1
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Janssen LM, Lemaire F, Marain NF, Ronsmans S, Heylen N, Vanstapel A, Velde GV, Vanoirbeek JA, Pollard KM, Ghosh M, Hoet PH. Differential pulmonary toxicity and autoantibody formation in genetically distinct mouse strains following combined exposure to silica and diesel exhaust particles. Part Fibre Toxicol 2024; 21:8. [PMID: 38409078 PMCID: PMC10898103 DOI: 10.1186/s12989-024-00569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory and systemic health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of occupational-level silica and ambient-level DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization. RESULTS The findings highlight the distinct effects of silica and diesel exhaust particles (DEP) on lung injury, inflammation, and autoantibody formation in C57BL/6J and NOD/ShiLtJ mice. Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside mild fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Moreover, antinuclear antibodies correlated with extent of lung inflammation in NOD/ShiLTJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. However, aside from contributing to airway hyperreactivity specifically in NOD/ShiLtJ mice, the ambient-level DEP did not significantly amplify the effects induced by silica. There was no evidence of synergistic or additive interaction between these specific doses of silica and DEP in inducing lung damage or inflammation in either of the mouse strains. CONCLUSION Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of ambient-level DEP on these silica-induced effects was minimal.
Collapse
Affiliation(s)
- Lisa Mf Janssen
- Environment and Health Unit, KU Leuven, Leuven, Belgium
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | | | - Nora Fopke Marain
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Steven Ronsmans
- Environment and Health Unit, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | | | - Arno Vanstapel
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| | - Jeroen Aj Vanoirbeek
- Environment and Health Unit, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | | | - Manosij Ghosh
- Environment and Health Unit, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Peter Hm Hoet
- Environment and Health Unit, KU Leuven, Leuven, Belgium.
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Janssen LM, Lemaire F, Marain NF, Ronsmans S, Heylen N, Vanstapel A, Velde GV, Vanoirbeek JA, Pollard KM, Ghosh M, Hoet PH. Differential Pulmonary Toxicity and Autoantibody Formation in Genetically Distinct Mouse Strains Following Combined Exposure to Silica and Diesel Exhaust Particles. RESEARCH SQUARE 2023:rs.3.rs-3408546. [PMID: 37886437 PMCID: PMC10602120 DOI: 10.21203/rs.3.rs-3408546/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of silica and DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization. Results Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside limited fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. Conclusion Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of diesel exhaust particles on these silica-induced effects was minimal.
Collapse
|
4
|
Tu Y, Williams GM, Cortés de Waterman AM, Toelle BG, Guo Y, Denison L, Babu GR, Yang BY, Dong GH, Jalaludin B, Marks GB, Knibbs LD. A national cross-sectional study of exposure to outdoor nitrogen dioxide and aeroallergen sensitization in Australian children aged 7-11 years. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116330. [PMID: 33383426 DOI: 10.1016/j.envpol.2020.116330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The prevalence of allergic diseases in Australian children is high, but few studies have assessed the potential role of outdoor air pollution in allergic sensitization. We investigated the association between outdoor air pollution and the prevalence of aeroallergen sensitization in a national cross-sectional study of Australian children aged 7-11 years. Children were recruited from 55 participating schools in 12 Australian cities during 2007-2008. Parents completed a detailed (70-item) questionnaire. Outdoor nitrogen dioxide (NO2), as a proxy for exposure to traffic-related emissions, was estimated using measurements from regulatory monitors near each school and a national land-use regression (LUR) model. Three averaging periods were assessed, using information on duration of residence at the address, including lifetime, previous (lifetime, excluding the last year), and recent (the last year only). The LUR model was used as an additional source of recent exposure estimates at school and home addresses. Skin prick tests (SPTs) were performed to measure sensitization to eight common aeroallergens. Multilevel logistic regression estimated the association between NO2 and sensitization (by individual allergens, indoor and outdoor allergens, and all allergens combined), after adjustment for individual- and area-level covariates. In total, 2226 children had a completed questionnaire and SPT. The prevalence of sensitization to any allergen was 44.4%. Sensitization to house dust mites (HDMs) was the most common (36.1%), while sensitization to Aspergillus was the least common (3.4%). Measured mean (±s.d.) NO2 exposure was between 9 (±2.9) ppb and 9.5 (±3.2) ppb, depending on the averaging period. An IQR (4 ppb) increase in measured previous NO2 exposure was associated with greater odds of sensitization to HDMs (OR: 1.21, 95% CI: 1.01-1.43, P = 0.035). We found evidence of an association between relatively low outdoor NO2 concentrations and sensitization to HDMs, but not other aeroallergens, in Australian children aged 7-11 years.
