1
|
Muñoz-Sánchez S, Barrios-Gumiel A, de la Mata FJ, García-Gallego S. Fine-Tuning the Amphiphilic Properties of Carbosilane Dendritic Networks towards High-Swelling Thermogels. Pharmaceutics 2024; 16:495. [PMID: 38675156 PMCID: PMC11054174 DOI: 10.3390/pharmaceutics16040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Dendritic hydrogels based on carbosilane crosslinkers are promising drug delivery systems, as their amphiphilic nature improves the compatibility with poorly water-soluble drugs. In this work, we explored the impact of the complementary polymer on the amphiphilic properties of the dendritic network. Different polymers were selected as precursors, from the highly lipophilic propylene glycol (PPG) to the hydrophilic polyethylene glycol (PEG), including amphiphilic Pluronics L31, L35 and L61. The dithiol polymers reacted with carbosilane crosslinkers through UV-initiated thiol-ene coupling (TEC), and the resultant materials were classified as non-swelling networks (for PPG, PLUL31 and PLUL61) and high-swelling hydrogels (for PEG and PLUL35). The hydrogels exhibited thermo-responsive properties, shrinking at higher temperatures, and exhibited an intriguing drug release pattern due to internal nanostructuring. Furthermore, we fine-tuned the dendritic crosslinker, including hydroxyl and azide pendant groups in the focal point, generating functional networks that can be modified through degradable (ester) and non-degradable (triazol) bonds. Overall, this work highlighted the crucial role of the amphiphilic balance in the design of dendritic hydrogels with thermo-responsive behavior and confirmed their potential as functional networks for biomedical applications.
Collapse
Affiliation(s)
- Silvia Muñoz-Sánchez
- University of Alcala, Faculty of Sciences, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. Del Río” (IQAR), 28805 Madrid, Spain; (S.M.-S.); (A.B.-G.); (F.J.d.l.M.)
| | - Andrea Barrios-Gumiel
- University of Alcala, Faculty of Sciences, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. Del Río” (IQAR), 28805 Madrid, Spain; (S.M.-S.); (A.B.-G.); (F.J.d.l.M.)
| | - Francisco Javier de la Mata
- University of Alcala, Faculty of Sciences, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. Del Río” (IQAR), 28805 Madrid, Spain; (S.M.-S.); (A.B.-G.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Sandra García-Gallego
- University of Alcala, Faculty of Sciences, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. Del Río” (IQAR), 28805 Madrid, Spain; (S.M.-S.); (A.B.-G.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
2
|
Yanamandra AK, Bhusari S, Del Campo A, Sankaran S, Qu B. In vitro evaluation of immune responses to bacterial hydrogels for the development of living therapeutic materials. BIOMATERIALS ADVANCES 2023; 153:213554. [PMID: 37480604 DOI: 10.1016/j.bioadv.2023.213554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
In living therapeutic materials (LTMs), organisms genetically programmed to produce and deliver drugs are encapsulated in porous matrices acting as physical barriers between the therapeutic organisms and the host cells. LTMs consisting of engineered E. coli encapsulated in Pluronic F127-based hydrogels have been frequently used in LTM designs but their immunogenicity has not been tested. In this study, we investigate the response of human peripheral blood mononuclear cells (PBMCs) exposed to this bacteria/hydrogel combination. The release of inflammation-related cytokines and cytotoxic proteins and the subsets of natural killer cells and T cells were examined. Encapsulation of the bacteria in hydrogels considerably lowers their immunogenicity. ClearColi, an endotoxin-free variant of E. coli, did not polarize NK cells into the more cytolytic CD16dim subset as E. coli. Our results demonstrate that ClearColi-encapsulated hydrogels generate low immunogenic response and are suitable candidates for the development of LTMs for in vivo testing to assess a potential clinical use. Nevertheless, we observed a stronger immune response (elevated levels of IFNγ, IL-6 and cytotoxic proteins) in pro-inflammatory PBMCs characterized by a high spontaneous release of IL-2. This highlights the need to identify recipients who have a higher likelihood of experiencing undesired immune responses to LTMs with IL-2 serving as a potential predictive marker. Additionally, including anti-inflammatory measures in living therapeutic material designs could be beneficial for such recipients.
Collapse
Affiliation(s)
- Archana K Yanamandra
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany; INM - Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Shardul Bhusari
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany; Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany; Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | | | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany; INM - Leibniz Institute for New Materials, Saarbrücken, Germany.
