1
|
Prasher P, Sharma M. "Azole" as privileged heterocycle for targeting the inducible cyclooxygenase enzyme. Drug Dev Res 2020; 82:167-197. [PMID: 33137216 DOI: 10.1002/ddr.21753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
An over-expression of COX-2 isoenzyme belonging to the Cyclooxygenase Enzyme Family triggers the overproduction of pro-inflammatory prostaglandins that instigate the development of chronic inflammation and related disorders. Hence, the rationally designed drugs for mitigating over-activity of COX-2 isoenzyme play a regulatory role toward the alleviation of the progression of these disorders. However, a selective COX-2 inhibition chemotherapy prompts several side effects that necessitate the identification of novel molecular scaffolds for deliberating state-of-the-art drug designing strategies. The heterocyclic "azole" scaffold, being polar and hydrophilic, possesses remarkable physicochemical advantages for designing physiologically active molecules capable of interacting with a wide range of biological components, including enzymes, peptides, and metabolites. The substituted derivatives of azole nuclei enable a comprehensive SAR analysis for the appraisal of bioactive profile of the deliberated molecules for obtaining the rationally designed compounds with prominent activities. The comprehensive SAR analysis readily prompted the identification of Y-shaped molecules and the eminence of bulkier group for COX-2 selective inhibition. This review presents an epigrammatic collation of the pharmacophore-profile of the chemotherapeutics based on azole motif for a selective targeting of the COX-2 isoenzyme.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, Uttaranchal University, Arcadia Grant, Dehradun, India
| |
Collapse
|
2
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part II - Modulation of angiogenesis. Clin Hemorheol Microcirc 2020; 73:409-438. [PMID: 31177206 DOI: 10.3233/ch-199103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment of critical-size bone defects following complicated fractures, infections or tumor resections is a major challenge. The same applies to fractures in patients with impaired bone healing due to systemic inflammatory and metabolic diseases. Despite considerable progress in development and establishment of new surgical techniques, design of bone graft substitutes and imaging techniques, these scenarios still represent unresolved clinical problems. However, the development of new active substances offers novel potential solutions for these issues. This work discusses therapeutic approaches that influence angiogenesis or hypoxic situations in healing bone and surrounding tissue. In particular, literature on sphingosine-1-phosphate receptor modulators and nitric oxide (NO•) donors, including bi-functional (hybrid) compounds like NO•-releasing cyclooxygenase-2 inhibitors, was critically reviewed with regard to their local and systemic mode of action.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
3
|
Warriar P, Barve K, Prabhakar B. Anti-Arthritic Effect of Garcinol Enriched Fraction Against Adjuvant Induced Arthritis. ACTA ACUST UNITED AC 2020; 13:49-56. [PMID: 30457056 PMCID: PMC6778983 DOI: 10.2174/1872213x12666181120091528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/30/2023]
Abstract
Background: Garcinia indica also known as kokum is used in traditional system of medicine for relieving inflammation and rheumatic pain. Garcinol, a benzophenone obtained from its fruit rind is reported to have anti-inflammatory effect via modulating arachidonic acid metabolism, suppressing iNOS expression, NF-κB activation and COX-2 expression. It has also been studied for antioxidant and anti-cancer activity. Apart from these, few patents claim that garcinol also has anti-obesity and hepatoprotec-tive effect and has a potential to be used for the treatment of renal disorders, endometriosis and cardiac dysfunction. Objective: Garcinol Enriched Fraction (GEF) from the fruit rind of Garcinia indica should be effective in the treatment of arthritis, one of the chronic inflammatory disorder owing to its anti-inflammatory property as indicated by earlier experiments. Methods: GEF was prepared from the fruit rind of Garcinia indica and quantified using LC-MS/MS. It was found to contain 89.4% w/w of garcinol. GEF was evaluated at the dose of 10mg/kg for its efficacy against Complete Freund’s Adjuvant (CFA) induced arthritis in Wistar albino rats. Paw volumes of both sides were measured by Plethysmometer and body weight was recorded on 0, 1, 5, 12 and 21st day. The hyperalgesic response was also measured by motility test and stair climbing test. Results: GEF showed a significant reduction in paw swelling (p < 0.0001) and arthritis index (p < 0.0001) exhibiting anti-inflammatory potential. It also improves the motility and stair climbing ability of experimental animals (p < 0.05), thus reducing hyperalgesia. Conclusion: Garcinol enriched fraction shows anti-arthritic activity in experimental animals.
