1
|
Haririan Y, Asefnejad A. Biopolymer hydrogels and synergistic blends for tailored wound healing. Int J Biol Macromol 2024; 279:135519. [PMID: 39260639 DOI: 10.1016/j.ijbiomac.2024.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Biopolymers have a transformative role in wound repair due to their biocompatibility, ability to stimulate collagen production, and controlled drug and growth factor delivery. This article delves into the biological parameters critical to wound healing emphasizing how combinations of hydrogels with reparative properties can be strategically designed to create matrices that stimulate targeted cellular responses at the wound site to facilitate tissue repair and recovery. Beyond a detailed examination of various biopolymer types and their functionalities in wound dressings acknowledging that the optimal choice depends on the specific wound type and application, this evaluation provides concepts for developing synergistic biopolymer blends to create next-generation dressings with enhanced efficiencies. Furthermore, the incorporation of therapeutic agents such as medications and wound healing accelerators into dressings to enhance their efficacy is examined. These agents often possess desirable properties such as antibacterial activity, antioxidant effects, and the ability to promote collagen synthesis and tissue regeneration. Finally, recent advancements in conductive hydrogels are explored, highlighting their capabilities in treatment and real-time wound monitoring. This comprehensive resource emphasizes the importance of optimizing ingredient efficiency besides assisting researchers in selecting suitable materials for personalized wound dressings, ultimately leading to more sophisticated and effective wound management strategies.
Collapse
Affiliation(s)
- Yasamin Haririan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Grabska-Zielińska S. Cross-Linking Agents in Three-Component Materials Dedicated to Biomedical Applications: A Review. Polymers (Basel) 2024; 16:2679. [PMID: 39339142 PMCID: PMC11435819 DOI: 10.3390/polym16182679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
In biomaterials research, using one or two components to prepare materials is common. However, there is a growing interest in developing materials composed of three components, as these can offer enhanced physicochemical properties compared to those consisting of one or two components. The introduction of a third component can significantly improve the mechanical strength, biocompatibility, and functionality of the resulting materials. Cross-linking is often employed to further enhance these properties, with chemical cross-linking agents being the most widely used method. This article provides an overview of the chemical agents utilized in the cross-linking of three-component biomaterials. The literature review focused on cases where the material was composed of three components and a chemical substance was employed as the cross-linking agent. The most commonly used cross-linking agents identified in the literature include glyoxal, glutaraldehyde, dialdehyde starch, dialdehyde chitosan, and the EDC/NHS mixture. Additionally, the review briefly discusses materials cross-linked with the MES/EDC mixture, caffeic acid, tannic acid, and genipin. Through a critical analysis of current research, this work aims to guide the development of more effective and safer biopolymeric materials tailored for biomedical applications, highlighting potential areas for further investigation and optimization.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
3
|
Boraldi F, Lofaro FD, Bonacorsi S, Mazzilli A, Garcia-Fernandez M, Quaglino D. The Role of Fibroblasts in Skin Homeostasis and Repair. Biomedicines 2024; 12:1586. [PMID: 39062158 PMCID: PMC11274439 DOI: 10.3390/biomedicines12071586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Fibroblasts are typical mesenchymal cells widely distributed throughout the human body where they (1) synthesise and maintain the extracellular matrix, ensuring the structural role of soft connective tissues; (2) secrete cytokines and growth factors; (3) communicate with each other and with other cell types, acting as signalling source for stem cell niches; and (4) are involved in tissue remodelling, wound healing, fibrosis, and cancer. This review focuses on the developmental heterogeneity of dermal fibroblasts, on their ability to sense changes in biomechanical properties of the surrounding extracellular matrix, and on their role in aging, in skin repair, in pathologic conditions and in tumour development. Moreover, we describe the use of fibroblasts in different models (e.g., in vivo animal models and in vitro systems from 2D to 6D cultures) for tissue bioengineering and the informative potential of high-throughput assays for the study of fibroblasts under different disease contexts for personalized healthcare and regenerative medicine applications.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Francesco Demetrio Lofaro
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Susanna Bonacorsi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Alessia Mazzilli
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Institute of Biomedical Investigation (IBIMA), University of Málaga, 29010 Málaga, Spain;
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| |
Collapse
|
4
|
Zhang B, Wang M, Tian H, Cai H, Wu S, Jiao S, Zhao J, Li Y, Zhou H, Guo W, Qu W. Functional hemostatic hydrogels: design based on procoagulant principles. J Mater Chem B 2024; 12:1706-1729. [PMID: 38288779 DOI: 10.1039/d3tb01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Uncontrolled hemorrhage results in various complications and is currently the leading cause of death in the general population. Traditional hemostatic methods have drawbacks that may lead to ineffective hemostasis and even the risk of secondary injury. Therefore, there is an urgent need for more effective hemostatic techniques. Polymeric hemostatic materials, particularly hydrogels, are ideal due to their biocompatibility, flexibility, absorption, and versatility. Functional hemostatic hydrogels can enhance hemostasis by creating physical circumstances conducive to hemostasis or by directly interfering with the physiological processes of hemostasis. The procoagulant principles include increasing the concentration of localized hemostatic substances or establishing a physical barrier at the physical level and intervention in blood cells or the coagulation cascade at the physiological level. Moreover, synergistic hemostasis can combine these functions. However, some hydrogels are ineffective in promoting hemostasis or have a limited application scope. These defects have impeded the advancement of hemostatic hydrogels. To provide inspiration and resources for new designs, this review provides an overview of the procoagulant principles of hemostatic hydrogels. We also discuss the challenges in developing effective hemostatic hydrogels and provide viewpoints.
Collapse
Affiliation(s)
- Boxiang Zhang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Min Wang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, P. R. China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| |
Collapse
|
5
|
Al-Hilifi SA, Al-Ali RM, Dinh LNM, Yao Y, Agarwal V. Development of hyaluronic acid based polysaccharide-protein composite edible coatings for preservation of strawberry fruit. Int J Biol Macromol 2024; 259:128932. [PMID: 38143069 DOI: 10.1016/j.ijbiomac.2023.128932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
With the growing demand for extending the shelf-life of perishable goods such as fruits and vegetables, there is continued interest towards the development of edible coatings derived from natural sources. To avoid rapid dissolution, water insoluble polysaccharide such as chitosan has been widely explored. In this work, we developed robust hyaluronic acid-based edible polysaccharide-protein coatings by combining it (hyaluronic acid) with chitosan and gelatin to introduce additional antioxidant properties. This work is the first example of using hyaluronic acid in edible coatings for fruit preservation. The effect of developed edible composite coatings on the quality of coated strawberries was investigated over a 15 day storage period with 3-day examination intervals. The obtained results revealed hyaluronic acid dose-dependent improvement in intrinsic properties of coated strawberries including weight loss, pH, titratable acidity (TA) and total solids content (TSS). Furthermore, the inclusion of hyaluronic acid significantly enhanced the antioxidant properties of developed edible coatings as measured using total phenolic content, change in ascorbic acid content and DPPH assay prolonging the shelf-life of coated strawberries.