| |
Collapse
|
3
|
Kim H, Han S, Choi K, Lee J, Lee SH, Won YW, Lim KS. Self-assembled Nanocomplex Using Cellulose Nanocrystal Based on Zinc/DNA Nanocluster for Gene Delivery. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Combining thermosensitive physical self-assembly and covalent cycloaddition chemistry as simultaneous dual cross-linking mechanisms for the preparation of injectable hydrogels with tuneable properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Injectable hydrogels based on oxidized alginate-gelatin reinforced by carbon nitride quantum dots for tissue engineering. Int J Pharm 2021; 602:120660. [PMID: 33933645 DOI: 10.1016/j.ijpharm.2021.120660] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Stem cell treatment is promising in the various disorders treatment, but its effect is confined by the adverse conditions in the damaged tissues. The utilization of hydrogels has been suggested as a procedure to defeat this issue by developing the engraftment and survival of injected stem cells. Specifically, injectable hydrogels have drawn much attention due to their shape adaptability, ease of use, and the capability to reach body parts that are hard to access. In this study, the thermosensitive injectable hydrogels based on oxidized alginate, gelatin, and carbon nitride quantum dots (CNQDs) have been fabricated for tissue engineering. The mechanical characteristics of the nanocomposite hydrogels were investigated by rheology analysis. The results show that increasing the amount of CNQDs improve the mechanical strength of the nanocomposite hydrogels. The Cross-section morphology of freeze dried hydrogels comprising 0.25, 1.5, and 3.0% CNQDs indicate porous structure with interrelated pores. Besides, the result of in vitro degradation reveals that the hydrogels comprising CNQDs are more durable than the one without CNQDs. A reduction in the biodegradation and swelling ratio is perceived with the addition of CNQDs. The cell viability and attachment show that the nanocomposite hydrogels are biocompatible (>88%) with great cell adhesion to osteosarcoma cell line MG63 depending on the presence of CNQDs.
Collapse
|
6
|
Popescu I, Turtoi M, Suflet DM, Dinu MV, Darie-Nita RN, Anghelache M, Calin M, Constantin M. Alginate/poloxamer hydrogel obtained by thiol-acrylate photopolymerization for the alleviation of the inflammatory response of human keratinocytes. Int J Biol Macromol 2021; 180:418-431. [PMID: 33737187 DOI: 10.1016/j.ijbiomac.2021.03.082] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/20/2021] [Accepted: 03/14/2021] [Indexed: 01/01/2023]
Abstract
Hydrogel-based wound dressings have been intensively studied as promising materials for wound healing and care. The mixed-mode thiol-acrylate photopolymerization is used in this paper for alginate/poloxamer hydrogels formation. First, the alginate was modified with thiol groups using the esterification reaction with cysteamine, and second, the terminal hydroxyl groups of poloxamer were esterified with acryloyl chloride to introduce polymerizable acrylate groups. Finally, the cross-linking reaction between the two macromers was performed to produce degradable alginate/poloxamer hydrogels. The optimum conditions for the photo-initiated reaction were studied in order to obtain high gel fractions. The resulting hydrogels have high swelling capacity in simulated physiological conditions, good elasticity and strength, and appropriate porosity, some of the physico-chemical properties required for their applications as wound dressings/patches. The biological assays show that the alginate/poloxamer hydrogels induce proliferation of human keratinocyte and have an anti-inflammatory effect on lipopolysaccharides (LPS)-activated keratinocytes by inhibiting the extracellular signal-regulated kinases (ERK)/ nuclear factor (NF)-kB/ tumor necrosis factor (TNF)-α signalling pathway. Taken together, the results showed that the chemical cross-linked alginate/poloxamer hydrogels may function as a dressing/patch applied directly on the skin lesion to heal the wound by reducing the exacerbated inflammation, the main cause of wound healing delay and local infection.
Collapse
Affiliation(s)
- Irina Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania.
| | - Mihaela Turtoi
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, B.P. Hasdeu 8, 050568 Bucharest, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania
| | | | - Maria Anghelache
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, B.P. Hasdeu 8, 050568 Bucharest, Romania
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, B.P. Hasdeu 8, 050568 Bucharest, Romania
| | - Marieta Constantin
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania
| |
Collapse
|
7
|
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Gupta U, Kesharwani P, Ravichandiran V, Kumar P, Naidu VGM, Murty US, Ajazuddin, Alexander A. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release 2020; 327:235-265. [PMID: 32739524 DOI: 10.1016/j.jconrel.2020.07.044] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
The diagnosis and treatment of neurological ailments always remain an utmost challenge for research fraternity due to the presence of BBB. The intranasal route appeared as an attractive and alternative route for brain targeting of therapeutics without the intrusion of BBB and GI exposure. This route directly and effectively delivers the therapeutics to different regions of the brain via olfactory and trigeminal nerve pathways. However, shorter drug retention time and mucociliary clearance curtail the efficiency of the intranasal route. The in situ mucoadhesive gel overthrow the limitations of direct nose-to-brain delivery by not only enhancing nasal residence time but also minimizing the mucociliary clearance and enzymatic degradation. This delivery system further improves the nasal absorption as well as bioavailability of drugs in the brain. The in situ mucoadhesive gel is a controlled and sustained release system that facilitates the absorption of various proteins, peptides and other larger lipophilic and hydrophilic moieties. Owing to multiple benefits, in situ gelling system has been widely explored to target the brain via nasal route. However, very few review works are reported which explains the application of in situ nasal gel for brain delivery of CNS acting moieties. Hence, in this piece of work, we have initially discussed the global statistics of neurological disorders reported by WHO and other reputed organizations, nasal anatomy, mechanism and challenges of nose-to-brain drug delivery. The work mainly focused on the use of different stimuli-responsive polymers, specifically thermoresponsive, pH-responsive, and ion triggered systems for the development of an effective and controlled dosage form, i.e., in situ nasal gel for brain targeting of bioactives. We have also highlighted the origin, structure, nature and phase transition behavior of the smart polymers found suitable for nasal administration, including poloxamer, chitosan, EHEC, xyloglucan, Carbopol, gellan gum and DGG along with their application in the treatment of neurological disorders. The article is aimed to gather all the information of the past 10 years related to the development and application of stimuli-responsive in situ nasal gel for brain drug delivery.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, NCI-Frederick, NIH, Frederick, USA
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India.
