1
|
Takamuku S, Struckova B, Bancroft MJ, Gomi H, Haggard P, Kaski D. Inverse relation between motion perception and postural responses induced by motion of a touched object. Commun Biol 2024; 7:1395. [PMID: 39462096 PMCID: PMC11513030 DOI: 10.1038/s42003-024-07093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Self vs. external attribution of motions based on vestibular cues is suggested to underlie our coherent perception of object motion and self-motion. However, it remains unclear whether such attribution also underlies sensorimotor responses. Here, we examined this issue in the context of touch. We asked participants to lightly touch a moving object with their thumb while standing still on an unstable surface. We measured both the accuracy of judging the object motion direction and the postural response. If the attribution underlies both object-motion perception and posture control, sensitivity of posture to object motion should decrease with motion speed since high speed motion is unlikely to reflect self-motion. Furthermore, when motion perception is erroneous, there should be a corresponding increase in postural responses. Our results are consistent with these predictions and suggest that self-external attribution of somatosensory motion underlies both object motion perception and postural responses.
Collapse
Affiliation(s)
- Shinya Takamuku
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, 3-1 Wakamiya, Morinosato, Atsugishi, Kanagawa, Japan.
| | - Beata Struckova
- Institute of Cognitive Neuroscience, University College London, 17-18 Queen Square, London, UK
| | - Matthew J Bancroft
- SENSE Research Unit, Queen Square Institute of Neurology, University College London, 33 Queen Square, London, UK
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, 3-1 Wakamiya, Morinosato, Atsugishi, Kanagawa, Japan
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, 17-18 Queen Square, London, UK
| | - Diego Kaski
- SENSE Research Unit, Queen Square Institute of Neurology, University College London, 33 Queen Square, London, UK
| |
Collapse
|
2
|
Warchoł J, Tetych A, Tomaszewski R, Kowalczyk B, Olchowik G. Virtual Reality-Induced Modification of Vestibulo-Ocular Reflex Gain in Posturography Tests. J Clin Med 2024; 13:2742. [PMID: 38792284 PMCID: PMC11122614 DOI: 10.3390/jcm13102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Background: The aim of the study was to demonstrate the influence of virtual reality (VR) exposure on postural stability and determine the mechanism of this influence. Methods: Twenty-six male participants aged 21-23 years were included, who underwent postural stability assessment twice before and after a few minute of single VR exposure. The VR projection was a computer-generated simulation of the surrounding scenery. Postural stability was assessed using the Sensory Organization Test (SOT), using Computerized Dynamic Posturography (CDP). Results: The findings indicated that VR exposure affects the visual and vestibular systems. Significant differences (p < 0.05) in results before and after VR exposure were observed in tests on an unstable surface. It was confirmed that VR exposure has a positive influence on postural stability, attributed to an increase in the sensory weight of the vestibular system. Partial evidence suggested that the reduction in vestibulo-ocular reflex (VOR) reinforcement may result in an adaptive shift to the optokinetic reflex (OKR). Conclusions: By modifying the process of environmental perception through artificial sensory simulation, the influence of VR on postural stability has been demonstrated. The validity of this type of research is determined by the effectiveness of VR techniques in the field of vestibular rehabilitation.
Collapse
Affiliation(s)
- Jan Warchoł
- Department of Biophysics, Medical University of Lublin, K. Jaczewskiego 4, 20-090 Lublin, Poland; (A.T.); (B.K.); (G.O.)
| | - Anna Tetych
- Department of Biophysics, Medical University of Lublin, K. Jaczewskiego 4, 20-090 Lublin, Poland; (A.T.); (B.K.); (G.O.)
| | - Robert Tomaszewski
- Department of Computer Science, University of Applied Sciences in Biala Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, Poland;
| | - Bartłomiej Kowalczyk
- Department of Biophysics, Medical University of Lublin, K. Jaczewskiego 4, 20-090 Lublin, Poland; (A.T.); (B.K.); (G.O.)
| | - Grażyna Olchowik
- Department of Biophysics, Medical University of Lublin, K. Jaczewskiego 4, 20-090 Lublin, Poland; (A.T.); (B.K.); (G.O.)