Collapse
Affiliation(s)
- Sawsan A Al-Hilifi
- Department of Food Science, College of Agriculture, University of Basrah, Iraq.
| | - Rawdah M Al-Ali
- Department of Food Science, College of Agriculture, University of Basrah, Iraq
| | - Le N M Dinh
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yin Yao
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023; 253:127331. [PMID: 37820901 DOI: 10.1016/j.ijbiomac.2023.127331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Polysaccharides originating from marine sources have been studied as potential material for use in wound dressings because of their desirable characteristics of biocompatibility, biodegradability, and low toxicity. Marine-derived polysaccharides used as wound dressing, provide several benefits such as promoting wound healing by providing a moist environment that facilitates cell migration and proliferation. They can also act as a barrier against external contaminants and provide a protective layer to prevent further damage to the wound. Research studies have shown that marine-derived polysaccharides can be used to develop different types of wound dressings such as hydrogels, films, and fibres. These dressings can be personalised to meet specific requirements based on the type and severity of the wound. For instance, hydrogels can be used for deep wounds to provide a moist environment, while films can be used for superficial wounds to provide a protective barrier. Additionally, these polysaccharides can be modified to improve their properties, such as enhancing their mechanical strength or increasing their ability to release bioactive molecules that can promote wound healing. Overall, marine-derived polysaccharides show great promise for developing effective and safe wound dressings for various wound types.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201313, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
7
|
Fabrication of Fibrin/Polyvinyl Alcohol Scaffolds for Skin Tissue Engineering via Emulsion Templating. Polymers (Basel) 2023; 15:polym15051151. [PMID: 36904392 PMCID: PMC10006947 DOI: 10.3390/polym15051151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
In the search for a novel and scalable skin scaffold for wound healing and tissue regeneration, we fabricated a class of fibrin/polyvinyl alcohol (PVA) scaffolds using an emulsion templating method. The fibrin/PVA scaffolds were formed by enzymatic coagulation of fibrinogen with thrombin in the presence of PVA as a bulking agent and an emulsion phase as the porogen, with glutaraldehyde as the cross-linking agent. After freeze drying, the scaffolds were characterized and evaluated for biocompatibility and efficacy of dermal reconstruction. SEM analysis showed that the formed scaffolds had interconnected porous structures (average pore size e was around 330 µm) and preserved the nano-scale fibrous architecture of the fibrin. Mechanical testing showed that the scaffolds' ultimate tensile strength was around 0.12 MPa with an elongation of around 50%. The proteolytic degradation of scaffolds could be controlled over a wide range by varying the type or degree of cross-linking and by fibrin/PVA composition. Assessment of cytocompatibility by human mesenchymal stem cell (MSC) proliferation assays shows that MSC can attach, penetrate, and proliferate into the fibrin/PVA scaffolds with an elongated and stretched morphology. The efficacy of scaffolds for tissue reconstruction was evaluated in a murine full-thickness skin excision defect model. The scaffolds were integrated and resorbed without inflammatory infiltration and, compared to control wounds, promoted deeper neodermal formation, greater collagen fiber deposition, facilitated angiogenesis, and significantly accelerated wound healing and epithelial closure. The experimental data showed that the fabricated fibrin/PVA scaffolds are promising for skin repair and skin tissue engineering.
Collapse
|
8
|
Szulc M, Lewandowska K. Biomaterials Based on Chitosan and Its Derivatives and Their Potential in Tissue Engineering and Other Biomedical Applications-A Review. Molecules 2022; 28:molecules28010247. [PMID: 36615441 PMCID: PMC9821994 DOI: 10.3390/molecules28010247] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
In the times of dynamically developing regenerative medicine, more and more attention is focused on the use of natural polymers. This is due to their high biocompatibility and biodegradability without the production of toxic compounds, which means that they do not hurt humans and the natural environment. Chitosan and its derivatives are polymers made most often from the shells of crustaceans and are biodegradable and biocompatible. Some of them have antibacterial or metal-chelating properties. This review article presents the development of biomaterials based on chitosan and its derivatives used in regenerative medicine, such as a dressing or graft of soft tissues or bones. Various examples of preparations based on chitosan and its derivatives in the form of gels, films, and 3D structures and crosslinking products with another polymer are discussed herein. This article summarizes the latest advances in medicine with the use of biomaterials based on chitosan and its derivatives and provides perspectives on future research activities.
Collapse
Affiliation(s)
- Marta Szulc
- Correspondence: (M.S.); (K.L.); Tel.: +48-56-6114551 (M.S. & K.L.)
| | | |
Collapse
|
9
|
Preparation and Characterization of Nanofibrous Membranes Electro-Spun from Blended Poly(l-lactide-co-ε-caprolactone) and Recombinant Spider Silk Protein as Potential Skin Regeneration Scaffold. Int J Mol Sci 2022; 23:ijms232214055. [PMID: 36430534 PMCID: PMC9698895 DOI: 10.3390/ijms232214055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Biomaterial scaffolding serves as an important strategy in skin tissue engineering. In this research, recombinant spider silk protein (RSSP) and poly(L-lactide-co-ε-caprolactone) (PLCL) were blended in different ratios to fabricate nanofibrous membranes as potential skin regeneration scaffolds with an electro-spinning process. Scanning electron microscopy (SEM), water contact angles measurement, Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), tensile mechanical tests and thermo-gravimetric analysis (TGA) were carried out to characterize the nanofibrous membranes. The results showed that the blending of RSSP greatly decreased the nanofibers' average diameter, enhanced the hydrophilicity, changed the microstructure and thermal properties, and could enable tailored mechanical properties of the nanofibrous membranes. Among the blended membranes, the PLCL/RSSP (75/25) membrane was chosen for further investigation on biocompatibility. The results of hemolysis assays and for proliferation of human foreskin fibroblast cells (hFFCs) confirmed the membranes potential use as skin-regeneration scaffolds. Subsequent culture of mouse embryonic fibroblast cells (NIH-3T3) demonstrated the feasibility of the blended membranes as a human epidermal growth factor (hEGF) delivery matrix. The PLCL/RSSP (75/25) membrane possessed good properties comparable to those of human skin with high biocompatibility and the ability of hEGF delivery. Further studies can be carried out on such membranes with chemical or genetic modifications to make better scaffolds for skin regeneration.