| |
Collapse
|
8
|
Shen C, Li Y, Wang Y, Meng Q. Non-swelling hydrogel-based microfluidic chips. LAB ON A CHIP 2019; 19:3962-3973. [PMID: 31656966 DOI: 10.1039/c9lc00564a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hydrogel-based microfluidic chips are more biologically relevant than conventional polydimethylsiloxane (PDMS) chips, but the inherent swelling of hydrogels leads to a decrease in mechanical performance and deformation of the as-prepared structure in their manufacture and application processing. Non-swelling hydrogel has, for the first time, been utilized to construct microfluidic chips in this study. It was fabricated by covalently cross-linking the biocompatible copolymer of di-acrylated Pluronic F127 (F127-DA). Thanks to their non-swelling property, the hydrogel-based microfluidic chips maintain their as-prepared mechanical strength and channel morphology when equilibrated in aqueous solution at 37 °C. Moreover, the microfluidic chips are autoclavable and show an appropriately slow degradation rate by remaining stable within 21 days of incubation. Based on these properties, a vessel-on-a-chip was established by seeding human umbilical vein endothelial cells (HUVECs) onto the microchannel surfaces inside the microfluidic chip. Under 6 days of perfusion culture with a physiologically relevant shear stress of 5 dyne per cm2, the HUVECs in the chip show responsivity to fluid shear stress and express higher endothelial functions than the corresponding static culture. Therefore, non-swelling hydrogel-based microfluidic chips could potentially be applicable for cell/tissue-related applications, performing much better than conventional PDMS or existing hydrogel based microfluidic chips.
Collapse
Affiliation(s)
- Chong Shen
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, PR China.
| | - Yingjun Li
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, PR China.
| | - Ying Wang
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, PR China.
| | - Qin Meng
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, PR China.
| |
Collapse
|
9
|
Osteogenic differentiation of hMSCs on semi-interpenetrating polymer networks of polyurethane/poly(2‑hydroxyethyl methacrylate)/cellulose nanowhisker scaffolds. Int J Biol Macromol 2019; 138:262-271. [PMID: 31302125 DOI: 10.1016/j.ijbiomac.2019.07.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
Poly (2‑hydroxyethyl methacrylate) (PHEMA) was crosslinked in the presence of biocompatible and biodegradable poly(caprolactone) (PCL) based polyurethanes (PUs) and cellulose nanowhiskers (CNWs). The CNWs were obtained from wastepaper. In order to crosslink PHEMA (10 wt%), a novel acrylic-urethane cross-linker was produced by a condensation reaction of PHEMA and hexamethylene diisocyanate (HDI). The PU-PHEMA-CNWs scaffolds were prepared by solvent casting/particulate leaching method in different weight percentages of CNWs (i.e., 0, 0.1, 0.5, and 1 wt%). The structural, mechanical, and in vitro biological properties of bio-nanocomposites were evaluated via FTIR, SEM, tensile, and MTT assay. The tensile strength of PU-PHEMA-0, PU-PHEMA-0.1, PU-PHEMA-0.5, and PU-PHEMA-1 were 76.2, 95.8, 98.1, and 89.8 kPa, respectively. Incorporation of CNWs also resulted in improved cell proliferation on PU-PHEMA-CNWs scaffolds. The bone marrow derived human mesenchymal stem cells (hMSCs) were seeded on the prepared porous scaffolds and incubated in osteogenic medium. Based on the results including calcium content assay, alkaline phosphatase assay, and mineralization staining, PU-PHEMA-CNW scaffolds were introduced as a suitable election for imitating the behavior of cellular niche. Bone mineralization and osteogenesis differentiation of hMSCs on PU-PHEMA-CNW scaffolds were significantly more than control after 14 days.
Collapse
|
10
|
Godfrin PD, Lee H, Lee JH, Doyle PS. Photopolymerized Micelle-Laden Hydrogels Can Simultaneously Form and Encapsulate Nanocrystals to Improve Drug Substance Solubility and Expedite Drug Product Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803372. [PMID: 30645039 DOI: 10.1002/smll.201803372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/17/2018] [Indexed: 05/06/2023]
Abstract
Formulation technologies are critical for increasing the efficacy of drug products containing poorly soluble hydrophobic drugs, which compose roughly 70% of small molecules in commercial pipelines. Nanomedicines, such as nanocrystal formulations and amorphous solid suspensions, are effective approaches to increasing solubility. However, existing techniques require additional processing into a final dosage form, which strongly influences drug delivery and clinical performance. To enhance hydrophobic drug product efficacy and clinical throughput, a hydrogel material is developed as a sacrificial template to simultaneously form and encapsulate nanocrystals. These hydrogels contain micelles chemically bound to the hydrogel matrix, where the surfactant structure dictates the crystal size and drug loading. Therefore, nanocrystals can be produced in high yield (up to 90% drug loading, by weight) with precisely controlled sizes as small as 4 nm independently of hydrogel composition. Nanocrystals and surfactant are then released together to increase the solubility up to 70 times above bulk crystalline material. By integrating nanocrystals into a final dosage form, micelle-laden hydrogels simplify hydrophobic drug product design.