| |
Collapse
|
3
|
Yeo SS, Park SY, Yun SH. Investigating cortical activity during cybersickness by fNIRS. Sci Rep 2024; 14:8093. [PMID: 38582769 PMCID: PMC10998856 DOI: 10.1038/s41598-024-58715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
This study investigated brain responses during cybersickness in healthy adults using functional near-infrared spectroscopy (fNIRS). Thirty participants wore a head-mounted display and observed a virtual roller coaster scene that induced cybersickness. Cortical activation during the virtual roller coaster task was measured using fNIRS. Cybersickness symptoms were evaluated using a Simulator Sickness Questionnaire (SSQ) administered after the virtual rollercoaster. Pearson correlations were performed for cybersickness symptoms and the beta coefficients of hemodynamic responses. The group analysis of oxyhemoglobin (HbO) and total hemoglobin (HbT) levels revealed deactivation in the bilateral angular gyrus during cybersickness. In the Pearson correlation analyses, the HbO and HbT beta coefficients in the bilateral angular gyrus had a significant positive correlation with the total SSQ and disorientation. These results indicated that the angular gyrus was associated with cybersickness. These findings suggest that the hemodynamic response in the angular gyrus could be a biomarker for evaluating cybersickness symptoms.
Collapse
Affiliation(s)
- Sang Seok Yeo
- Department of Physical Therapy, College of Health and Welfare Sciences, Dankook University, Cheonan, Republic of Korea
| | - Seo Yoon Park
- Department of Physical Therapy, College of Health and Welfare, Woosuk University, Wanju, Republic of Korea
| | - Seong Ho Yun
- Department of Public Health Sciences, Graduate School, Dankook University, Cheonan-si, Republic of Korea.
| |
Collapse
|
4
|
Kondo T, Hirao Y, Narumi T, Amemiya T. Effects of bone-conducted vibration stimulation of various frequencies on the vertical vection. Sci Rep 2023; 13:15759. [PMID: 37735202 PMCID: PMC10514326 DOI: 10.1038/s41598-023-42589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Illusory self-motion ("vection") has been used to present a sense of movement in virtual reality (VR) and other similar applications. It is crucial in vection research to present a stronger sense of movement. Bone-conducted vibration (BCV) is a small and generally acceptable method for enhancing the sense of movement in VR. However, its effects on vection have not been extensively studied. Here, we conducted two experiments to investigate the effect of BCV on the vection, which generates an upward sensation under the hypothesis that BCV stimulation to the mastoid processes causes noise in the vestibular system and enhances visually-induced self-motion perception. The experiments focused on the effects of BCV stimuli of different frequencies on the vection experience. The results suggested that 500 Hz BCV was more effective as noise to the vestibular system than other frequency BCVs and improved self-motion sensation. This study examines the effects of BCV with different frequencies on the vection experience and designs a theory for using BCV in VR.
Collapse
Affiliation(s)
- Tetsuta Kondo
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 1138656, Japan
| | - Yutaro Hirao
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 1138656, Japan
| | - Takuji Narumi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 1138656, Japan
| | - Tomohiro Amemiya
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 1138656, Japan.
- Information Technology Center, The University of Tokyo, Tokyo, 1138658, Japan.
- Virtual Reality Educational Research Center, The University of Tokyo, Tokyo, 1138656, Japan.
| |
Collapse
|
5
|
Townsend B, Legere JK, von Mohrenschildt M, Shedden JM. Stimulus Onset Asynchrony Affects Weighting-related Event-related Spectral Power in Self-motion Perception. J Cogn Neurosci 2023; 35:1092-1107. [PMID: 37043240 DOI: 10.1162/jocn_a_01994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Self-motion perception relies primarily on the integration of the visual, vestibular, proprioceptive, and somatosensory systems. There is a gap in understanding how a temporal lag between visual and vestibular motion cues affects visual-vestibular weighting during self-motion perception. The beta band is an index of visual-vestibular weighting, in that robust beta event-related synchronization (ERS) is associated with visual weighting bias, and robust beta event-related desynchronization is associated with vestibular weighting bias. The present study examined modulation of event-related spectral power during a heading judgment task in which participants attended to either visual (optic flow) or physical (inertial cues stimulating the vestibular, proprioceptive and somatosensory systems) motion cues from a motion simulator mounted on a MOOG Stewart Platform. The temporal lag between the onset of visual and physical motion cues was manipulated to produce three lag conditions: simultaneous onset, visual before physical motion onset, and physical before visual motion onset. There were two main findings. First, we demonstrated that when the attended motion cue was presented before an ignored cue, the power of beta associated with the attended modality was greater than when visual-vestibular cues were presented simultaneously or when the ignored cue was presented first. This was the case for beta ERS when the visual-motion cue was attended to, and beta event-related desynchronization when the physical-motion cue was attended to. Second, we tested whether the power of feature-binding gamma ERS (demonstrated in audiovisual and visual-tactile integration studies) increased when the visual-vestibular cues were presented simultaneously versus with temporal asynchrony. We did not observe an increase in gamma ERS when cues were presented simultaneously, suggesting that electrophysiological markers of visual-vestibular binding differ from markers of audiovisual and visual-tactile integration. All event-related spectral power reported in this study were generated from dipoles projecting from the left and right motor areas, based on the results of Measure Projection Analysis.
