1
|
Amjed N, Zeshan M, Farooq A, Naz S. Applications of guar gum polysaccharide for pharmaceutical drug delivery: A review. Int J Biol Macromol 2024; 257:128390. [PMID: 38043657 DOI: 10.1016/j.ijbiomac.2023.128390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Bio-based materials are rapidly replacing synthetic materials owing to their significant biomedical applications, easy availability, nontoxicity, biodegradability and biocompatibility. Guar gum (GG) is a plant-derived biocompatible and biodegradable polymeric compound found abundantly in nature. It is a non-ionic, hydrophilic carbohydrate and is a cost-effective hydrocolloid polysaccharide considered as a wonderful representative of the new generation of plant gums. Various composites of guar gum with other polymers have been reported in last few decades and they are extensively used in different industries like food, textile, mining, petrochemical, paper and explosives etc. Easy availability, non-toxicity, eco-friendly and biodegradable nature of GG has made it ideal candidate for for drug delivery (DD) applications. GG based hydrogels, films, scaffolds and nanoparticles have been explored widely for their DD applications. These non-toxic DD carriers can be used for targeted drug delivery. This review article directs the current efforts and improvements on GG and GG-based materials to be used in DD.
Collapse
Affiliation(s)
- Nyla Amjed
- Department of Chemistry, The University of Lahore, Pakistan.
| | - Muhammad Zeshan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan.
| | - Ariba Farooq
- Department of Chemistry, The University of Lahore, Pakistan.
| | - Sadaf Naz
- Department of Chemistry, The University of Lahore, Pakistan.
| |
Collapse
|
2
|
Rai S, Raychaudhuri R, Kudarha R, Mutalik S, Vishalakshi B, Usha KM. Bioderived cellulose fibre-guar gum grafted poly (N, N'-dimethylacrylamide) polymer network for controlled release of metformin hydrochloride. Int J Biol Macromol 2023; 253:126882. [PMID: 37717871 DOI: 10.1016/j.ijbiomac.2023.126882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
An interpenetrating polymer network (IPN) of areca cellulose and guar gum grafted with poly (N, N'-dimethylacrylamide) was made by microwave irradiation technique. N, N-methylenebisacrylamide (MBA) was used as the crosslinking agent. The network polymer was characterised using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Powder X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). The chemical interaction between the drug and the polymer was studied using Differential Scanning Calorimetry (DSC). The swelling of the gel was measured under different pH conditions and the swelling parameters were evaluated. The gel was loaded with an anti-diabetic drug, Metformin Hydrochloride, and the in vitro drug release was studied in gastric and intestinal conditions. The results indicated complete release of the drug in 6 h under pH 1.2 and in 10 h under pH 7.4. The kinetic analysis of release data indicated the drug release to follow Higuchi's model. The release exponent "n" of Korsmeyer-Peppas model was found to be >0.45 indicating the drug diffusion to be a non-Fickian process.
Collapse
Affiliation(s)
- Smitha Rai
- Department of Chemistry, University College, Mangalore University, Mangalore 575001, Karnataka, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - B Vishalakshi
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199, Karnataka, India
| | - K M Usha
- Department of Chemistry, University College, Mangalore University, Mangalore 575001, Karnataka, India.
| |
Collapse
|
3
|
Patel J, Moorthy NSHN, Maiti S. Ascendancy of
pH
‐irresponsive Moi gum in the design of modified xanthan gum semi‐interpenetrating network hydrogels for monitoring diabetes. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jwala Patel
- Department of Pharmacy Indira Gandhi National Tribal University Amarkantak Madhya Pradesh India
| | | | - Sabyasachi Maiti
- Department of Pharmacy Indira Gandhi National Tribal University Amarkantak Madhya Pradesh India
| |
Collapse
|
4
|
Biswas A, Mondal S, Das SK, Bose A, Thomas S, Ghosal K, Roy S, Provaznik I. Development and Characterization of Natural Product Derived Macromolecules Based Interpenetrating Polymer Network for Therapeutic Drug Targeting. ACS OMEGA 2021; 6:28699-28709. [PMID: 34746564 PMCID: PMC8567264 DOI: 10.1021/acsomega.1c03363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/24/2021] [Indexed: 05/12/2023]
Abstract
Interpenetrating polymer network (IPN)-based bead formulations were exploited by cross-linking different hydrophilic polymers in different combinations and at different ratios. Polyvinyl alcohol, xanthan gum, guar gum, gellan gum, and sodium alginate (Na-alginate) were used in this work as hydrophilic polymers to enhance the solubility of diclofenac sodium and also to target the delivery at preferred locations. IPN beads based on polysaccharides were prepared by the ionic gelation method. Differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy data showed that the IPN microbeads solubilized and encapsulated the drug within the network. We found over 83% encapsulation efficiency of the drug delivery system for the drug, and this efficiency increased with the concentration of the polymer. Ex vivo experiments using the goat intestine revealed that the IPN microbeads were able to adhere to the intestinal epithelium, a mucoadhesive behavior that could be beneficial to the drug pharmacokinetics, while in vitro experiments in phosphate buffer showed that the IPN enabled significant drug release. We believe that these IPN microbeads are an excellent drug delivery system to solubilize drug molecules and ensure adhesion to the intestinal wall, thereby localizing the drug release to enhance bioavailability of poorly soluble drugs.