Collapse
Affiliation(s)
- Paul Douglas Godfrin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hyundo Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ji Hyun Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
11
|
Alvarado-Gomez E, Martínez-Castañon G, Sanchez-Sanchez R, Ganem-Rondero A, Yacaman MJ, Martinez-Gutierrez F. Evaluation of anti-biofilm and cytotoxic effect of a gel formulation with Pluronic F-127 and silver nanoparticles as a potential treatment for skin wounds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:621-630. [PMID: 30184789 DOI: 10.1016/j.msec.2018.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
The skin wounds cause serious burden to healthcare systems. The lack of sterility of the innate barrier function of the skin facilitates the development of microbial communities within the wound environment especially in biofilm form. Since biofilm is difficult to eradicate, new treatments have been established, such as silver nanoparticles (AgNPs), which antimicrobial and anti-biofilm properties have been studied, nevertheless, their toxic effects are known too. Different concentrations of AgNPs stabilized with a biocompatible and thermo-reversible vehicle as hydrogel Pluronic F-127 were synthesized, those formulations presented interesting thermo-reversibility which could be used to apply on wounds. The formulations (Gel 62.5, 125, and 250 ppm of AgNPs) proposed in this study showed in vitro a total inhibition of clinical strains (Staphylococcus aureus and Pseudomonas aeruginosa) in planktonic form, as well as, anti-biofilm activity was archived with the formulation of Gel 250 ppm, a total inhibition of biofilm formation with mixed culture was registered in the first 30 min of biofilm growth; even more, the viability of human fibroblasts with all gels formulations was >95%, in contrast to silver sulfadiazine cream 1% which showed the highest cytotoxic effect. PF-127 gel with AgNPs could be a prophylactic treatment for skin wounds, because its activity in critical steps on biofilm formation.
Collapse
Affiliation(s)
- Elizabeth Alvarado-Gomez
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico
| | - Gabriel Martínez-Castañon
- Facultad de Estomatologia, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico
| | - Roberto Sanchez-Sanchez
- Biotechnology Laboratory, Instituto Nacional de Rehabilitacion, Calz. Mexico-Xochimilco 289, Arenal Tepepan, CP 14389 Ciudad de Mexico, Mexico
| | - Adriana Ganem-Rondero
- Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Carretera Cuautitlan Teoloyucan Km 2.5, San Sebastian Xhala, CP 54714 Cuautitlan Izcalli, Ciudad de Mexico, Mexico
| | - Miguel Jose Yacaman
- Department of Physics and Astronomy, The University of Texas at San Antonio, UTSA Circle, CP 78249 San Antonio, TX, USA
| | - Fidel Martinez-Gutierrez
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico.
| |
Collapse
|
12
|
Meng Q, Peng B, Shen C. Synthesis of F127/PAA hydrogels for removal of heavy metal ions from organic wastewater. Colloids Surf B Biointerfaces 2018; 167:176-182. [DOI: 10.1016/j.colsurfb.2018.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 11/25/2022]
|
13
|
Rey-Rico A, Cucchiarini M. PEO-PPO-PEO Tri-Block Copolymers for Gene Delivery Applications in Human Regenerative Medicine-An Overview. Int J Mol Sci 2018. [PMID: 29518011 PMCID: PMC5877636 DOI: 10.3390/ijms19030775] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lineal (poloxamers or Pluronic®) or X-shaped (poloxamines or Tetronic®) amphiphilic tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide) (PEO-PPO-PEO) have been broadly explored for controlled drug delivery in different regenerative medicine approaches. The ability of these copolymers to self-assemble as micelles and to undergo sol-to-gel transitions upon heating has endowed the denomination of “smart” or “intelligent” systems. The use of PEO-PPO-PEO copolymers as gene delivery systems is a powerful emerging strategy to improve the performance of classical gene transfer vectors. This review summarizes the state of art of the application of PEO-PPO-PEO copolymers in both nonviral and viral gene transfer approaches and their potential as gene delivery systems in different regenerative medicine approaches.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany.
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany.
| |
Collapse
|
14
|
|
15
|
Eslahi N, Simchi A, Mehrjoo M, Shokrgozar MA, Bonakdar S. Hybrid cross-linked hydrogels based on fibrous protein/block copolymers and layered silicate nanoparticles: tunable thermosensitivity, biodegradability and mechanical durability. RSC Adv 2016. [DOI: 10.1039/c6ra08563f] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic representation of LAPONITE® reinforced pluronic/chitosan/keratin nanocomposite hydrogel crosslinked with Genipin.