Collapse
|
10
|
Alfaro S, Acuña V, Ceriani R, Cavieres MF, Weinstein-Oppenheimer CR, Campos-Estrada C. Involvement of Inflammation and Its Resolution in Disease and Therapeutics. Int J Mol Sci 2022; 23:ijms231810719. [PMID: 36142625 PMCID: PMC9505300 DOI: 10.3390/ijms231810719] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022] Open
Abstract
Inflammation plays a critical role in the response to and survival from injuries and/or infections. It occurs in two phases: initiation and resolution; however, when these events do not resolve and persist over time, the inflammatory response becomes chronic, prompting diseases that affect several systems and organs, such as the vasculature and the skin. Here, we reviewed inflammation that occurs in selected infectious and sterile pathologies. Thus, the immune processes induced by bacterial sepsis as well as T. cruzi and SARS-CoV-2 infections are shown. In addition, vaccine adjuvants as well as atherosclerosis are revised as examples of sterile-mediated inflammation. An example of the consequences of a lack of inflammation resolution is given through the revision of wound healing and chronic wounds. Then, we revised the resolution of the latter through advanced therapies represented by cell therapy and tissue engineering approaches, showing how they contribute to control chronic inflammation and therefore wound healing. Finally, new pharmacological insights into the management of chronic inflammation addressing the resolution of inflammation based on pro-resolving mediators, such as lipoxin, maresin, and resolvins, examining their biosynthesis, biological properties, and pharmacokinetic and pharmaceuticals limitations, are given. We conclude that resolution pharmacology and advanced therapies are promising tools to restore the inflammation homeostasis.
Collapse
Affiliation(s)
- Sebastián Alfaro
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
| | - Vania Acuña
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
| | - Ricardo Ceriani
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
| | - María Fernanda Cavieres
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
| | - Caroline Ruth Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Santa Marta 183, Valparaíso 1093, Chile
- Correspondence: (C.R.W.-O.); (C.C.-E.); Tel.: +56-32-2508419 (C.R.W.-O.); +56-32-2508140 (C.C.-E.)
| | - Carolina Campos-Estrada
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Santa Marta 183, Valparaíso 1093, Chile
- Correspondence: (C.R.W.-O.); (C.C.-E.); Tel.: +56-32-2508419 (C.R.W.-O.); +56-32-2508140 (C.C.-E.)
| |
Collapse
|
11
|
Luneva O, Olekhnovich R, Uspenskaya M. Bilayer Hydrogels for Wound Dressing and Tissue Engineering. Polymers (Basel) 2022; 14:polym14153135. [PMID: 35956650 PMCID: PMC9371176 DOI: 10.3390/polym14153135] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
A large number of different skin diseases such as hits, acute, and chronic wounds dictate the search for alternative and effective treatment options. The wound healing process requires a complex approach, the key step of which is the choice of a dressing with controlled properties. Hydrogel-based scaffolds can serve as a unique class of wound dressings. Presented on the commercial market, hydrogel wound dressings are not found among proposals for specific cases and have a number of disadvantages—toxicity, allergenicity, and mechanical instability. Bilayer dressings are attracting great attention, which can be combined with multifunctional properties, high criteria for an ideal wound dressing (antimicrobial properties, adhesion and hemostasis, anti-inflammatory and antioxidant effects), drug delivery, self-healing, stimulus manifestation, and conductivity, depending on the preparation and purpose. In addition, advances in stem cell biology and biomaterials have enabled the design of hydrogel materials for skin tissue engineering. To improve the heterogeneity of the cell environment, it is possible to use two-layer functional gradient hydrogels. This review summarizes the methods and application advantages of bilayer dressings in wound treatment and skin tissue regeneration. Bilayered hydrogels based on natural as well as synthetic polymers are presented. The results of the in vitro and in vivo experiments and drug release are also discussed.
Collapse
|
12
|
Advances in spray products for skin regeneration. Bioact Mater 2022; 16:187-203. [PMID: 35386328 PMCID: PMC8965724 DOI: 10.1016/j.bioactmat.2022.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
To date, skin wounds are still an issue for healthcare professionals. Although numerous approaches have been developed over the years for skin regeneration, recent advances in regenerative medicine offer very promising strategies for the fabrication of artificial skin substitutes, including 3D bioprinting, electrospinning or spraying, among others. In particular, skin sprays are an innovative technique still under clinical evaluation that show great potential for the delivery of cells and hydrogels to treat acute and chronic wounds. Skin sprays present significant advantages compared to conventional treatments for wound healing, such as the facility of application, the possibility to treat large wound areas, or the homogeneous distribution of the sprayed material. In this article, we review the latest advances in this technology, giving a detailed description of investigational and currently commercially available acellular and cellular skin spray products, used for a variety of diseases and applying different experimental materials. Moreover, as skin sprays products are subjected to different classifications, we also explain the regulatory pathways for their commercialization and include the main clinical trials for different skin diseases and their treatment conditions. Finally, we argue and suggest possible future trends for the biotechnology of skin sprays for a better use in clinical dermatology. Skin sprays represent a promising technique for wound healing applications. Skin sprays can deliver cells and hydrogels with great facility over large wounds. Many skin spray products have been studied, only a few have been commercialized. Numerous clinical trials study spray products for skin diseases like psoriasis. Improved spraying devices should be developed for different materials and cells.
Collapse
|
13
|
Wei C, Feng Y, Che D, Zhang J, Zhou X, Shi Y, Wang L. Biomaterials in skin tissue engineering. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1933977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chao Wei
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yihua Feng
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Dezhao Che
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jiahui Zhang
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xuan Zhou
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yanbin Shi
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Li Wang
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
14
|
Rajabnejadkeleshteri A, Basiri H, Mohseni SS, Farokhi M, Mehrizi AA, Moztarzadeh F. Preparation of microfluidic-based pectin microparticles loaded carbon dots conjugated with BMP-2 embedded in gelatin-elastin-hyaluronic acid hydrogel scaffold for bone tissue engineering application. Int J Biol Macromol 2021; 184:29-41. [PMID: 34048836 DOI: 10.1016/j.ijbiomac.2021.05.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
The controlled delivery of the bone morphogenetic protein-2 (BMP-2) with tracking ability would overcome most of the side effects linked to the burst release and uncontrolled delivery of this growth factor for bone regeneration. Herein, BMP-2-conjugated carbon dots (CDs) was used as noninvasive detection platforms to deliver BMP-2 for therapeutic applications where osteogenesis and bioimaging are both required. With this in mind, the present work aimed to develop a controlled BMP-2-CDs release system using composite scaffolds containing BMP-2-CDs loaded pectin microparticles, which had been optimized for bone regeneration. By using microfluidic approach, we encapsulated BMP-2-CDs in pectin microparticles with narrow size distribution and then incorporated into composite scaffolds composed of gelatin, elastin, and hyaluronic acid. The BMP-2-CDs was released from the composite scaffolds in a sustained fashion for up to 21 days exhibited a high controlled delivery capacity. When tested in vitro with MG-63 cells, these extraction mediums showed the intercellular uptake of BMP-2-CDs and enhanced biological properties and pro-osteogenic effect. By utilizing the pectin microparticles carrying BMP-2-CDs as promising bioimaging agents for growth factor delivery and by tuning the composition of the scaffolds, this platform has immense potential in the field of bone tissue regeneration.