Collapse
|
6
|
Kirollos R, Herdman CM. Caloric vestibular stimulation induces vestibular circular vection even with a conflicting visual display presented in a virtual reality headset. Iperception 2023; 14:20416695231168093. [PMID: 37113619 PMCID: PMC10126621 DOI: 10.1177/20416695231168093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
This study explored visual-vestibular sensory integration when the vestibular system receives self-motion information using caloric irrigation. The objectives of this study were to (1) determine if measurable vestibular circular vection can be induced in healthy participants using caloric vestibular stimulation and (2) determine if a conflicting visual display could impact vestibular vection. In Experiment 1 (E1), participants had their eyes closed. Air caloric vestibular stimulation cooled the endolymph fluid of the horizontal semi-circular canal inducing vestibular circular vection. Participants reported vestibular circular vection with a potentiometer knob that measured circular vection direction, speed, and duration. In Experiment 2 (E2), participants viewed a stationary display in a virtual reality headset that did not signal self-motion while receiving caloric vestibular stimulation. This produced a visual-vestibular conflict. Participants indicated clockwise vection in the left ear and counter-clockwise vection in right ear in a significant proportion of trials in E1 and E2. Vection was significantly slower and shorter in E2 compared to E1. E2 results demonstrated that during visual-vestibular conflict, visual and vestibular cues are used to determine self-motion rather than one system overriding the other. These results are consistent with optimal cue integration hypothesis.
Collapse
Affiliation(s)
- Ramy Kirollos
- Defence Research and Development Canada, Toronto Research
Center, Toronto, Ontario, Canada
| | - Chris M. Herdman
- Visualization and Simulation Center, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Ni J, Ito H, Ogawa M, Sunaga S, Palmisano S. Prior Exposure to Dynamic Visual Displays Reduces Vection Onset Latency. Multisens Res 2022; 35:653-676. [PMID: 36731532 DOI: 10.1163/22134808-bja10084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
While compelling illusions of self-motion (vection) can be induced purely by visual motion, they are rarely experienced immediately. This vection onset latency is thought to represent the time required to resolve sensory conflicts between the stationary observer's visual and nonvisual information about self-motion. In this study, we investigated whether manipulations designed to increase the weightings assigned to vision (compared to the nonvisual senses) might reduce vection onset latency. We presented two different types of visual priming displays directly before our main vection-inducing displays: (1) 'random motion' priming displays - designed to pre-activate general, as opposed to self-motion-specific, visual motion processing systems; and (2) 'dynamic no-motion' priming displays - designed to stimulate vision, but not generate conscious motion perceptions. Prior exposure to both types of priming displays was found to significantly shorten vection onset latencies for the main self-motion display. These experiments show that vection onset latencies can be reduced by pre-activating the visual system with both types of priming display. Importantly, these visual priming displays did not need to be capable of inducing vection or conscious motion perception in order to produce such benefits.