Collapse
Affiliation(s)
- Niloofar Eslahi
- Department of Materials Science and Engineering
- Sharif University of Technology
- Tehran
- Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering
- Sharif University of Technology
- Tehran
- Iran
- Institute for Nanoscience and Nanotechnology
| | - Morteza Mehrjoo
- National Cell Bank of Iran
- Pasteur Institute of Iran
- Tehran
- Iran
| | | | - Shahin Bonakdar
- National Cell Bank of Iran
- Pasteur Institute of Iran
- Tehran
- Iran
| |
Collapse
|
16
|
Wang R, Chua KL, Neoh KG. Bifunctional Coating with Sustained Release of 4-Amide-piperidine-C12 for Long-Term Prevention of Bacterial Colonization on Silicone. ACS Biomater Sci Eng 2015; 1:405-415. [DOI: 10.1021/acsbiomaterials.5b00031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rong Wang
- Department
of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Kent Ridge, Singapore 117576
| | - Kim Lee Chua
- Department
of Biochemistry, 5 Science
Drive 2, National University of Singapore, Kent Ridge, Singapore 117545
| | - Koon Gee Neoh
- Department
of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Kent Ridge, Singapore 117576
| |
Collapse
|
17
|
Lee SY, Lee H, In I, Park SY. pH/redox/photo responsive polymeric micelle via boronate ester and disulfide bonds with spiropyran-based photochromic polymer for cell imaging and anticancer drug delivery. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.04.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Vandenhaute M, Schelfhout J, Van Vlierberghe S, Mendes E, Dubruel P. Cross-linkable, thermo-responsive Pluronic® building blocks for biomedical applications: Synthesis and physico-chemical evaluation. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Wu J, Zhao X, Wu D, Chu CC. Development of a biocompatible and biodegradable hybrid hydrogel platform for sustained release of ionic drugs. J Mater Chem B 2014; 2:6660-6668. [DOI: 10.1039/c4tb00576g] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed and characterized a new hydrogel platform for ionic drug delivery, incorporating cationic, anionic, and temperature responsive precursors. In vitro biological assays show that these polymers have excellent biocompatibility, controllable biodegradability, and sustained ionic drug release capability.
Collapse
Affiliation(s)
- Jun Wu
- Department of Biomedical Engineering
- Cornell University
- Ithaca, USA
| | - Xin Zhao
- Center for Biomedical Engineering
- Department of Medicine
- Brigham and Women's Hospital
- Harvard Medical School
- Cambridge, USA
| | - Dequn Wu
- Department of Fiber Science and Apparel Design
- Cornell University
- Ithaca, USA
| | - Chih-Chang Chu
- Department of Biomedical Engineering
- Cornell University
- Ithaca, USA
- Department of Fiber Science and Apparel Design
- Cornell University
| |
Collapse
|
20
|
Calejo MT, Sande SA, Nyström B. Thermoresponsive polymers as gene and drug delivery vectors: architecture and mechanism of action. Expert Opin Drug Deliv 2013; 10:1669-86. [DOI: 10.1517/17425247.2013.846906] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Rondeau E, Cooper-White JJ. Formation of multilayered biopolymer microcapsules and microparticles in a multiphase microfluidic flow. BIOMICROFLUIDICS 2012; 6:24125-2412516. [PMID: 22712036 PMCID: PMC3371073 DOI: 10.1063/1.4722296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/11/2012] [Indexed: 05/26/2023]
Abstract
This paper reports the development of a scalable continuous microfluidic-based method for the preparation of multilayered biopolymer microcapsules and microparticles, with a size range of 1 to 100 μm, in a single-layered polydimethylsiloxane-based device. This new approach has been utilised to produce polyethylene oxide (PEO)-based microparticles, layered with subsequent stage wise coatings of polylactide-based block copolymers and polyvinylpyrrolidone. The production process was shown to allow for on-chip encapsulation of protein and vitamin molecules in the biopolymer micro particles, without any further handling after collection from the device. We have studied the release profiles in the case of model molecules of distinctive molecular weights, namely, vitronectin, horse radish peroxidase, and vitamin B(12). We compared the release properties of the microparticles to those from macro-gels of the same materials prepared off-chip. The results indicated that the microparticles have definitively different molecular weight cut-off characteristics, likely due to a denser microstructure within the microparticles compared to the bulk hydrogels. This difference suggests that significant benefits may exist in the use of this method to produce layered biopolymer microparticles in achieving improved controlled release and encapsulation.
Collapse
|
22
|
Huynh CT, Nguyen MK, Jeong IK, Kim SW, Lee DS. Synthesis, Characteristics and Potential Application of Poly(β-Amino Ester Urethane)-Based Multiblock Co-Polymers as an Injectable, Biodegradable and pH/Temperature-Sensitive Hydrogel System. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1091-106. [DOI: 10.1163/092050611x575423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Cong Truc Huynh
- a Theranostic Macromolecules Research Center, Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Minh Khanh Nguyen
- b Theranostic Macromolecules Research Center, Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea; Department of Biomedical Engineering, Case Western Reverse University, Cleveland, OH 44106, USA
| | - In Ki Jeong
- c Theranostic Macromolecules Research Center, Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Sung Wan Kim
- d Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Doo Sung Lee
- e Theranostic Macromolecules Research Center, Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea.
| |
Collapse
|
23
|
Zhang H, Ding J. Frequency- and Temperature-Dependent Rheological Properties of an Amphiphilic Block Co-polymer in Water and Including Cell-Culture Media. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:253-69. [DOI: 10.1163/156856209x415747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Huan Zhang
- a Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, P. R. China
| | - Jiandong Ding
- b Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, P. R. China;,
| |
Collapse
|
24
|
Lee SY, Tae G, Kim YH. Accelerated Micellization and Aggregation of Pluronic Micelles by Interaction with Heparin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:727-39. [DOI: 10.1163/156856209x436447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Seung-Young Lee
- a Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, South Korea; Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, South Korea
| | - Giyoong Tae
- b Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, South Korea; Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, South Korea.