Collapse
Affiliation(s)
- Alireza Rajabnejadkeleshteri
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | - Hamideh Basiri
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Seyed Sepehr Mohseni
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Abouei Mehrizi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
15
|
Ghosh T, Singh R, Nesamma AA, Jutur PP. Marine Polysaccharides: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
Advances in generation of three-dimensional skin equivalents: pre-clinical studies to clinical therapies. Cytotherapy 2020; 23:1-9. [PMID: 33189572 DOI: 10.1016/j.jcyt.2020.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
The inability of two-dimensional cell culture systems to adequately map the structure and function of complex organs like skin necessitates the development of three-dimensional (3D) skin models. A diverse range of 3D skin equivalents have been developed over the last few decades for studying complex properties of skin as well as for drug discovery and clinical applications for skin regeneration in chronic wounds, such as diabetic foot ulcers, where the normal mechanism of wound healing is compromised. These 3D skin substitutes also serve as a suitable alternative to animal models in industrial applications and fundamental research. With the emergence of tissue engineering, new scaffolds and matrices have been integrated into 3D cell culture systems, along with gene therapy approaches, to increase the efficacy of transplanted cells in skin regeneration. This review summarizes recent approaches to the development of skin equivalents as well as different models for studying skin diseases and properties and current therapeutic applications of skin substitutes.
Collapse
|
17
|
Biçen Ünlüer Ö, Emir Diltemiz S, Say MG, Hür D, Say R, Ersöz A. A powerful combination in designing polymeric scaffolds: 3D bioprinting and cryogelation. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1825083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Özlem Biçen Ünlüer
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| | - Sibel Emir Diltemiz
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| | | | - Deniz Hür
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| | - Rıdvan Say
- Bionkit Co. Ltd, Yunus Emre Campus, Eskişehir, Turkey
| | - Arzu Ersöz
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| |
Collapse
|
18
|
Bazmandeh AZ, Mirzaei E, Fadaie M, Shirian S, Ghasemi Y. Dual spinneret electrospun nanofibrous/gel structure of chitosan-gelatin/chitosan-hyaluronic acid as a wound dressing: In-vitro and in-vivo studies. Int J Biol Macromol 2020; 162:359-373. [PMID: 32574734 DOI: 10.1016/j.ijbiomac.2020.06.181] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 11/24/2022]
Abstract
Structural and compositional similarity to the natural extracellular matrix (ECM) is a main characteristic of an ideal scaffold for tissue regeneration. In order to resemble the fibrous/gel structure of skin ECM, a multicomponent scaffold was fabricated using biopolymers with structural similarity to ECM and wound healing properties i.e., chitosan (CS), gelatin (Gel) and hyaluronic acid (HA). The CS-Gel and CS-HA nanofibers were simultaneously electrospun on the collector through dual-electrospinning technique. The presence of polymers, possible interactions, and formation of polyelectrolyte complex were proven by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and thermogravimetric analysis (TGA). The noncomplex component of CS-HA fibers formed a gel state when the scaffold was exposed to the aqueous media, while the CS-Gel fibers reserved their fibrous structure, resulting in formation of fibrous/gel structure. The CS-Gel/CS-HA scaffold showed significantly higher cell proliferation (109%) in the first 24 h comparing with CS (90%) and CS-Gel (96%) scaffolds. Additionally, the initial cell adhesion improved by incorporation of HA. The in-vivo wound healing results in rat elucidated more wound healing capability of the CS-Gel/CS-HA scaffold in which new tissue with most similarity to the normal skin was formed.
Collapse
Affiliation(s)
- Abbas Zakeri Bazmandeh
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Milad Fadaie
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran; Shiraz Molecular Pathology Research Center, Dr Daneshbod Path Lab, Shiraz, Iran; Shefa Neuroscience Research Center, Tehran, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Dorr MM, Guignard R, Auger FA, Rochette PJ. The use of tissue-engineered skin to demonstrate the negative effect of CXCL5 on epidermal ultraviolet radiation-induced cyclobutane pyrimidine dimer repair efficiency. Br J Dermatol 2020; 184:123-132. [PMID: 32271940 DOI: 10.1111/bjd.19117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Ultraviolet radiation (UVR) is responsible for keratinocyte cancers through the induction of mutagenic cyclobutane pyrimidine dimers (CPDs). Many factors influence CPD repair in epidermal keratinocytes, and a better understanding of those factors might lead to prevention strategies against skin cancer. OBJECTIVES To evaluate the impact of dermal components on epidermal CPD repair efficiency and to investigate potential factors responsible for the dermal-epidermal crosstalk modulating UVR-induced DNA damage repair in keratinocytes. METHODS A model of self-assembled tissue-engineered skin containing human primary keratinocytes and fibroblasts was used in this study. RESULTS We showed that CPD repair in keratinocytes is positively influenced by the presence of a dermis. We investigated the secretome and found that the cytokine CXCL5 is virtually absent from the culture medium of reconstructed skin, compared with media from fibroblasts and keratinocytes alone. By modulating CXCL5 levels in culture media of keratinocytes, we have shown that CXCL5 is an inhibitor of CPD repair. CONCLUSIONS This work outlines the impact of the secreted dermal components on epidermal UVR-induced DNA damage repair and sheds light on a novel role of CXCL5 in CPD repair.
Collapse
Affiliation(s)
- M M Dorr
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada
| | - R Guignard
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada
| | - F A Auger
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada
| | - P J Rochette
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada.,Université Laval, Faculté de Médecine, Département d'Ophtalmologie, Université Laval, Québec, QC, Canada
| |
Collapse
|
20
|
Pahlevanzadeh F, Emadi R, Valiani A, Kharaziha M, Poursamar SA, Bakhsheshi-Rad HR, Ismail AF, RamaKrishna S, Berto F. Three-Dimensional Printing Constructs Based on the Chitosan for Tissue Regeneration: State of the Art, Developing Directions and Prospect Trends. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2663. [PMID: 32545256 PMCID: PMC7321644 DOI: 10.3390/ma13112663] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
Chitosan (CS) has gained particular attention in biomedical applications due to its biocompatibility, antibacterial feature, and biodegradability. Hence, many studies have focused on the manufacturing of CS films, scaffolds, particulate, and inks via different production methods. Nowadays, with the possibility of the precise adjustment of porosity size and shape, fiber size, suitable interconnectivity of pores, and creation of patient-specific constructs, 3D printing has overcome the limitations of many traditional manufacturing methods. Therefore, the fabrication of 3D printed CS scaffolds can lead to promising advances in tissue engineering and regenerative medicine. A review of additive manufacturing types, CS-based printed constructs, their usages as biomaterials, advantages, and drawbacks can open doors to optimize CS-based constructions for biomedical applications. The latest technological issues and upcoming capabilities of 3D printing with CS-based biopolymers for different applications are also discussed. This review article will act as a roadmap aiming to investigate chitosan as a new feedstock concerning various 3D printing approaches which may be employed in biomedical fields. In fact, the combination of 3D printing and CS-based biopolymers is extremely appealing particularly with regard to certain clinical purposes. Complications of 3D printing coupled with the challenges associated with materials should be recognized to help make this method feasible for wider clinical requirements. This strategy is currently gaining substantial attention in terms of several industrial biomedical products. In this review, the key 3D printing approaches along with revealing historical background are initially presented, and ultimately, the applications of different 3D printing techniques for fabricating chitosan constructs will be discussed. The recognition of essential complications and technical problems related to numerous 3D printing techniques and CS-based biopolymer choices according to clinical requirements is crucial. A comprehensive investigation will be required to encounter those challenges and to completely understand the possibilities of 3D printing in the foreseeable future.