Collapse
Affiliation(s)
- Yanhui Tu
- Faculty of Medicine, School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia
| | - Gail M Williams
- Faculty of Medicine, School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia
| | | | - Brett G Toelle
- Woolcock Institute of Medical Research, The University of Sydney, NSW, 2006, Australia; Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Yuming Guo
- Centre for Air Pollution, Energy and Health Research, Glebe, NSW, 2037, Australia; Department of Epidemiology and Biostatistics, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Lyn Denison
- ERM Services Australia, Melbourne, VIC, 3000, Australia
| | - Giridhara R Babu
- Indian Institute of Public Health-Bangalore, Public Health Foundation of India, Bangalore, 560023, India
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Jalaludin
- Centre for Air Pollution, Energy and Health Research, Glebe, NSW, 2037, Australia; Population Health, South Western Sydney Local Health District, Liverpool, NSW, 2170, Australia; Ingham Institute, Liverpool, NSW, 2170, Australia
| | - Guy B Marks
- Centre for Air Pollution, Energy and Health Research, Glebe, NSW, 2037, Australia; Woolcock Institute of Medical Research, The University of Sydney, NSW, 2006, Australia; South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW, 2170, Australia
| | - Luke D Knibbs
- Faculty of Medicine, School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia; Centre for Air Pollution, Energy and Health Research, Glebe, NSW, 2037, Australia.
| |
Collapse
|
5
|
Whitehouse AL, Mushtaq N, Miyashita L, Barratt B, Khan A, Kalsi H, Koh L, Padovan MG, Brugha R, Balkwill FR, Stagg AJ, Grigg J. Airway dendritic cell maturation in children exposed to air pollution. PLoS One 2020; 15:e0232040. [PMID: 32369498 PMCID: PMC7200006 DOI: 10.1371/journal.pone.0232040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
Urban particulate matter (PM) enhances airway dendritic cell (DC) maturation in vitro. However, to date, there are no data on the association between exposure to urban PM and DC maturation in vivo. We sought to determine whether exposure of school-age children (8 to 14 y) to PM was associated with expression of CD86, a marker of maturation of airway conventional DCs (cDC). Healthy London school children underwent spirometry and sputum induction. Flow cytometry was used to identify CD86 and CCR7 expression on cDC subsets (CD1c+ cDC2 and CD141+ cDC1). Tertiles of mean annual exposure to PM ≤ 10 microns (PM10) at the school address were determined using the London Air Quality Toolkit model. Tertiles of exposure from the 409 children from 19 schools recruited were; lower (23.1 to 25.6 μg/m3, n = 138), middle (25.6 to 26.8 μg/m3, n = 126), and upper (26.8 to 31.0 μg/m3, n = 145). DC expression was assessed in 164/370 (44%) children who completed sputum induction. The proportion (%) of cDC expressing CD86 in the lower exposure tertile (n = 47) was lower compared with the upper exposure tertile (n = 49); (52% (44 to 70%) vs 66% (51 to 82%), p<0.05). There was a higher percentage of cDC1 cells in the lower tertile of exposure (6.63% (2.48 to 11.64) vs. 2.63% (0.72 to 7.18), p<0.05). Additionally; children in the lower exposure tertile had increased FEV1 compared with children in the upper tertile; (median z-score 0.15 (-0.59 to 0.75) vs. -0.21 (-0.86 to 0.48), p<0.05. Our data reveal that children attending schools in the highest areas of PM exposure in London exhibit increased numbers of "mature" airway cDCs, as evidenced by their expression of the surface marker CD86. This data is supportive of previous in vitro data demonstrating an alteration in the maturation of airway cDCs in response to exposure to pollutants.