| | - Young Ha Kim
- c Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, South Korea; Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, South Korea
| |
Collapse
|
25
|
Yoo HS. Photo-cross-linkable and thermo-responsive hydrogels containing chitosan and Pluronic for sustained release of human growth hormone (hGH). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 18:1429-41. [DOI: 10.1163/156856207782246803] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hyuk Sang Yoo
- a Department of Biomaterials Engineering, School of Bioscience and Biotechnology Kangwon National University, Hyoja-2-dong, Chuncheon 200-701, South Korea
| |
Collapse
|
26
|
Bae KH, Ha YJ, Kim C, Lee KR, Park TG. Pluronic/chitosan shell cross-linked nanocapsules encapsulating magnetic nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 19:1571-83. [DOI: 10.1163/156856208786440451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ki Hyun Bae
- a Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Young Jin Ha
- b Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Chunsoo Kim
- c Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Kyu-Ri Lee
- d Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Tae Gwan Park
- e Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| |
Collapse
|
27
|
In Vivo study of a blended hydrogel composed of pluronic F-127-alginate-hyaluronic acid for its cell injection application. Tissue Eng Regen Med 2012. [DOI: 10.1007/s13770-012-0001-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
28
|
Lippens E, Swennen I, Gironès J, Declercq H, Vertenten G, Vlaminck L, Gasthuys F, Schacht E, Cornelissen R. Cell survival and proliferation after encapsulation in a chemically modified Pluronic(R) F127 hydrogel. J Biomater Appl 2011; 27:828-39. [PMID: 22090430 DOI: 10.1177/0885328211427774] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pluronic® F127 is a biocompatible, injectable, and thermoresponsive polymer with promising biomedical applications. In this study, a chemically modified form, i.e., Pluronic ALA-L with tailored degradation rate, was tested as an encapsulation vehicle for osteoblastic cells. UV cross-linking of the modified polymer results in a stable hydrogel with a slower degradation rate. Toxicological screening showed no adverse effects of the modified Pluronic ALA-L on the cell viability. Moreover, high viability of embedded cells in the cross-linked Pluronic ALA-L was observed with life/death fluorescent staining during a 7-day-culture period. Cells were also cultured on macroporous, cross-linked gelatin microbeads, called CultiSpher-S® carriers, and encapsulated into the modified cross-linked hydrogel. Also, in this situation, good cell proliferation and migration could be observed in vitro. Preliminary in vivo tests have shown the formation of new bone starting from the injected pre-loaded CultiSpher-S® carriers.
Collapse
Affiliation(s)
- Evi Lippens
- Department of Basic Medical Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Huynh CT, Nguyen MK, Lee DS. Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications. Macromolecules 2011. [DOI: 10.1021/ma201261m] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Cong Truc Huynh
- Theranostic Macromolecules Research Center, Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Minh Khanh Nguyen
- Theranostic Macromolecules Research Center, Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
- Department of Biomedical Engineering, Case Western Reverse University, Cleveland, Ohio 44106, United States
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center, Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| |
Collapse
|
30
|
Jayasuriya AC, Bhat A. Optimization of scaled-up chitosan microparticles for bone regeneration. Biomed Mater 2009; 4:055006. [PMID: 19779252 DOI: 10.1088/1748-6041/4/5/055006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to scale-up and optimize the chitosan (CS) microparticles (MPs) from 1x batch (41-85 mg) to 4x batch (270-567 mg) to be used in bone regeneration. The MPs used in the present study were prepared by double emulsification technique using CS as a base material under physiologically friendly conditions throughout the process. Structural integrity of MPs was improved creating cross-links between amine groups in CS and phosphate groups in tripolyphosphate (TPP) which has been used as an ionic cross-linking agent. The cross-linking density was varied using different amounts of TPP to CS such as 0%, 8%, 32%, 64% and 110% (w/w). The CS MPs were approximately spherical in shape with a size of 30-50 microm according to scanning electron microscopy results. X-ray diffraction data revealed having TPP in the CS MPs. The evidence of ionic cross-links in the CS MPs was analyzed using Fourier Transform Infra Red. When we scaled-up the yield of MPs, we investigated that 64% TPP cross-linking density provided the best quality MPs. In addition, those MPs provided the yield from 75 mg to 310 mg when scaled up from 1x to 4x batch, respectively. The MPs developed have a great potential to be used as an injectable scaffold for bone regeneration including orthopedic and craniofacial applications using minimally invasive conditions compared with conventional three-dimensional scaffolds.
Collapse
|
31
|
Cho YI, Park S, Jeong SY, Yoo HS. In vivo and in vitro anti-cancer activity of thermo-sensitive and photo-crosslinkable doxorubicin hydrogels composed of chitosan–doxorubicin conjugates. Eur J Pharm Biopharm 2009; 73:59-65. [DOI: 10.1016/j.ejpb.2009.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 03/23/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
|
32
|
Goel NK, Kumar V, Bhardwaj YK, Chaudhari CV, Dubey KA, Sabharwal S. Swelling response of radiation synthesized 2-hydroxyethylmethacrylate-co-[2-(methacryloyloxy)ethyl] trimethylammonium chloride hydrogels under various in vitro conditions. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2009; 20:785-805. [PMID: 19323890 DOI: 10.1163/156856209x426916] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High-energy (60)Co gamma radiation has been used to synthesize 2-hydroxyethylmethacrylate-co-[2-(methacryloyloxy)ethyl]trimethylammonium chloride (HEMA-co-MAETC) polyelectrolyte hydrogels. HEMA-co-MAETC co-polymer gels were characterized and investigated for swelling behaviour in different swelling conditions. Fourier transformed infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) techniques were used to characterize the co-polymer gels. Swelling extent of the gels was found to be a linear function of MAETC content in the gels. The effect of ionic strength, temperature, pH, some solutes of biological importance like glucose, urea, and surfactants such as Triton-X and deoxycholic acid on swelling behavior have been reported. The swelling of gels at higher temperature enhanced the swelling rates but not the swelling extent. HEMA-co-MAETC hydrogel exhibited an excellent responsive characteristic to the ionic strength of the swelling medium. It was found that the swelling of the co-polymer gel at 60 degrees C reduced the swelling-deswelling cycle time by approx. 30% without altering the swelling extent. The gels were also investigated for their swelling in aqueous solutions of anionic dyes, acid blue 25 (AB25), acid blue (AB74) and acid yellow 99 (AY99), and were found to be suitable for dye uptake applications.