Collapse
Affiliation(s)
- Farnoosh Pahlevanzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.P.); (R.E.); (M.K.)
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.P.); (R.E.); (M.K.)
| | - Ali Valiani
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.P.); (R.E.); (M.K.)
| | - S. Ali Poursamar
- Biomaterials, Nanotechnology, and Tissue Engineering Group, Advanced Medical Technology Department, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia;
| | - Seeram RamaKrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
21
|
Sundar G, Joseph J, C P, John A, Abraham A. Natural collagen bioscaffolds for skin tissue engineering strategies in burns: a critical review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gayathri Sundar
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
- Department of Biotechnology, CEPCI Laboratory and Research Institute, Kollam, India
| | - Josna Joseph
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| | - Prabhakumari C
- Department of Biotechnology, CEPCI Laboratory and Research Institute, Kollam, India
| | - Annie John
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| | - Annie Abraham
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
22
|
Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib M, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater 2020; 5:164-183. [PMID: 32083230 PMCID: PMC7016353 DOI: 10.1016/j.bioactmat.2020.01.012] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there have been increasingly rapid advances of using bioactive materials in tissue engineering applications. Bioactive materials constitute many different structures based upon ceramic, metallic or polymeric materials, and can elicit specific tissue responses. However, most of them are relatively brittle, stiff, and difficult to form into complex shapes. Hence, there has been a growing demand for preparing materials with tailored physical, biological, and mechanical properties, as well as predictable degradation behavior. Chitosan-based materials have been shown to be ideal bioactive materials due to their outstanding properties such as formability into different structures, and fabricability with a wide range of bioactive materials, in addition to their biocompatibility and biodegradability. This review highlights scientific findings concerning the use of innovative chitosan-based bioactive materials in the fields of tissue engineering, with an outlook into their future applications. It also covers latest developments in terms of constituents, fabrication technologies, structural, and bioactive properties of these materials that may represent an effective solution for tissue engineering materials, making them a realistic clinical alternative in the near future.
Collapse
Affiliation(s)
- Md. Minhajul Islam
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Shahruzzaman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shanta Biswas
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Nurus Sakib
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Taslim Ur Rashid
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
- Fiber and Polymer Science, North Carolina State University, Campus Box 7616, Raleigh, NC, 27695, United States
| |
Collapse
|
23
|
In-silico prediction of role of chitosan, chondroitin sulphate and agar in process of wound healing towards scaffold development. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Li P, Zhang A, Zhou S. One-component waterborne in vivo cross-linkable polysiloxane coatings for artificial skin. J Biomed Mater Res B Appl Biomater 2019; 108:1725-1737. [PMID: 31816168 DOI: 10.1002/jbm.b.34517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/02/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
Abstract
Polysiloxane-based artificial skins are able to emulate the mechanical and barrier performance of human skin. However, they are usually fabricated in vitro, restricting their diverse applications on human body. Herein, we presented one-component waterborne cross-linkable polysiloxane coatings prepared from emulsified vinyl dimethicone, emulsified hydrogen dimethicone, and Karstedt catalyst capsules that were first synthesized by solvent evaporation method. The coating had good storage stability and meanwhile could form an elastic film quickly through merging of silicone oil droplets and subsequent hydrosilylation reaction. It was found that the mass ratio of vinyl dimethicone emulsion/hydrogen dimethicone emulsion (V/H), and the dosage of Karstedt catalyst capsules (K/(V + H)) were critical to the curing time, morphology, and mechanical properties of the coatings. With appropriate values of V/H and K/(V + H), the polysiloxane film had the mechanical performance comparable to that from solvent-based one. The coating could be topically applied to human skin in vivo and in situ turned into an elastic, invisible thin film with good water resistance. In contrast to those reported polysiloxane materials, the one-component waterborne polysiloxane coating was nontoxic and convenient for in vivo application on human body, making it be a promising candidate as artificial skin in the fields of cosmetics, medical treatment, and E-skin.
Collapse
Affiliation(s)
- Ping Li
- Department of Materials Science, State Key Laboratory of Macromolecular Engineering, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai, China
| | - Ailing Zhang
- Department of Materials Science, State Key Laboratory of Macromolecular Engineering, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai, China
| | - Shuxue Zhou
- Department of Materials Science, State Key Laboratory of Macromolecular Engineering, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Mahanta AK, Patel DK, Maiti P. Nanohybrid Scaffold of Chitosan and Functionalized Graphene Oxide for Controlled Drug Delivery and Bone Regeneration. ACS Biomater Sci Eng 2019; 5:5139-5149. [PMID: 33455220 DOI: 10.1021/acsbiomaterials.9b00829] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nanohybrid scaffolds of chitosan have been designed for controlled drug delivery and bone regeneration. Sulfonated graphene oxide has been used to develop the nanohybrids. Nanohybrid scaffolds show highly hydrophilic character and greater mechanical strength as compared to pure chitosan. Nanohybrid scaffolds show an interconnected uniform porous network structure exhibiting sustained release kinetics of the antibacterial drug, tetracycline hydrochloride. Nanohybrids are found to be highly biocompatible in nature and are able to support and proliferate MG63 osteoblast cells and thereby induce bone tissue regeneration. The in-vivo bone healing study shows that the developed nanohybrid scaffolds have the potential to regenerate the bone faster without any side effects as compared to pure scaffolds. Hence, the developed nanohybrid scaffold has good potential as a controlled drug delivery vehicle and in bone tissue engineering for faster healing.
Collapse
Affiliation(s)
- Arun Kumar Mahanta
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Dinesh K Patel
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| |
Collapse
|
26
|
Kaur A, Midha S, Giri S, Mohanty S. Functional Skin Grafts: Where Biomaterials Meet Stem Cells. Stem Cells Int 2019; 2019:1286054. [PMID: 31354835 PMCID: PMC6636521 DOI: 10.1155/2019/1286054] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Skin tissue engineering has attained several clinical milestones making remarkable progress over the past decades. Skin is inhabited by a plethora of cells spatiotemporally arranged in a 3-dimensional (3D) matrix, creating a complex microenvironment of cell-matrix interactions. This complexity makes it difficult to mimic the native skin structure using conventional tissue engineering approaches. With the advent of newer fabrication strategies, the field is evolving rapidly. However, there is still a long way before an artificial skin substitute can fully mimic the functions and anatomical hierarchy of native human skin. The current focus of skin tissue engineers is primarily to develop a 3D construct that maintains the functionality of cultured cells in a guided manner over a period of time. While several natural and synthetic biopolymers have been translated, only partial clinical success is attained so far. Key challenges include the hierarchical complexity of skin anatomy; compositional mismatch in terms of material properties (stiffness, roughness, wettability) and degradation rate; biological complications like varied cell numbers, cell types, matrix gradients in each layer, varied immune responses, and varied methods of fabrication. In addition, with newer biomaterials being adopted for fabricating patient-specific skin substitutes, issues related to escalating processing costs, scalability, and stability of the constructs under in vivo conditions have raised some concerns. This review provides an overview of the field of skin regenerative medicine, existing clinical therapies, and limitations of the current techniques. We have further elaborated on the upcoming tissue engineering strategies that may serve as promising alternatives for generating functional skin substitutes, the pros and cons associated with each technique, and scope of their translational potential in the treatment of chronic skin ailments.