Collapse
Affiliation(s)
- Avirup Biswas
- Pharmaceutical
Biotechnology, Manipal College of Pharmaceutical
Sciences, Madhav Nagar, Manipal, Manipal, Karnataka 576104, India
| | - Sancharee Mondal
- Dr.
B. C. Roy College of Pharmacy and AHS, Durgapur 713206, India
| | | | - Anindya Bose
- School
of Pharmaceutical Sciences (SPS), Siksha
O Anusandhan University, Kalinganagar, Bhubaneswar, Odisha 751003, India
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Kajal Ghosal
- Division
of Pharmaceutics, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sudeep Roy
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno 61600, Czech Republic
| | - Ivo Provaznik
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno 61600, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Brno 62500, Czech Republic
| |
Collapse
|
5
|
Iqbal DN, Ehtisham-ul-Haque S, Ahmad S, Arif K, Hussain EA, Iqbal M, Alshawwa SZ, Abbas M, Amjed N, Nazir A. Enhanced antibacterial activity of chitosan, guar gum and polyvinyl alcohol blend matrix loaded with amoxicillin and doxycycline hyclate drugs. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
6
|
Soni S, Bhunia BK, Kumari N, Dan S, Mukherjee S, Mandal BB, Ghosh A. Therapeutically Effective Controlled Release Formulation of Pirfenidone from Nontoxic Biocompatible Carboxymethyl Pullulan-Poly(vinyl alcohol) Interpenetrating Polymer Networks. ACS OMEGA 2018; 3:11993-12009. [PMID: 30320284 PMCID: PMC6173564 DOI: 10.1021/acsomega.8b00803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/12/2018] [Indexed: 05/21/2023]
Abstract
The present study was conducted to develop therapeutically effective controlled release formulation of pirfenidone (PFD) and explore the possibility to reduce the total administered dose and dosing regimen. For this purpose, pH-sensitive biomaterial was prepared by inducing carboxymethyl group on pullulan by Williamson ether synthesis reaction, and further, interpenetrating polymeric network microspheres were prepared by glutaraldehyde-assisted water-in-oil (w/o) emulsion cross-linking method, which showed higher swelling ratio in acidic and basic pH. The formation of microspheres was confirmed by different spectral characterization techniques, and thermal kinetic study indicated the formation of thermally stable microspheres. Cell viability and biocompatibility studies on hepatocellular carcinoma (HepG2) cell showed the polymeric matrix to be biocompatible. In vitro dissolution of optimized formulation (F5) showed releases of 54.09 and 76.37% in 0.1 N HCl after 2 h and phosphate buffer (pH 6.8) up to 8 h, respectively. In vivo performances of prepared microsphere and marketed product of PFD were compared in rabbit. T max (time taken to reach peak plasma concentration) was found to be achieved at 0.83 h, compared to 0.5 h for Pirfenex with no significant difference complementing the immediate action, while area under curve was significantly greater for optimized formulation (9768 ± 1300 ng h/mL) compared to Pirfenex (4311 ± 110 ng h/mL), complementing the sustained action. In vivo pharmacokinetic study suggested that the prepared microsphere could be a potential candidate for therapeutically effective controlled delivery of PFD used in dyspnea and cough management due to idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Saundray
Raj Soni
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Bibhas K. Bhunia
- Biomaterial
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nimmy Kumari
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Subhashis Dan
- Division of Pharmaceutics, Department of Pharmaceutical Technology and Bioequivalence
Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sudipta Mukherjee
- Division of Pharmaceutics, Department of Pharmaceutical Technology and Bioequivalence
Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Biman B. Mandal
- Biomaterial
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Animesh Ghosh
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
7
|
Bombaldi de Souza RF, Bombaldi de Souza FC, Moraes ÂM. Analysis of the performance of polysaccharide membranes in aqueous media as a tool to assist wound-dressing selection. J Appl Polym Sci 2017. [DOI: 10.1002/app.45386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Renata Francielle Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses; School of Chemical Engineering, University of Campinas; Avenida Albert Einstein 500 Campinas São Paulo - CEP 13083-852 Brazil
| | - Fernanda Carla Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses; School of Chemical Engineering, University of Campinas; Avenida Albert Einstein 500 Campinas São Paulo - CEP 13083-852 Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses; School of Chemical Engineering, University of Campinas; Avenida Albert Einstein 500 Campinas São Paulo - CEP 13083-852 Brazil
| |
Collapse
|
8
|
Bulut E. Ibuprofen microencapsulation within acrylamide-grafted chitosan and methylcellulose interpenetrating polymer network microspheres: Synthesis, characterization, and release studies. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1098-108. [PMID: 25749277 DOI: 10.3109/21691401.2015.1011802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study deals with the development of interpenetrating polymer network (IPN) microspheres of acrylamide (AAm) grafted onto a chitosan (CS) backbone and methylcellulose (MC). Chitosan-graft-polyacrylamide (CS-g-PAAm) was synthesized by cerium (IV) ammonium nitrate-induced free radical graft polymerization. The grafting percentage was found to be 50.58%. The synthesized graft copolymer and MC were used to prepare microspheres by the water-in-oil (w/o) emulsion-crosslinking method, and crosslinked with glutaraldehyde (GA) as drug delivery matrices of ibuprofen (IBU). The release of IBU from microspheres decreased when the amount of CS-g-PAAm in the polymer matrix and amount of crosslinker added were increased, while it increased with the increase of the IBU/polymer ratio.
