) family 5 cellulase genes which are found in several nematode species from the order Tylenchida, members of the GH45 cellulase have only been identified in a cluster including the families Parasitaphelenchidae (with the pinewood nematode Bursaphelenchus xylophilus) and Aphelenchoididae, and their origins remain unknown. RESULTS In order to investigate the distribution and evolution of GH45 cellulase genes in nematodes and fungi we performed a wide ranging screen for novel putative GH45 sequences. This revealed that the sequences are widespread mainly in Ascomycetous fungi and have so far been found in a single major nematode lineage. Close relationships between the sequences from nematodes and fungi were found through our phylogenetic analyses. An intron position is shared by sequences from Bursaphelenchus nematodes and several Ascomycetous fungal species. CONCLUSIONS The close phylogenetic relationships and conserved gene structure between the sequences from nematodes and fungi strongly supports the hypothesis that nematode GH45 cellulase genes were acquired via HGT from fungi. The rapid duplication and turnover of these genes within Bursaphelenchus genomes demonstrate that useful sequences acquired via HGT can become established in the genomes of recipient organisms and may open novel niches for these organisms to exploit.
Collapse
Affiliation(s)
- Juan E Palomares-Rius
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Excelencia Internacional, Apdo. 4084, 14080 Córdoba, Spain
| | - Yuuri Hirooka
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
- Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada
| | - Isheng J Tsai
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hayato Masuya
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Akina Hino
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Natsumi Kanzaki
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - John T Jones
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| |
Collapse
|
11
|
Wang F, Li D, Wang Z, Dong A, Liu L, Wang B, Chen Q, Liu X. Transcriptomic analysis of the rice white tip nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae). PLoS One 2014; 9:e91591. [PMID: 24637831 PMCID: PMC3956754 DOI: 10.1371/journal.pone.0091591] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/13/2014] [Indexed: 01/09/2023] Open
Abstract
Background The rice white tip nematode Aphelenchoides besseyi, a devastating nematode whose genome has not been sequenced, is distributed widely throughout almost all the rice-growing regions of the world. The aims of the present study were to define the transcriptome of A. besseyi and to identify parasite-related, mortality-related or host resistance-overcoming genes in this nematode. Methodology and Principal Findings Using Solexa/Illumina sequencing, we profiled the transcriptome of mixed-stage populations of A. besseyi. A total of 51,270 transcripts without gaps were produced based on high-quality clean reads. Of all the A. besseyi transcripts, 9,132 KEGG Orthology assignments were annotated. Carbohydrate-active enzymes of glycoside hydrolases (GHs), glycosyltransferases (GTs), carbohydrate esterases (CEs) and carbohydrate-binding modules (CBMs) were identified. The presence of the A. besseyi GH45 cellulase gene was verified by in situ hybridization. Given that 13 unique A. besseyi potential effector genes were identified from 41 candidate effector homologs, further studies of these homologs are merited. Finally, comparative analyses were conducted between A. besseyi contigs and Caenorhabditis elegans genes to look for orthologs of RNAi phenotypes, neuropeptides and peptidases. Conclusions and Significance The present results provide comprehensive insight into the genetic makeup of A. besseyi. Many of this species' genes are parasite related, nematode mortality-related or necessary to overcome host resistance. The generated transcriptome dataset of A. besseyi reported here lays the foundation for further studies of the molecular mechanisms related to parasitism and facilitates the development of new control strategies for this species.
Collapse
Affiliation(s)
- Feng Wang
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Danlei Li
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
- * E-mail:
| | - Zhiying Wang
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Airong Dong
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Lihong Liu
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Buyong Wang
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Qiaoli Chen
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xiaohan Liu
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Kyndt T, Fernandez D, Gheysen G. Plant-parasitic nematode infections in rice: molecular and cellular insights. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:135-53. [PMID: 24906129 DOI: 10.1146/annurev-phyto-102313-050111] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Being one of the major staple foods in the world, and an interesting model monocot plant, rice (Oryza sativa L.) has recently received attention from molecular nematologists studying the cellular and molecular aspects of the interaction between this crop and plant-parasitic nematodes. In this review, we highlight recent advances in this field, with a focus on the best-studied root-knot nematodes. Histological studies have revealed the cellular changes inside root-knot nematode-induced feeding sites, both in the compatible interaction with Oryza sativa and the incompatible interaction with the related species Oryza glaberrima. After comparing the published data from transcriptome analyses, mutant studies, and exogenous hormone applications, we provide a comprehensive model showing the role and interaction of plant hormone pathways in defense of this monocot crop against root nematodes, where jasmonate seems to play a key role. Finally, recent evidence indicates that effectors secreted from rice-infecting nematodes can suppress plant defense.
Collapse
Affiliation(s)
- Tina Kyndt
- Department of Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium; ,
| | | | | |
Collapse
|