Collapse
Affiliation(s)
- Purnima Warriar
- SPP- School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Kalyani Barve
- SPP- School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Bala Prabhakar
- SPP- School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| |
Collapse
|
4
|
SILVA GABRIELALDA, LUFT CAROLINA, LUNARDELLI ADROALDO, AMARAL ROBSONH, MELO DENIZARADASILVA, DONADIO MÁRCIOV, NUNES FERNANDAB, AZAMBUJA MARCOSSDE, SANTANA JOÃOC, MORAES CRISTINAM, MELLO RICARDOO, CASSEL EDUARDO, PEREIRA MARCOSAURÉLIODEALMEIDA, OLIVEIRA JARBASRDE. Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil. ACTA ACUST UNITED AC 2015; 87:1397-408. [DOI: 10.1590/0001-3765201520150056] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several studies have investigated the antinociceptive, immunomodulatory and anti-inflammatory properties of compounds found in the lavender essential oil (LEO), however to date, there is still lack of substantial data. The objective of this study was to assess the antioxidant, anti-inflammatory and antinociceptive effects of lavender essential oil. The 1,1-diphenyl-2-picrylhydrazyl radical decolorization assay was used for antioxidant activity evaluation. The anti-inflammatory activity was tested using two models of acute inflammation: carrageenan-induced pleurisy and croton oil-induced ear edema. The antinociceptive activity was tested using the pain model induced by formalin. LEO has antioxidant activity, which is dose-dependent response. The inflammatory response evoked by carrageenan and by croton oil was reduced through the pre-treatment of animals with LEO. In the pleurisy model, the drug used as positive control, dexamethasone, was more efficacious. However, in the ear swelling, the antiedematogenic effect of the oil was similar to that observed for dexamethasone. In the formalin test, LEO consistently inhibited spontaneous nociception and presented a similar effect to that of tramadol. The results of this study reveal (in vivo) the analgesic and anti-inflammatory activities of LEO and demonstrates its important therapeutic potential.
Collapse
Affiliation(s)
| | - CAROLINA LUFT
- Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | - JOÃO C. SANTANA
- Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Cheng J, Du YF, Xiao ZY, Pan LL, Li W, Huan L, Gong ZN, Wei SH, Huang SQ, Xun W, Zhang Y, Chang LL, Xie MY, Ao GZ, Cai J, Qiu T, Wu H, Sun T, Xu GL. Growth inhibitory effect of KYKZL-1 on Hep G2 cells via inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Toxicol Appl Pharmacol 2013; 274:96-106. [PMID: 24189224 DOI: 10.1016/j.taap.2013.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/19/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the inhibitory activity test on Hep G2 growth. We found that KYKZL-1 inhibited the growth of Hep G2 cells via inducing apoptosis. Further studies showed that KYKZL-1 activated caspase-3 through cytochrome c release from mitochondria and down regulation of Bcl-2/Bax ratio and reduced the high level of COX-2 and 5-LOX. As shown in its anti-inflammatory effect, KYKZL-1 also exhibited inhibitory effect on the PGE2 and LTB4 production in Hep G2 cells. Accordingly, exogenous addition of PGE2 or LTB4 reversed the decreases in cell viability. In addition, KYKZL-1 caused cell cycle arrest at the S-G2 checkpoint via the activation of p21(CIP1) protein and down-regulation of cyclin A expression. These data indicate that the growth inhibitory effect of KYKZL-1 is associated with inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Combined with our previous findings, KYKZL-1 exhibiting COX/5-LOX inhibition may be a promising potential agent not only for inflammation control but also for cancer prevention/therapy with an enhanced gastric safety profile.