Collapse
Affiliation(s)
- Abigail L. Whitehouse
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
| | - Naseem Mushtaq
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
| | - Lisa Miyashita
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
| | | | - Ameerah Khan
- Centre of the Cell, Queen Mary University of London, London, United Kingdom
| | - Harpal Kalsi
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
| | - Lee Koh
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
| | - Michele G. Padovan
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
| | - Rossa Brugha
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
| | - Frances R. Balkwill
- King's College London, London, United Kingdom
- Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - Andrew J. Stagg
- Centre for Immunobiology, Queen Mary University of London, London, United Kingdom
| | - Jonathan Grigg
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Bosson JA, Mudway IS, Sandström T. Traffic-related Air Pollution, Health, and Allergy: The Role of Nitrogen Dioxide. Am J Respir Crit Care Med 2019; 200:523-524. [PMID: 31059649 PMCID: PMC6727158 DOI: 10.1164/rccm.201904-0834ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jenny A Bosson
- Department of Public Health and Clinical MedicineUmeå UniversityUmeå, Swedenand
| | - Ian S Mudway
- School of Population Health and Environmental SciencesKing's College LondonLondon, United Kingdom
| | - Thomas Sandström
- Department of Public Health and Clinical MedicineUmeå UniversityUmeå, Swedenand
| |
Collapse
|
7
|
De Grove KC, Provoost S, Brusselle GG, Joos GF, Maes T. Insights in particulate matter-induced allergic airway inflammation: Focus on the epithelium. Clin Exp Allergy 2018; 48:773-786. [PMID: 29772098 DOI: 10.1111/cea.13178] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
Outdoor air pollution is a major environmental health problem throughout the world. In particular, exposure to particulate matter (PM) has been associated with the development and exacerbation of several respiratory diseases, including asthma. Although the adverse health effects of PM have been demonstrated for many years, the underlying mechanisms have not been fully identified. In this review, we focus on the role of the lung epithelium and specifically highlight multiple cytokines in PM-induced respiratory responses. We describe the available literature on the topic including in vitro studies, findings in humans (ie observations in human cohorts, human controlled exposure and ex vivo studies) and in vivo animal studies. In brief, it has been shown that exposure to PM modulates the airway epithelium and promotes the production of several cytokines, including IL-1, IL-6, IL-8, IL-25, IL-33, TNF-α, TSLP and GM-CSF. Further, we propose that PM-induced type 2-promoting cytokines are important mediators in the acute and aggravating effects of PM on airway inflammation. Targeting these cytokines could therefore be a new approach in the treatment of asthma.
Collapse
Affiliation(s)
- K C De Grove
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - S Provoost
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G G Brusselle
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G F Joos
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - T Maes
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
8
|
Serra DS, Evangelista JSAM, Zin WA, Leal-Cardoso JH, Cavalcante FSÁ. Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol. Respir Physiol Neurobiol 2017; 242:80-85. [DOI: 10.1016/j.resp.2017.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 11/30/2022]
|
9
|
Nrf2 Regulates the Risk of a Diesel Exhaust Inhalation-Induced Immune Response during Bleomycin Lung Injury and Fibrosis in Mice. Int J Mol Sci 2017; 18:ijms18030649. [PMID: 28304344 PMCID: PMC5372661 DOI: 10.3390/ijms18030649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 01/09/2023] Open
Abstract
The present study investigated the effects of diesel exhaust (DE) on an experimental model of bleomycin (BLM)-induced lung injury and fibrosis in mice. BLM was intravenously administered to both Nrf2+/+ and Nrf2−/− C57BL/6J mice on day 0. The mice were exposed to DE for 56 days from 28 days before the BLM injection to 28 days after the BLM injection. Inhalation of DE induced significant inhibition of airway clearance function and the proinflammatory cytokine secretion in macrophages, an increase in neutrophils, and severe lung inflammatory injury, which were greater in Nrf2−/− mice than in Nrf2+/+ mice. In contrast, inhalation of DE was observed to induce a greater increase of hydroxyproline content in the lung tissues and significantly higher pulmonary antioxidant enzyme mRNA expression in the Nrf2+/+ mice than in Nrf2−/− mice. DE is an important risk factor, and Nrf2 regulates the risk of a DE inhalation induced immune response during BLM lung injury and fibrosis in mice.