Collapse
Affiliation(s)
- Jing Ni
- Graduate School of Design, Kyushu University, Fukuoka, 815-8540, Japan
| | - Hiroyuki Ito
- Faculty of Design, Kyushu University, Fukuoka, 815-8540, Japan.,Research Center for Applied Perceptual Science, Kyushu University, Fukuoka, 815-8540, Japan
| | - Masaki Ogawa
- Faculty of Design, Kyushu University, Fukuoka, 815-8540, Japan
| | - Shoji Sunaga
- Faculty of Design, Kyushu University, Fukuoka, 815-8540, Japan.,Research Center for Applied Perceptual Science, Kyushu University, Fukuoka, 815-8540, Japan
| | - Stephen Palmisano
- School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Murovec B, Spaniol J, Campos JL, Keshavarz B. Multisensory Effects on Illusory Self-Motion (Vection): the Role of Visual, Auditory, and Tactile Cues. Multisens Res 2021; 34:1-22. [PMID: 34384047 DOI: 10.1163/22134808-bja10058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022]
Abstract
A critical component to many immersive experiences in virtual reality (VR) is vection, defined as the illusion of self-motion. Traditionally, vection has been described as a visual phenomenon, but more recent research suggests that vection can be influenced by a variety of senses. The goal of the present study was to investigate the role of multisensory cues on vection by manipulating the availability of visual, auditory, and tactile stimuli in a VR setting. To achieve this, 24 adults (Mage = 25.04) were presented with a rotating stimulus aimed to induce circular vection. All participants completed trials that included a single sensory cue, a combination of two cues, or all three cues presented together. The size of the field of view (FOV) was manipulated across four levels (no-visuals, small, medium, full). Participants rated vection intensity and duration verbally after each trial. Results showed that all three sensory cues induced vection when presented in isolation, with visual cues eliciting the highest intensity and longest duration. The presence of auditory and tactile cues further increased vection intensity and duration compared to conditions where these cues were not presented. These findings support the idea that vection can be induced via multiple types of sensory inputs and can be intensified when multiple sensory inputs are combined.
Collapse
Affiliation(s)
- Brandy Murovec
- KITE, Toronto Rehabilitation Institute-University Health Network, Toronto, ON M5G 2A2, Canada
- Department of Psychology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Julia Spaniol
- Department of Psychology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Jennifer L Campos
- KITE, Toronto Rehabilitation Institute-University Health Network, Toronto, ON M5G 2A2, Canada
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Behrang Keshavarz
- KITE, Toronto Rehabilitation Institute-University Health Network, Toronto, ON M5G 2A2, Canada
- Department of Psychology, Ryerson University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
9
|
Öztürk ŞT, Şerbetçioğlu MB, Ersin K, Yılmaz O. The Impact of Optical Illusions on the Vestibular System. J Audiol Otol 2021; 25:152-158. [PMID: 34167185 PMCID: PMC8311056 DOI: 10.7874/jao.2021.00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/24/2021] [Indexed: 01/01/2023] Open
Abstract
Background and Objectives Balance control is maintained in stationary and dynamic conditions, with coordinated muscle responses generated by somatosensory, vestibular, and visual inputs. This study aimed to investigate how the vestibular system is affected in the presence of an optical illusion to better understand the interconnected pathways of the visual and vestibular systems. Subjects and Methods The study involved 54 young adults (27 males and 27 females) aged 18-25 years. The recruited participants were subjected to the cervical vestibular evoked myogenic potentials (cVEMP) test and video head impulse test (vHIT). The cVEMP and vHIT tests were performed once each in the absence and presence of an optical illusion. In addition, after each test, whether the individuals felt balanced was determined using a questionnaire. Results cVEMP results in the presence of the optical illusion showed shortened latencies and increased amplitudes for the left side in comparison to the results in the absence of the optical illusion (p≤0.05). When vHIT results were compared, it was seen that the right lateral and bilateral anterior canal gains were increased, almost to 1.0 (p<0.05). Conclusions It is thought that when the visual-vestibular inputs are incompatible with each other, the sensory reweighting mechanism is activated, and this mechanism strengthens the more reliable (vestibular) inputs, while suppressing the less reliable (visual) inputs. As long as the incompatible condition persists, the sensory reweighting mechanism will continue to operate, thanks to the feedback loop from the efferent vestibular system.