Collapse
Affiliation(s)
- Amtoj Kaur
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Swati Midha
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Shibashish Giri
- Department of Cell Techniques and Applied Stem Cell Biology, Centre for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, D-04103 Leipzig, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
27
|
Design of a biodegradable UV-irradiated gelatin-chitosan/nanocomposed membrane with osteogenic ability for application in bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:875-886. [DOI: 10.1016/j.msec.2019.01.135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
|
28
|
Rakhshaei R, Namazi H, Hamishehkar H, Kafil HS, Salehi R. In situ
synthesized chitosan–gelatin/ZnO nanocomposite scaffold with drug delivery properties: Higher antibacterial and lower cytotoxicity effects. J Appl Polym Sci 2019. [DOI: 10.1002/app.47590] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rasul Rakhshaei
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of ChemistryUniversity of Tabriz P.O. Box 51666, Tabriz Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of ChemistryUniversity of Tabriz P.O. Box 51666, Tabriz Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN)Tabriz University of Medical Science Tabriz Iran
| | - Hamed Hamishehkar
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
| | | | - Roya Salehi
- Stem Cell and Regenerative Medicine Institute, and School of Advanced Medical ScienceTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
29
|
Tamer TM, Collins MN, Valachová K, Hassan MA, Omer AM, Mohy-Eldin MS, Švík K, Jurčík R, Ondruška Ľ, Biró C, Albadarin AB, Šoltés L. MitoQ Loaded Chitosan-Hyaluronan Composite Membranes for Wound Healing. MATERIALS 2018; 11:ma11040569. [PMID: 29642447 PMCID: PMC5951453 DOI: 10.3390/ma11040569] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022]
Abstract
Two self-associating biopolymers, namely chitosan (Ch) and a high-molar-mass hyaluronan (HA), were used to prepare membranes with the aim to protect and to enhance the healing of injured skin. A mitochondrially-targeted antioxidant—MitoQ—was incorporated into the mixture of biopolymers prior to their self-association. These three-component membranes were evaluated in detail utilising surface roughness measurements, contact angle measurements, hemocompatibility, and thrombogenicity analyses. Furthermore, in vivo application of Ch/HA/MitoQ membranes was assessed on injured rabbit and rat skin utilizing histological methods. The results showed that the prepared thrombogenic Ch/HA/MitoQ membranes had higher roughness, which allowed for greater surface area for tissue membrane interaction during the healing processes, and lower cytotoxicity levels than controls. MitoQ-loaded composite membranes displayed superior healing properties in these animal models compared to control membranes.
Collapse
Affiliation(s)
- Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
- Laboratory of Bioorganic Chemistry of Drugs, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 84104 Bratislava, Slovakia.
| | - Maurice N Collins
- School of Engineering, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Katarina Valachová
- Laboratory of Bioorganic Chemistry of Drugs, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 84104 Bratislava, Slovakia.
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
- Chemistry Department, Faculty of Science, University of Jeddah, Osfan, P. O. Box: 80203, 21589 Jeddah, Saudi Arabia.
| | - Karol Švík
- Department of Toxicology and Laboratory Animals Breeding, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 91954 Dobra Voda 360, Slovakia.
| | - Rastislav Jurčík
- National Agricultural and Food Centre, Research Institute for Animal Production Nitra, Department of Small Farm Animals, 951 41 Lužianky, Slovakia.
| | - Ľubomír Ondruška
- National Agricultural and Food Centre, Research Institute for Animal Production Nitra, Department of Small Farm Animals, 951 41 Lužianky, Slovakia.
| | - Csaba Biró
- St. Elizabeth Cancer Institute Hospital, Department of Pathology, Bratislava, 84104, Slovakia.
| | - Ahmad B Albadarin
- Department of Chemical Sciences, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ladislav Šoltés
- Laboratory of Bioorganic Chemistry of Drugs, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 84104 Bratislava, Slovakia.
| |
Collapse
|
30
|
Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 2018; 110:97-109. [DOI: 10.1016/j.ijbiomac.2017.08.140] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 12/30/2022]
|
31
|
Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int J Biol Macromol 2018; 110:110-123. [DOI: 10.1016/j.ijbiomac.2018.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 12/31/2022]
|
32
|
Shi Y, Xing TL, Zhang HB, Yin RX, Yang SM, Wei J, Zhang WJ. Tyrosinase-doped bioink for 3D bioprinting of living skin constructs. ACTA ACUST UNITED AC 2018; 13:035008. [PMID: 29307874 DOI: 10.1088/1748-605x/aaa5b6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three-dimensional bioprinting is an emerging technology for fabricating living 3D constructs, and it has shown great promise in tissue engineering. Bioinks are scaffold materials mixed with cells used by 3D bioprinting to form a required cell-laden structure. In this paper, a novel bioink made of gelatin methacrylamide (GelMA) and collagen (Col) doped with tyrosinase (Ty) is presented for the 3D bioprinting of living skin tissues. Ty has the dual function of being an essential bioactive compound in the skin regeneration process and also as an enzyme to facilitate the crosslink of Col and GelMA. Further, enzyme crosslinking together with photocrosslinking can enhance the mechanical strength of the bioink. The experimental results show that the bioink is able to form stable 3D living constructs using the 3D bioprinting process. The cell culture shows that three major cell lines: human melanocytes (HEM), human keratinocytes (HaCat) and human dermal fibroblasts (HDF) exhibit high cell viabilities. The viability of these three cell lines is above 90%. The proliferation and scratching test show that Ty can enhance the proliferation of HEM, inhibit the growth and migration of HDF and not affect HaCat significantly. Animal tests show that the doped bioinks for 3D bioprinting can help form an epidermis and dermis, and thus have high potential as a skin bioink.
Collapse
Affiliation(s)
- Y Shi
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Sheikholeslam M, Wright MEE, Jeschke MG, Amini-Nik S. Biomaterials for Skin Substitutes. Adv Healthc Mater 2018; 7:10.1002/adhm.201700897. [PMID: 29271580 PMCID: PMC7863571 DOI: 10.1002/adhm.201700897] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Patients with extensive burns rely on the use of tissue engineered skin due to a lack of sufficient donor tissue, but it is a challenge to identify reliable and economical scaffold materials and donor cell sources for the generation of a functional skin substitute. The current review attempts to evaluate the performance of the wide range of biomaterials available for generating skin substitutes, including both natural biopolymers and synthetic polymers, in terms of tissue response and potential for use in the operating room. Natural biopolymers display an improved cell response, while synthetic polymers provide better control over chemical composition and mechanical properties. It is suggested that not one material meets all the requirements for a skin substitute. Rather, a composite scaffold fabricated from both natural and synthetic biomaterials may allow for the generation of skin substitutes that meet all clinical requirements including a tailored wound size and type, the degree of burn, the patient age, and the available preparation technique. This review aims to be a valuable directory for researchers in the field to find the optimal material or combination of materials based on their specific application.