Collapse
Affiliation(s)
- Emine Bulut
- a Department of Chemistry , Science and Arts Faculty, Afyon Kocatepe University , Afyonkarahisar , Turkey
| |
Collapse
|
9
|
Aminabhavi TM, Nadagouda MN, More UA, Joshi SD, Kulkarni VH, Noolvi MN, Kulkarni PV. Controlled release of therapeutics using interpenetrating polymeric networks. Expert Opin Drug Deliv 2014; 12:669-88. [DOI: 10.1517/17425247.2014.974871] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Lohani A, Singh G, Bhattacharya SS, Verma A. Interpenetrating polymer networks as innovative drug delivery systems. JOURNAL OF DRUG DELIVERY 2014; 2014:583612. [PMID: 24949205 PMCID: PMC4052081 DOI: 10.1155/2014/583612] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/27/2014] [Indexed: 11/18/2022]
Abstract
Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs) have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.
Collapse
Affiliation(s)
- Alka Lohani
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Garima Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | | | - Anurag Verma
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| |
Collapse
|
11
|
Aminabhavi TM, Nadagouda MN, Joshi SD, More UA. Guar gum as platform for the oral controlled release of therapeutics. Expert Opin Drug Deliv 2014; 11:753-66. [DOI: 10.1517/17425247.2014.897326] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Bulut E, Dilek M. Development and characterization of pH-sensitive locust bean gum-alginate microspheres for controlled release of ibuprofen. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50127-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Mallikarjuna B, Madhusudana Rao K, Siraj S, Chandra Babu A, Chowdoji Rao K, Subha M. Sodium alginate/poly (ethylene oxide) blend hydrogel membranes for controlled release of valganciclovir hydrochloride. Des Monomers Polym 2012. [DOI: 10.1080/15685551.2012.705503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- B. Mallikarjuna
- a Department of Chemistry , Sri Krishnadevaraya University , Anantapur , Andhra Pradesh , India
| | - K. Madhusudana Rao
- a Department of Chemistry , Sri Krishnadevaraya University , Anantapur , Andhra Pradesh , India
| | - S. Siraj
- a Department of Chemistry , Sri Krishnadevaraya University , Anantapur , Andhra Pradesh , India
| | - A. Chandra Babu
- a Department of Chemistry , Sri Krishnadevaraya University , Anantapur , Andhra Pradesh , India
| | - K. Chowdoji Rao
- b Department of Polymer Science & Technology , Sri Krishnadevaraya University , Anantapur , Andhra Pradesh , India
| | - M.C.S. Subha
- a Department of Chemistry , Sri Krishnadevaraya University , Anantapur , Andhra Pradesh , India
| |
Collapse
|
14
|
Mallikarjuna B, Rao KM, Prasad CV, Rao KC, Subha MCS. Development of Triprolidine-Hydrochloride-Loaded pH-Sensitive Poly(Acrylamide-co-Acrylamidoglycolic Acid) Co-Polymer Microspheres: In Vitro Release Studies. Des Monomers Polym 2012. [DOI: 10.1163/138577211x587645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- B. Mallikarjuna
- a Department of Chemistry, Sri Krishnadevaraya University, Anantapur, India
| | | | - C. Venkata Prasad
- c Department of Polymer Science and Technology, Sri Krishnadevaraya University, Anantapur, India
| | - K. Chowdoji Rao
- d Department of Polymer Science and Technology, Sri Krishnadevaraya University, Anantapur, India
| | - M. C. S. Subha
- e Department of Chemistry, Sri Krishnadevaraya University, Anantapur, India;,
| |
Collapse
|
15
|
Swamy BY, Prasad CV, Reddy CLN, Sudhakara P, Chung I, Subha MCS, Chowdoji Rao K. Preparation of sodium alginate/poly(vinyl alcohol) blend microspheres for controlled release applications. J Appl Polym Sci 2011. [DOI: 10.1002/app.36243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Lakshmi Narayana Reddy C, Swamy BY, Prasad CV, Subha M, Rao KC. Controlled release of chlorpheniramine maleate through IPN beads of sodium alginate-g-methylmethacrylate. J Appl Polym Sci 2010. [DOI: 10.1002/app.32171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Mallikarjuna Reddy K, Ramesh Babu V, Krishna Rao KSV, Subha MCS, Chowdoji Rao K, Sairam M, Aminabhavi TM. Temperature sensitive semi-IPN microspheres from sodium alginate andN-isopropylacrylamide for controlled release of 5-fluorouracil. J Appl Polym Sci 2007. [DOI: 10.1002/app.27305] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|