Collapse
Affiliation(s)
- Şeyma Tuğba Öztürk
- Department of Audiology, Faculty of Health and Science, Istanbul Medipol University, Istanbul, Turkey
| | | | - Kerem Ersin
- Department of Audiology, Faculty of Health and Science, Istanbul Medipol University, Istanbul, Turkey
| | - Oğuz Yılmaz
- Department of Audiology, Faculty of Health and Science, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
10
|
Fauville G, Queiroz ACM, Woolsey ES, Kelly JW, Bailenson JN. The effect of water immersion on vection in virtual reality. Sci Rep 2021; 11:1022. [PMID: 33441803 PMCID: PMC7806968 DOI: 10.1038/s41598-020-80100-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Research about vection (illusory self-motion) has investigated a wide range of sensory cues and employed various methods and equipment, including use of virtual reality (VR). However, there is currently no research in the field of vection on the impact of floating in water while experiencing VR. Aquatic immersion presents a new and interesting method to potentially enhance vection by reducing conflicting sensory information that is usually experienced when standing or sitting on a stable surface. This study compares vection, visually induced motion sickness, and presence among participants experiencing VR while standing on the ground or floating in water. Results show that vection was significantly enhanced for the participants in the Water condition, whose judgments of self-displacement were larger than those of participants in the Ground condition. No differences in visually induced motion sickness or presence were found between conditions. We discuss the implication of this new type of VR experience for the fields of VR and vection while also discussing future research questions that emerge from our findings.
Collapse
|
11
|
Gallagher M, Choi R, Ferrè ER. Multisensory Interactions in Virtual Reality: Optic Flow Reduces Vestibular Sensitivity, but Only for Congruent Planes of Motion. Multisens Res 2020; 33:625-644. [PMID: 31972542 DOI: 10.1163/22134808-20201487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022]
Abstract
During exposure to Virtual Reality (VR) a sensory conflict may be present, whereby the visual system signals that the user is moving in a certain direction with a certain acceleration, while the vestibular system signals that the user is stationary. In order to reduce this conflict, the brain may down-weight vestibular signals, which may in turn affect vestibular contributions to self-motion perception. Here we investigated whether vestibular perceptual sensitivity is affected by VR exposure. Participants' ability to detect artificial vestibular inputs was measured during optic flow or random motion stimuli on a VR head-mounted display. Sensitivity to vestibular signals was significantly reduced when optic flow stimuli were presented, but importantly this was only the case when both visual and vestibular cues conveyed information on the same plane of self-motion. Our results suggest that the brain dynamically adjusts the weight given to incoming sensory cues for self-motion in VR; however this is dependent on the congruency of visual and vestibular cues.
Collapse
Affiliation(s)
| | - Reno Choi
- Royal Holloway, University of London, Egham, UK
| | | |
Collapse
|
12
|
Weech S, Wall T, Barnett-Cowan M. Reduction of cybersickness during and immediately following noisy galvanic vestibular stimulation. Exp Brain Res 2020; 238:427-437. [PMID: 31938844 DOI: 10.1007/s00221-019-05718-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/27/2019] [Indexed: 11/26/2022]
Abstract
The mechanism underlying cybersickness during virtual reality (VR) exposure is still poorly understood, although research has highlighted a causal role for visual-vestibular sensory conflict. Recently established methods for reducing cybersickness include galvanic vestibular stimulation (GVS) to mimic absent vestibular cues in VR, or vibration of the vestibular organs to add noise to the sensory modality. Here, we examined if applying noise to the vestibular system using noisy-current GVS affects sickness severity in VR. Participants were exposed to one of the two VR games that were classified as either moderately or intensely nauseogenic. The VR content lasted for 50 min and was broken down into three blocks: 30 min of gameplay during exposure to either noisy GVS (± 1750 μA) or sham stimulation (0 μA), and 10 min of gameplay before and after this block. We characterized the effects of noisy GVS in terms of post-minus-pre-exposure cybersickness scores. In the intense VR condition, we found a main effect of noisy vestibular stimulation on a verbal cybersickness scale, but not for questionnaire measures of cybersickness. Participants reported lower cybersickness scores during and directly after exposure to GVS. However, this difference was quickly extinguished (~ 3-6 min) after further VR exposure, indicating that sensory adaptation did not persist after stimulation was terminated. In contrast, there were no differences between the sham and GVS group for the moderate VR content. The results show the potential for reducing cybersickness with non-invasive sensory stimulation. We address possible mechanisms for the observed effects, including noise-induced sensory re-weighting.