Collapse
Affiliation(s)
- Mohammadali Sheikholeslam
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
| | - Meghan E E Wright
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
|
35
|
Gulati K, Meher MK, Poluri KM. Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regen Med 2017. [DOI: 10.2217/rme-2017-0012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Regeneration of tissue structure with the aid of bioactive polymer matrices/composites and scaffolds for respective applications is one of the emerging areas of biomedical engineering. Recent advances in conjugated glycosaminoglycan (GAG) hybrids using natural and synthetic polymers have opened new avenues for producing a wide variety of resorbable polymer matrices. These hybrid scaffolds are low-immunogenic, highly biocompatible and biodegradable with incredible mechanical and tensile properties. GAG-based resorbable polymeric matrices are being exploited in migration of stem cells, cartilage and bone replacement/regeneration and production of scaffolds for various tissue engineering applications. In the current review, we will discuss the role of GAG-based resorbable polymer matrices in the field of regenerative medicine.
Collapse
Affiliation(s)
- Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Mukesh Kumar Meher
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
36
|
Weinstein-Oppenheimer CR, Brown DI, Coloma R, Morales P, Reyna-Jeldes M, Díaz MJ, Sánchez E, Acevedo CA. Design of a hybrid biomaterial for tissue engineering: Biopolymer-scaffold integrated with an autologous hydrogel carrying mesenchymal stem-cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629085 DOI: 10.1016/j.msec.2017.05.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biologically active biomaterials as biopolymers and hydrogels have been used in medical applications providing favorable results in tissue engineering. In this research, a wound dressing device was designed by integration of an autologous clot hydrogel carrying mesenchymal stem-cells onto a biopolymeric scaffold. This hybrid biomaterial was tested in-vitro and in-vivo, and used in a human clinical case. The biopolymeric scaffold was made with gelatin, chitosan and hyaluronic acid, using a freeze-drying method. The scaffold was a porous material which was designed evaluating both physical properties (glass transition, melting temperature and pore size) and biological properties (cell viability and fibronectin expression). Two types of chitosan (120 and 300kDa) were used to manufacture the scaffold, being the high molecular weight the most biologically active and stable after sterilization with gamma irradiation (25kGy). A clot hydrogel was formulated with autologous plasma and calcium chloride, using an approach based on design of experiments. The optimum hydrogel was used to incorporate cells onto the porous scaffold, forming a wound dressing biomaterial. The wound dressing device was firstly tested in-vitro using human cells, and then, its biosecurity was evaluated in-vivo using a rabbit model. The in-vitro results showed high cell viability after one week (99.5%), high mitotic index (19.8%) and high fibronectin expression. The in-vivo application to rabbits showed adequate biodegradability capacity (between 1 and 2weeks), and the histological evaluation confirmed absence of rejection signs and reepithelization on the wound zone. Finally, the wound dressing biomaterial was used in a single human case to implant autologous cells on a skin surgery. The medical examination indicated high biocompatibility, partial biodegradation at one week, early regeneration capacity at 4weeks and absence of rejection signs.
Collapse
Affiliation(s)
| | - Donald I Brown
- Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso, Chile
| | - Rodrigo Coloma
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña 1093, Valparaíso, Chile; Hospital de Viña del Mar "Dr. Gustavo Fricke", Alvarez 1532, Viña del Mar, Chile
| | | | - Mauricio Reyna-Jeldes
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña 1093, Valparaíso, Chile
| | - María J Díaz
- Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso, Chile; Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Alcalde Sergio Prieto Nieto 452, Viña del Mar, Chile
| | - Elizabeth Sánchez
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
| | - Cristian A Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile; Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile; Centro Científico Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| |
Collapse
|
37
|
In- vitro and in -vivo degradation studies of freeze gelated porous chitosan composite scaffolds for tissue engineering applications. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2016.11.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Acevedo CA, Sánchez E, Díaz-Calderón P, Blaker JJ, Enrione J, Quero F. Synergistic effects of crosslinking and chitosan molecular weight on the microstructure, molecular mobility, thermal and sorption properties of porous chitosan/gelatin/hyaluronic acid scaffolds. J Appl Polym Sci 2017. [DOI: 10.1002/app.44772] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cristian A. Acevedo
- Departamento de Física; Universidad Técnica Federico Santa María; Avenida España 1680 Valparaíso Chile
- Centro de Biotecnología, Universidad Técnica Federico Santa María; Avenida España 1680 Valparaíso Chile
| | - Elizabeth Sánchez
- Centro de Biotecnología, Universidad Técnica Federico Santa María; Avenida España 1680 Valparaíso Chile
| | - Paulo Díaz-Calderón
- Biopolymer Research and Engineering Lab (BiopREL); Universidad de los Andes; Avenida Monseñor Álvaro del Portillo 12.455 Las Condes Santiago Chile
| | - Jonny J. Blaker
- Bio-Active Materials Group, School of Materials; The University of Manchester; Manchester, M13 9PL UK
| | - Javier Enrione
- Biopolymer Research and Engineering Lab (BiopREL); Universidad de los Andes; Avenida Monseñor Álvaro del Portillo 12.455 Las Condes Santiago Chile
| | - Franck Quero
- Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas; Universidad de Chile; Beauchef 851 Santiago Chile
| |
Collapse
|
39
|
Bhowmick A, Pramanik N, Mitra T, Gnanamani A, Das M, Kundu PP. Fabrication of porous magnetic nanocomposites for bone tissue engineering. NEW J CHEM 2017. [DOI: 10.1039/c6nj03358j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous superparamagnetic chitosan/polyethylene glycol/hydroxyapatite–Fe3O4 nanocomposites were developed for bone tissue engineering.
Collapse
Affiliation(s)
- Arundhati Bhowmick
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Nilkamal Pramanik
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Tapas Mitra
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Arumugam Gnanamani
- Microbiology Division
- CSIR-Central Leather Research Institute
- Chennai-600020
- India
| | - Manas Das
- Department of Chemical Engineering
- University of Calcutta
- Kolkata-700009
- India
| | - Patit Paban Kundu
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
- Department of Chemical Engineering
| |
Collapse
|
40
|
Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int J Biol Macromol 2016; 93:1479-1487. [DOI: 10.1016/j.ijbiomac.2016.02.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 02/07/2023]
|
41
|
Shirbin SJ, Karimi F, Chan NJA, Heath DE, Qiao GG. Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds. Biomacromolecules 2016; 17:2981-91. [DOI: 10.1021/acs.biomac.6b00817] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Steven J. Shirbin
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Fatemeh Karimi
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Daniel E. Heath
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Greg G. Qiao
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
42
|
Cai B, Zou Q, Zuo Y, Li L, Yang B, Li Y. Fabrication and cell viability of injectable n-HA/chitosan composite microspheres for bone tissue engineering. RSC Adv 2016. [DOI: 10.1039/c6ra06594e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The n-HA/CS microspheres exhibit good properties while supporting cell growth, thus acting as a promising injectable matrix for bone tissue engineering.