Collapse
Affiliation(s)
- N K Goel
- Radiation Technology Development Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | | | | | | | | | | |
Collapse
|
33
|
Gelation of charged bio-nanocompartments induced by associative and non-associative polysaccharides. Colloids Surf B Biointerfaces 2008; 66:134-40. [DOI: 10.1016/j.colsurfb.2008.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/30/2008] [Accepted: 06/09/2008] [Indexed: 11/22/2022]
|
34
|
Niu G, Zhang H, Song L, Cui X, Cao H, Zheng Y, Zhu S, Yang Z, Yang H. Thiol/Acrylate-Modified PEO-PPO-PEO Triblocks Used as Reactive and Thermosensitive Copolymers. Biomacromolecules 2008; 9:2621-8. [DOI: 10.1021/bm800573e] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guoguang Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, China
| | - Hongbin Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, China
| | - Li Song
- School of Materials Science and Engineering, University of Science and Technology Beijing, China
| | - Xiaopeng Cui
- School of Materials Science and Engineering, University of Science and Technology Beijing, China
| | - Hui Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, China
| | - Siquan Zhu
- School of Materials Science and Engineering, University of Science and Technology Beijing, China
| | - Zhou Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, China
| | - Huai Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, China
| |
Collapse
|
35
|
Mawad D, Foster JL, Lauto A. Drug-delivery study and estimation of polymer–solvent interaction parameter for bisacrylate ester-modified Pluronic hydrogels. Int J Pharm 2008; 360:231-5. [DOI: 10.1016/j.ijpharm.2008.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/14/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
|
36
|
Rondeau E, Cooper-White JJ. Biopolymer microparticle and nanoparticle formation within a microfluidic device. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:6937-45. [PMID: 18510374 DOI: 10.1021/la703339u] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper reports a novel microfluidic method for the production of cross-linked alginate microparticles and nanoparticles. We describe a continuous process relying on both thermodynamic and hydrodynamic factors to form microdroplets. A rapid cross-linking reaction thereafter allows solidification of the polymer droplets either within the microfluidic device or "off-chip" to form alginate micro- and nanoparticles. Monodisperse droplets are generated by extruding an aqueous alginate solution using an axisymmetric flow-focusing design. As they flow downstream in the channel, due to water and the continuous phase being partially miscible, the water diffuses very slowly out of the polymeric droplets into the transport fluid, which causes the shrinkage of the drops and the condensation of the polymer phase. The resulting size of the solid particles depends on the polymer concentration and the ensuing balance between the kinetics of the cross-linking reaction and the volume loss due to solvent diffusion. This work details both a single-step microfluidic technique for the formation of alginate microparticles of sizes ranging from 1 to 50 microm via near-equilibrium solvent diffusion within a microfluidic device and thereafter a two-step method, which was shown to generate biopolymer nanoparticles of sizes ranging from 10 to 300 nm. These novel methodologies are extremely flexible and can be extended to the preparation of micro- and nanoparticles from a wide range of single or mixed synthetic and biologically derived polymers.
Collapse
Affiliation(s)
- Elisabeth Rondeau
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia
| | | |
Collapse
|
37
|
Lee SY, Tae G, Kim YH. Thermal gellation and photo-polymerization of di-acrylated Pluronic F 127. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2008; 18:1335-53. [PMID: 17939890 DOI: 10.1163/156856207782177855] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thermal gellation and photo-cross-linking of di-acrylated Pluronic PF 127 (DA-PF 127) were characterized. First, thermo-hysteresis of Pluronic F 127 (PF 127) solution was characterized. Upon heating, thermal gellation was observed at higher temperature with faster heating rate, whereas upon cooling, the re-melting was rather insensitive to cooling rate. Thus, the net thermo-hysteresis effect was more enhanced by increasing heating rate and was more evident at lower concentrations of PF 127. The hysteresis behavior was not affected at all by the presence of acrylated end-groups of di-acrylated DA-PF 127. Next, photo-polymerization of DA-PF 127 was compared with that of non-thermo-sensitive, di-acrylated PEG (DA-PEG). The micellar nature of DA-PF 127 resulted in the beneficial effect on photo-cross-linking reaction. DA-PF 127 showed faster and more effective cross-linking reaction than DA-PEG, characterized by rheometry and FT-IR. Also, by controlling temperature and concentration, morphology of the cross-linked DA-PF 127 hydrogels was varied more significantly than that of DA-PEG hydrogels.