Collapse
Affiliation(s)
- Séamas Weech
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.
| | - Travis Wall
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
13
|
Gallagher M, Dowsett R, Ferrè ER. Vection in virtual reality modulates vestibular-evoked myogenic potentials. Eur J Neurosci 2019; 50:3557-3565. [PMID: 31233640 DOI: 10.1111/ejn.14499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 11/28/2022]
Abstract
The popularity of virtual reality (VR) has increased rapidly in recent years. While significant technological advancements are apparent, a troublesome problem with VR is that between 20% and 80% of users will experience unpleasant side effects such as nausea, disorientation, blurred vision and headaches-a malady known as Cybersickness. Cybersickness may be caused by a conflict between sensory signals for self-motion: while vision signals that the user is moving in a certain direction with certain acceleration, the vestibular organs provide no corroborating information. To resolve the sensory conflict, vestibular cues may be down-weighted leading to an alteration of how the brain interprets actual vestibular information. This may account for the frequently reported after-effects of VR exposure. Here, we investigated whether exposure to vection in VR modulates vestibular processing. We measured vestibular-evoked myogenic potentials (VEMPs) during brief immersion in a vection-inducing VR environment presented via head-mounted display. We found changes in VEMP asymmetry ratio, with a substantial increase in VEMP amplitude recorded on the left sternocleidomastoid muscle following just one minute of exposure to vection in VR. Our results suggest that exposure to vection in VR modulates vestibular processing, which may explain common after-effects of VR.
Collapse
Affiliation(s)
- Maria Gallagher
- Department of Psychology, Royal Holloway University of London, Egham, UK
| | - Ross Dowsett
- Department of Psychology, Royal Holloway University of London, Egham, UK
| | | |
Collapse
|
14
|
Weech S, Kenny S, Barnett-Cowan M. Presence and Cybersickness in Virtual Reality Are Negatively Related: A Review. Front Psychol 2019; 10:158. [PMID: 30778320 PMCID: PMC6369189 DOI: 10.3389/fpsyg.2019.00158] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
In order to take advantage of the potential offered by the medium of virtual reality (VR), it will be essential to develop an understanding of how to maximize the desirable experience of "presence" in a virtual space ("being there"), and how to minimize the undesirable feeling of "cybersickness" (a constellation of discomfort symptoms experienced in VR). Although there have been frequent reports of a possible link between the observer's sense of presence and the experience of bodily discomfort in VR, the amount of literature that discusses the nature of the relationship is limited. Recent research has underlined the possibility that these variables have shared causes, and that both factors may be manipulated with a single approach. This review paper summarizes the concepts of presence and cybersickness and highlights the strengths and gaps in our understanding about their relationship. We review studies that have measured the association between presence and cybersickness, and conclude that the balance of evidence favors a negative relationship between the two factors which is driven principally by sensory integration processes. We also discuss how system immersiveness might play a role in modulating both presence and cybersickness. However, we identify a serious absence of high-powered studies that aim to reveal the nature of this relationship. Based on this evidence we propose recommendations for future studies investigating presence, cybersickness, and other related factors.
Collapse
Affiliation(s)
- Séamas Weech
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
- The Games Institute, University of Waterloo, Waterloo, ON, Canada
| | - Sophie Kenny
- The Games Institute, University of Waterloo, Waterloo, ON, Canada
| | - Michael Barnett-Cowan
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
- The Games Institute, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
15
|
Weech S, Varghese JP, Barnett-Cowan M. Estimating the sensorimotor components of cybersickness. J Neurophysiol 2018; 120:2201-2217. [PMID: 30044672 PMCID: PMC6295542 DOI: 10.1152/jn.00477.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 11/22/2022] Open
Abstract
The user base of the virtual reality (VR) medium is growing, and many of these users will experience cybersickness. Accounting for the vast interindividual variability in cybersickness forms a pivotal step in solving the issue. Most studies of cybersickness focus on a single factor (e.g., balance, sex, or vection), while other contributors are overlooked. Here, we characterize the complex relationship between cybersickness and several measures of sensorimotor processing. In a single session, we conducted a battery of tests of balance control, vection responses, and vestibular sensitivity to self-motion. Following this, we measured cybersickness after VR exposure. We constructed a principal components regression model using the measures of sensorimotor processing. The model significantly predicted 37% of the variability in cybersickness measures, with 16% of this variance being accounted for by a principal component that represented balance control measures. The strongest predictor was participants' sway path length during vection, which was inversely related to cybersickness [ r(28) = -0.53, P = 0.002] and uniquely accounted for 7.5% of the variance in cybersickness scores across participants. Vection strength reports and measures of vestibular sensitivity were not significant predictors of cybersickness. We discuss the possible role of sensory reweighting in cybersickness that is suggested by these results, and we identify other factors that may account for the remaining variance in cybersickness. The results reiterate that the relationship between balance control and cybersickness is anything but straightforward. NEW & NOTEWORTHY The advent of consumer virtual reality provides a pressing need for interventions that combat sickness in simulated environments (cybersickness). This research builds on multiple theories of cybersickness etiology to develop a predictive model that distinguishes between individuals who are/are not likely to experience cybersickness. In the future this approach can be adapted to provide virtual reality users with curated content recommendations based on more efficient measurements of sensorimotor processing.