Collapse
|
10
|
Zakharenko AM, Engin AB, Chernyshev VV, Chaika VV, Ugay SM, Rezaee R, Karimi G, Drozd VA, Nikitina AV, Solomennik SF, Kudryavkina OR, Xin L, Wenpeng Y, Tzatzarakis M, Tsatsakis AM, Golokhvast KS. Basophil mediated pro-allergic inflammation in vehicle-emitted particles exposure. ENVIRONMENTAL RESEARCH 2017; 152:308-314. [PMID: 27833058 DOI: 10.1016/j.envres.2016.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Despite of the fact that engine manufacturers develop a new technology to reduce exhaust emissions, insufficient attention given to particulate emissions. However, diesel exhaust particles are a major source of air-borne pollution, contain vast amount of polycyclic aromatic hydrocarbons (PAHs) and may have deleterious effects on the immune system, resulting in the induction and enhancement of pro-allergic processes. In the current study, vehicle emitted particles (VEP) from 2 different types of cars (diesel - D and gasoline - G) and locomotive (L) were collected. Overall, 129 four-week-old, male SPF-class Kunming mice were subcutaneously instilled with either low dose 100, 250 or high dose, 500mg/kg VEP and 15 mice were assigned as control group. The systemic toxicity was evaluated and alterations in the percentages of the CD3, CD4, CD8, CD16, CD25 expressing cells, basophils, eosinophils and neutrophils were determined. Basophil percentages were inversely associated with the PAH content of the VEPs, however basophil sensitization was more important than cell count in VEP exposure. Thus, the effects of VEP-PAHs emerge with the activation of basophils in an allergen independent fashion. Despite the increased percentage of CD4+ T cells, a sharp decrease in basophil counts at 500mg/kg of VEP indicates a decreased inhibitory effect of CD16+ monocytes on the proliferation of CD4+ T cell and suppressed polarization into a Th2 phenotype. Therefore, although the restrictions for vehicles emissions differ between countries, follow up studies and strict regulations are needed.
Collapse
Affiliation(s)
- Alexander M Zakharenko
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, 06330, Hipodrom, Ankara, Turkey
| | - Valery V Chernyshev
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Vladimir V Chaika
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Sergey M Ugay
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Ramin Rezaee
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vladimir A Drozd
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Anna V Nikitina
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Sergey F Solomennik
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Olga R Kudryavkina
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Liu Xin
- Biology Institute Shandong Academy of Science, Jinan 250014, China
| | - Yuan Wenpeng
- Biology Institute Shandong Academy of Science, Jinan 250014, China
| | - Manolis Tzatzarakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Aristidis M Tsatsakis
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia; Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece.
| | - Kirill S Golokhvast
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia.
| |
Collapse
|
11
|
Pawlak EA, Noah TL, Zhou H, Chehrazi C, Robinette C, Diaz-Sanchez D, Müller L, Jaspers I. Diesel exposure suppresses natural killer cell function and resolution of eosinophil inflammation: a randomized controlled trial of exposure in allergic rhinitics. Part Fibre Toxicol 2016; 13:24. [PMID: 27154411 PMCID: PMC4859992 DOI: 10.1186/s12989-016-0135-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
Exposure to diesel exhaust (DE) is known to exacerbate allergic inflammation, including virus-induced eosinophil activation in laboratory animals. We have previously shown that in human volunteers with allergic rhinitis a short-term exposure to DE prior to infection with the live attenuated influenza virus (LAIV) increases markers of allergic inflammation in the nasal mucosa. Specifically, levels of eosinophilic cationic protein (ECP) were significantly enhanced in individuals exposed to DE prior to inoculation with LAIV and this effect was maintained for at least seven days. However, this previous study was limited in its scope of nasal immune endpoints and did not explore potential mechanisms mediating the prolonged exacerbation of allergic inflammation caused by exposure to DE prior to inoculation with LAIV. In this follow-up study, the methods were modified to expand experimental endpoints and explore the potential role of NK cells. The data presented here suggest DE prolongs viral-induced eosinophil activation, which was accompanied by decreased markers of NK cell recruitment and activation. Separate in vitro studies showed that exposure to DE particles decreases the ability of NK cells to kill eosinophils. Taken together, these follow-up studies suggest that DE-induced exacerbation of allergic inflammation in the context of viral infections may be mediated by decreased activity of NK cells and their ability to clear eosinophils.