Collapse
Affiliation(s)
- Jing Cheng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yi-Fang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Zhi-Yi Xiao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Li-Li Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Wei Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lin Huan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Zhu-Nan Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shao-Hua Wei
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Shi-Qian Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Wei Xun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lei-Lei Chang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Meng-Yu Xie
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Gui-Zhen Ao
- Department of Medicinal Chemistry, School of Pharmacy, Soochow University, Jiangsu, China
| | - Jie Cai
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ting Qiu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Hao Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ting Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Guang-Lin Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China; Department of Pharmacology, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
6
|
Inhibition of inflammatory mediators contributes to the anti-inflammatory activity of KYKZL-1 via MAPK and NF-κB pathway. Toxicol Appl Pharmacol 2013; 272:221-9. [DOI: 10.1016/j.taap.2013.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 04/11/2013] [Accepted: 05/10/2013] [Indexed: 11/19/2022]
|
7
|
Xu GL, Liu F, Ao GZ, He SY, Ju M, Zhao Y, Xue T. Anti-inflammatory effects and gastrointestinal safety of NNU-hdpa, a novel dual COX/5-LOX inhibitor. Eur J Pharmacol 2009; 611:100-6. [DOI: 10.1016/j.ejphar.2009.03.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/15/2009] [Accepted: 03/23/2009] [Indexed: 11/27/2022]
|
8
|
|
9
|
Chegaev K, Lazzarato L, Tosco P, Cena C, Marini E, Rolando B, Carrupt PA, Fruttero R, Gasco A. NO-Donor COX-2 Inhibitors. New Nitrooxy-Substituted 1,5-Diarylimidazoles Endowed with COX-2 Inhibitory and Vasodilator Properties. J Med Chem 2007; 50:1449-57. [PMID: 17335184 DOI: 10.1021/jm0607247] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of NO-donor diarylimidazoles derived from the lead compound Cimicoxib were synthesized and evaluated for their COX-2 inhibitory activity and their stability in whole blood as well as for vasodilator properties. The products are partly transformed into the corresponding alcohols following 24-h incubation in whole blood. All of them display good COX-1/COX-2 selectivity, but are less potent than the lead; a molecular modeling study was carried out to investigate their binding mode. The compounds are also capable of relaxing rat aorta strips precontracted with phenylephrine with a NO-dependent mechanism; this property could confer reduced cardiotoxicity with respect to traditional COX-2 inhibitors.
Collapse
Affiliation(s)
- Konstantin Chegaev
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Haque W, Fareed J, Wehrmacher WH, Messmore HL. The classical vs nonclassical NSAIDs: can the reduction in pain overcome the thrombotic risk? COMPREHENSIVE THERAPY 2006; 32:261-6. [PMID: 17898433 DOI: 10.1007/bf02698073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 11/30/1999] [Accepted: 11/21/2006] [Indexed: 05/17/2023]
Abstract
The advent of cyclooxygenase-2 inhibitors has been both a blessing and a curse for pain management. An in-depth understanding of the biological molecules in the arachidonic acid metabolism may alleviate pain without risk.
Collapse
Affiliation(s)
- Wasim Haque
- Thrombo Therapeutics Inc., 103 Advanced Technology Center, Edmonton, Alberta, CA, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
Cancer pain is one of the most frequent symptoms in malignant disease, severely impairing the patients' quality of life. The recommendations of the World Health Organization will provide adequate pain relief for the vast majority of cancer patients. However, some patients will suffer from inadequate analgesia or intolerable side effects. Cyclooxygenase-2 (COX-2)-selective non-steroidal anti-inflammatory drugs (NSAIDs), new anticonvulsants, cannabinoids and NMDA receptor antagonists are being developed for these patients. NSAIDs with nitric oxide-releasing moieties are an interesting addition, as this new class of analgesics combines improved analgesic efficacy with higher tolerability. Conotoxins and other drugs such as nicotinic acetylcholinergic receptor agonists will be advantageous only for a few patients in the near future, as side-effect profile and risk of complications, as well as the burden on the patient, often are not worth the additional analgesic benefit.
Collapse
Affiliation(s)
- Lukas Radbruch
- University of Aachen, Department of Palliative Medicine, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | |
Collapse
|