Collapse
Affiliation(s)
- Séamas Weech
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | | | | |
Collapse
|
16
|
The search for instantaneous vection: An oscillating visual prime reduces vection onset latency. PLoS One 2018; 13:e0195886. [PMID: 29791445 PMCID: PMC5965835 DOI: 10.1371/journal.pone.0195886] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/30/2018] [Indexed: 11/29/2022] Open
Abstract
Typically it takes up to 10 seconds or more to induce a visual illusion of self-motion (“vection”). However, for this vection to be most useful in virtual reality and vehicle simulation, it needs to be induced quickly, if not immediately. This study examined whether vection onset latency could be reduced towards zero using visual display manipulations alone. In the main experiments, visual self-motion simulations were presented to observers via either a large external display or a head-mounted display (HMD). Priming observers with visually simulated viewpoint oscillation for just ten seconds before the main self-motion display was found to markedly reduce vection onset latencies (and also increase ratings of vection strength) in both experiments. As in earlier studies, incorporating this simulated viewpoint oscillation into the self-motion displays themselves was also found to improve vection. Average onset latencies were reduced from 8-9s in the no oscillating control condition to as little as 4.6 s (for external displays) or 1.7 s (for HMDs) in the combined oscillation condition (when both the visual prime and the main self-motion display were oscillating). As these display manipulations did not appear to increase the likelihood or severity of motion sickness in the current study, they could possibly be used to enhance computer generated simulation experiences and training in the future, at no additional cost.
Collapse
|
17
|
Weech S, Moon J, Troje NF. Influence of bone-conducted vibration on simulator sickness in virtual reality. PLoS One 2018; 13:e0194137. [PMID: 29590147 PMCID: PMC5874010 DOI: 10.1371/journal.pone.0194137] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/09/2018] [Indexed: 11/23/2022] Open
Abstract
Use of virtual reality (VR) technology is often accompanied by a series of unwanted symptoms, including nausea and headache, which are characterised as ‘simulator sickness’. Sensory mismatch has been thought to lie at the heart of the problem and recent studies have shown that reducing cue mismatch in VR can have a therapeutic effect. Specifically, electrical stimulation of vestibular afferent nerves (galvanic vestibular stimulation; GVS) can reduce simulator sickness in VR. However, GVS poses a risk to certain populations and can also result in negative symptoms in normal, healthy individuals. Here, we tested whether noisy vestibular stimulation through bone-vibration can also reduce symptoms of simulator sickness. We carried out two experiments in which participants performed a spatial navigation task in VR and completed the Simulator Sickness Questionnaire over a series of trials. Experiment 1 was conducted using a high-end projection-based VR display, whereas Experiment 2 involved the use of a consumer head mounted display. During each trial, vestibular stimulation was either: 1) absent; 2) coupled with large angular accelerations of the projection camera; or 3) applied randomly throughout each trial. In half of the trials, participants actively navigated using a motion controller, and in the other half they were moved passively through the environment along pre-recorded motion trajectories. In both experiments we obtained lower simulator sickness scores when vestibular stimulation was coupled with angular accelerations of the camera. This effect was obtained for both active and passive movement control conditions, which did not differ. The results suggest that noisy vestibular stimulation can reduce simulator sickness, and that this effect appears to generalize across VR conditions. We propose further examination of this stimulation technique.