Collapse
Affiliation(s)
- Bin Cai
- Research Center for Nano-Biomaterial
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| | - Qin Zou
- Research Center for Nano-Biomaterial
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| | - Yi Zuo
- Research Center for Nano-Biomaterial
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| | - Limei Li
- Research Center for Nano-Biomaterial
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| | - Boyuan Yang
- Research Center for Nano-Biomaterial
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| | - Yubao Li
- Research Center for Nano-Biomaterial
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
43
|
Limbal Stem Cell Deficiency: Current Treatment Options and Emerging Therapies. Stem Cells Int 2015; 2016:9798374. [PMID: 26788074 PMCID: PMC4691643 DOI: 10.1155/2016/9798374] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/18/2015] [Indexed: 12/15/2022] Open
Abstract
Severe ocular surface disease can result in limbal stem cell deficiency (LSCD), a condition leading to decreased visual acuity, photophobia, and ocular pain. To restore the ocular surface in advanced stem cell deficient corneas, an autologous or allogenic limbal stem cell transplantation is performed. In recent years, the risk of secondary LSCD due to removal of large limbal grafts has been significantly reduced by the optimization of cultivated limbal epithelial transplantation (CLET). Despite the great successes of CLET, there still is room for improvement as overall success rate is 70% and visual acuity often remains suboptimal after successful transplantation. Simple limbal epithelial transplantation reports higher success rates but has not been performed in as many patients yet. This review focuses on limbal epithelial stem cells and the pathophysiology of LSCD. State-of-the-art therapeutic management of LSCD is described, and new and evolving techniques in ocular surface regeneration are being discussed, in particular, advantages and disadvantages of alternative cell scaffolds and cell sources for cell based ocular surface reconstruction.
Collapse
|
44
|
Chandika P, Ko SC, Oh GW, Heo SY, Nguyen VT, Jeon YJ, Lee B, Jang CH, Kim G, Park WS, Chang W, Choi IW, Jung WK. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application. Int J Biol Macromol 2015; 81:504-13. [DOI: 10.1016/j.ijbiomac.2015.08.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022]
|
45
|
Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration. Int J Biol Macromol 2015; 77:24-35. [DOI: 10.1016/j.ijbiomac.2015.02.050] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/15/2015] [Accepted: 02/25/2015] [Indexed: 11/23/2022]
|
46
|
Papuga AY, Lukash LL. Different types of biotechnological wound coverages created with the application of alive human cells. ACTA ACUST UNITED AC 2015. [DOI: 10.7124/bc.0008d1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. Ye. Papuga
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| | - L. L. Lukash
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| |
Collapse
|
47
|
Krishna AS, Radhakumary C, Sreenivasan K. Calcium ion modulates protein release from chitosan-hyaluronic acid poly electrolyte gel. POLYM ENG SCI 2015. [DOI: 10.1002/pen.24050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- A. Shanti Krishna
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology; Thiruvananthapuram Kerala 695012 India
| | - C. Radhakumary
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology; Thiruvananthapuram Kerala 695012 India
| | - K. Sreenivasan
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology; Thiruvananthapuram Kerala 695012 India
| |
Collapse
|
48
|
Somoza RA, Acevedo CA, Albornoz F, Luz-Crawford P, Carrión F, Young ME, Weinstein-Oppenheimer C. TGFβ3 secretion by three-dimensional cultures of human dental apical papilla mesenchymal stem cells. J Tissue Eng Regen Med 2015; 11:1045-1056. [PMID: 25690385 DOI: 10.1002/term.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 10/02/2014] [Accepted: 01/07/2015] [Indexed: 12/25/2022]
Abstract
Mesenchymal stem cells (MSCs) can be isolated from dental tissues, such as pulp and periodontal ligament; the dental apical papilla (DAP) is a less-studied MSC source. These dental-derived MSCs are of great interest because of their potential as an accessible source for cell-based therapies and tissue-engineering (TE) approaches. Much of the interest regarding MSCs relies on the trophic-mediated repair and regenerative effects observed when they are implanted. TGFβ3 is a key growth factor involved in tissue regeneration and scarless tissue repair. We hypothesized that human DAP-derived MSCs (hSCAPs) can produce and secrete TGFβ3 in response to micro-environmental cues. For this, we encapsulated hSCAPs in different types of matrix and evaluated TGFβ3 secretion. We found that dynamic changes of cell-matrix interactions and mechanical stress that cells sense during the transition from a monolayer culture (two-dimensional, 2D) towards a three-dimensional (3D) culture condition, rather than the different chemical composition of the scaffolds, may trigger the TGFβ3 secretion, while monolayer cultures showed almost 10-fold less secretion of TGFβ3. The study of these interactions is provided as a cornerstone in designing future strategies in TE and cell therapy that are more efficient and effective for repair/regeneration of damaged tissues. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rodrigo A Somoza
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Cristian A Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fernando Albornoz
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | - Flavio Carrión
- Laboratorio de Inmunología, Universidad de los Andes, Santiago, Chile
| | - Manuel E Young
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | |
Collapse
|
49
|
Bhowmick A, Saha A, Pramanik N, Banerjee S, Das M, Kundu PP. Novel magnetic antimicrobial nanocomposites for bone tissue engineering applications. RSC Adv 2015. [DOI: 10.1039/c5ra02413g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Here we have developed novel bone-like superparamagnetic nanocomposites for bone tissue engineering. These nanocomposites exhibited high water uptake ability, excellent mechanical properties, good antimicrobial activities and blood compatibility.
Collapse
Affiliation(s)
- Arundhati Bhowmick
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Arijit Saha
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Nilkamal Pramanik
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Subhash Banerjee
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Manas Das
- Department of Chemical Engineering
- University of Calcutta
- Kolkata-700009
- India
| | - Patit Paban Kundu
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
| |
Collapse
|
50
|
Bhowmick A, Pramanik N, Manna PJ, Mitra T, Raja Selvaraj TK, Gnanamani A, Das M, Kundu PP. Development of porous and antimicrobial CTS–PEG–HAP–ZnO nano-composites for bone tissue engineering. RSC Adv 2015. [DOI: 10.1039/c5ra16755h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have developed porous, antimicrobial, biodegradable, and pH and blood compatible CTS–PEG–HAP–ZnO nanocomposites having good mechanical properties and osteoblast cell proliferation abilities to mimic cancellous bone in bone tissue engineering.
Collapse
Affiliation(s)
- Arundhati Bhowmick
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Nilkamal Pramanik
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Piyali Jana Manna
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Tapas Mitra
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
| | | | - Arumugam Gnanamani
- Microbiology Division
- CSIR-Central Leather Research Institute
- Chennai-600020
- India
| | - Manas Das
- Department of Chemical Engineering
- University of Calcutta
- Kolkata-700009
- India
| | - Patit Paban Kundu
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
| |
Collapse
|