Collapse
Affiliation(s)
- Seung-Young Lee
- Research Center for Biomolecular Nanotechnology and Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712, South Korea
| | | | | |
Collapse
|
38
|
Yoon JJ, Chung HJ, Park TG. Photo-crosslinkable and biodegradable Pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor. J Biomed Mater Res A 2007; 83:597-605. [PMID: 17503533 DOI: 10.1002/jbm.a.31271] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Photo-crosslinkable and biodegradable Pluronic/heparin composite hydrogels were fabricated for local and sustained delivery of basic fibroblast growth factor (bFGF) to induce angiogenesis. Terminally di-acrylated Pluronic F127 and vinyl group conjugated heparin were used as a mixed macromer precursor solution to prepare a photo-crosslinkable hydrogel. An aqueous solution containing the two macromers with different weight ratios was photo-crosslinked in the presence of bFGF to produce in situ formed bFGF loaded Pluronic/heparin hydrogels. Swelling, mass erosion, bFGF release characteristics of Pluronic/heparin hydrogels were thoroughly examined by varying the weight ratio of the two macromers. The incorporation of heparin in the composite hydrogel enabled the controlled release of bFGF over a one month period in a near zero order manner. The prolonged release of bFGF could be attributed to the specific interaction between bFGF and heparin in the hydrogel matrices. The released bFGF fraction from the degradable hydrogels also showed sufficient proliferation activity of human umbilical vein endothelial cell (HUVEC). When the Pluronic/heparin hydrogels were implanted in vivo, a significant extent of neo-vascularization was observed.
Collapse
Affiliation(s)
- Jun Jin Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon 305-701, South Korea
| | | | | |
Collapse
|
39
|
WU N, PAN C, ZHANG B, RAO Y, YU D. PREPARATION AND PROPERTIES OF A THERMO-SENSITIVE HYDROGEL BASED ON OXIDIZED SODIUM ALGINATE. ACTA POLYM SIN 2007. [DOI: 10.3724/sp.j.1105.2007.00497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Lee SY, Tae G. Formulation and in vitro characterization of an in situ gelable, photo-polymerizable Pluronic hydrogel suitable for injection. J Control Release 2007; 119:313-9. [PMID: 17490772 DOI: 10.1016/j.jconrel.2007.03.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 03/03/2007] [Accepted: 03/07/2007] [Indexed: 11/16/2022]
Abstract
Utilizing the existence of a sufficiently long induction period during photo-polymerization, defined as the time required to initiate macroscopic gelation after UV irradiation, we propose a new injection method of making a photo-polymerized hydrogel made of thermo-sensitive di-acrylated Pluronic F 127 (DA-PF 127). First, the photo-polymerization of DA-PF 127 solution at the molecular level is initiated by UV irradiation, and this solution is injected into a target site by macroscopic gelation before it becomes viscous. This method can overcome the problems of the existing methods to make an injectable and stable hydrogel by photo-polymerization, reducing the potential damage to normal tissue around the injection site due to direct UV exposure, and the requirement of special equipment for UV crosslinking after injection. By controlling photo-polymerization variables, we found the condition for making an injectable system, where the induction time is equal to or longer than the UV irradiation time. The feasibility of the proposed method was demonstrated in vitro, and the enhanced stability of the produced hydrogels by photo-polymerization was verified. We also characterized the cytotoxicity of the present method using cell cultures and cell encapsulation with the present method, and found minimal cytotoxicity.
Collapse
Affiliation(s)
- Seung-Young Lee
- Research Center for Biomolecular Nanotechnology and Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea
| | | |
Collapse
|
41
|
Park SY, Lee Y, Bae KH, Ahn CH, Park TG. Temperature/pH-Sensitive Hydrogels Prepared from Pluronic Copolymers End-Capped with Carboxylic Acid Groups via an Oligolactide Spacer. Macromol Rapid Commun 2007. [DOI: 10.1002/marc.200600914] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Chun KW, Lee JB, Kim SH, Park TG. Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels. Biomaterials 2005; 26:3319-26. [PMID: 15603827 DOI: 10.1016/j.biomaterials.2004.07.055] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 07/30/2004] [Indexed: 11/19/2022]
Abstract
Chemically cross-linked hydrogels composed of Pluronic, water-soluble tri-block copolymers of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), were synthesized by a photo-polymerization method to achieve controlled DNA release. Pluronic F127 was di-acrylated to form a macromer and cross-linked to form a hydrogel structure in the presence and absence of vinyl group-modified hyaluronic acid (HA). UV irradiation time and the presence of the vinyl group-modified HA affected the mechanical property of Pluronic hydrogels to a great extent. Swelling ratio, degradation, and rheological behaviors of Pluronic hydrogels were investigated. When plasmid DNA was loaded in the hydrogels for sustained delivery, various release profiles were attained by varying UV irradiation time and modified HA amounts. Entrapped DNA was gradually damaged with increasing the UV exposure time as evidenced by decreasing the transfection efficiency. The DNA fractions released from the HA/Pluronic hydrogels, however, exhibited considerable transfection efficiencies commensurate with the UV exposure time, suggesting that they were not chemically degraded during the release period and substantially maintained functional gene expression activities despite the UV irradiation.
Collapse
Affiliation(s)
- Ki Woo Chun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | | | | | | |
Collapse
|