Collapse
Affiliation(s)
- Séamas Weech
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| | - Jae Moon
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Nikolaus F. Troje
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
- School of Computing, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
18
|
Shirai N, Endo S, Tanahashi S, Seno T, Imura T. Development of Asymmetric Vection for Radial Expansion or Contraction Motion: Comparison Between School-Age Children and Adults. Iperception 2018; 9:2041669518761191. [PMID: 29755720 PMCID: PMC5937634 DOI: 10.1177/2041669518761191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
Vection is illusory self-motion elicited by visual stimuli and is more easily induced by radial contraction than expansion flow in adults. The asymmetric feature of vection was reexamined with 18 younger (age: 6–8 years) and 19 older children (age: 9–11 years) and 20 adults. In each experimental trial, participants observed either radial expansion or contraction flow; the latency, cumulative duration, and saturation of vection were measured. The results indicated that the latency for contraction was significantly shorter than that for expansion in all age-groups. In addition, the latency and saturation were significantly shorter and greater, respectively, in the younger or older children compared with the adults, regardless of the flow pattern. These results indicate that the asymmetry in vection for expansion or contraction flow emerges by school age, and that school-age children experience significantly more rapid and stronger vection than adults.
Collapse
Affiliation(s)
- Nobu Shirai
- Department of Psychology, Faculty of Humanities, Niigata University, Japan
| | - Shuich Endo
- Department of Electrical and Information Engineering, Graduate School of Science and Technology, Niigata University, Japan
| | - Shigehito Tanahashi
- Department of Biocybernetics, Faculty of Engineering, Niigata University, Japan
| | - Takeharu Seno
- Faculty of Design, Kyushu University, Fukuoka, Japan; Research Center for Applied Perceptual Science, Kyushu University, Fukuoka, Japan
| | - Tomoko Imura
- Department of Information Systems, Faculty of Information Culture, Niigata University of International and Information Studies, Japan
| |
Collapse
|
19
|
Gallagher M, Ferrè ER. Cybersickness: a Multisensory Integration Perspective. Multisens Res 2018; 31:645-674. [PMID: 31264611 DOI: 10.1163/22134808-20181293] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/05/2018] [Indexed: 11/19/2022]
Abstract
In the past decade, there has been a rapid advance in Virtual Reality (VR) technology. Key to the user's VR experience are multimodal interactions involving all senses. The human brain must integrate real-time vision, hearing, vestibular and proprioceptive inputs to produce the compelling and captivating feeling of immersion in a VR environment. A serious problem with VR is that users may develop symptoms similar to motion sickness, a malady called cybersickness. At present the underlying cause of cybersickness is not yet fully understood. Cybersickness may be due to a discrepancy between the sensory signals which provide information about the body's orientation and motion: in many VR applications, optic flow elicits an illusory sensation of motion which tells users that they are moving in a certain direction with certain acceleration. However, since users are not actually moving, their proprioceptive and vestibular organs provide no cues of self-motion. These conflicting signals may lead to sensory discrepancies and eventually cybersickness. Here we review the current literature to develop a conceptual scheme for understanding the neural mechanisms of cybersickness. We discuss an approach to cybersickness based on sensory cue integration, focusing on the dynamic re-weighting of visual and vestibular signals for self-motion.
Collapse
Affiliation(s)
- Maria Gallagher
- Department of Psychology, Royal Holloway University of London, Egham, UK
| | | |
Collapse
|
20
|
Abstract
Visually induced illusions of self-motion are often referred to as vection. This article developed and tested a model of responding to visually induced vection. We first constructed a mathematical model based on well-documented characteristics of vection and human behavioral responses to this illusion. We then conducted 10,000 virtual trial simulations using this Oscillating Potential Vection Model (OPVM). OPVM was used to generate simulated vection onset, duration, and magnitude responses for each of these trials. Finally, we compared the properties of OPVM's simulated vection responses with real responses obtained in seven different laboratory-based vection experiments. The OPVM output was found to compare favorably with the empirically obtained vection data.
Collapse
Affiliation(s)
- Takeharu Seno
- Faculty of Design, Kyushu University, Minami-ku, Fukuoka, Japan
| |
Collapse
|