Collapse
Affiliation(s)
- Erica A Pawlak
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, 104 Mason Farm Rd, Campus Box 7310, Chapel Hill, NC, 27599-7310, USA
| | - Terry L Noah
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, 104 Mason Farm Rd, Campus Box 7310, Chapel Hill, NC, 27599-7310, USA.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haibo Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Claire Chehrazi
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carole Robinette
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, 104 Mason Farm Rd, Campus Box 7310, Chapel Hill, NC, 27599-7310, USA
| | | | - Loretta Müller
- University Children's Hospital Basel, Basel, Switzerland
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, 104 Mason Farm Rd, Campus Box 7310, Chapel Hill, NC, 27599-7310, USA. .,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Ierodiakonou D, Zanobetti A, Coull BA, Melly S, Postma DS, Boezen HM, Vonk JM, Williams PV, Shapiro GG, McKone EF, Hallstrand TS, Koenig JQ, Schildcrout JS, Lumley T, Fuhlbrigge AN, Koutrakis P, Schwartz J, Weiss ST, Gold DR. Ambient air pollution, lung function, and airway responsiveness in asthmatic children. J Allergy Clin Immunol 2016; 137:390-9. [PMID: 26187234 PMCID: PMC4742428 DOI: 10.1016/j.jaci.2015.05.028] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/17/2015] [Accepted: 05/20/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Although ambient air pollution has been linked to reduced lung function in healthy children, longitudinal analyses of pollution effects in asthmatic patients are lacking. OBJECTIVE We sought to investigate pollution effects in a longitudinal asthma study and effect modification by controller medications. METHODS We examined associations of lung function and methacholine responsiveness (PC20) with ozone, carbon monoxide (CO), nitrogen dioxide, and sulfur dioxide concentrations in 1003 asthmatic children participating in a 4-year clinical trial. We further investigated whether budesonide and nedocromil modified pollution effects. Daily pollutant concentrations were linked to ZIP/postal code of residence. Linear mixed models tested associations of within-subject pollutant concentrations with FEV1 and forced vital capacity (FVC) percent predicted, FEV1/FVC ratio, and PC20, adjusting for seasonality and confounders. RESULTS Same-day and 1-week average CO concentrations were negatively associated with postbronchodilator percent predicted FEV1 (change per interquartile range, -0.33 [95% CI, -0.49 to -0.16] and -0.41 [95% CI, -0.62 to -0.21], respectively) and FVC (-0.19 [95% CI, -0.25 to -0.07] and -0.25 [95% CI, -0.43 to -0.07], respectively). Longer-term 4-month CO averages were negatively associated with prebronchodilator percent predicted FEV1 and FVC (-0.36 [95% CI, -0.62 to -0.10] and -0.21 [95% CI, -0.42 to -0.01], respectively). Four-month averaged CO and ozone concentrations were negatively associated with FEV1/FVC ratio (P < .05). Increased 4-month average nitrogen dioxide concentrations were associated with reduced postbronchodilator FEV1 and FVC percent predicted. Long-term exposures to sulfur dioxide were associated with reduced PC20 (percent change per interquartile range, -6% [95% CI, -11% to -1.5%]). Treatment augmented the negative short-term CO effect on PC20. CONCLUSIONS Air pollution adversely influences lung function and PC20 in asthmatic children. Treatment with controller medications might not protect but rather worsens the effects of CO on PC20. This clinical trial design evaluates modification of pollution effects by treatment without confounding by indication.
Collapse
Affiliation(s)
- Despo Ierodiakonou
- University of Groningen, Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, The Netherlands.
| | - Antonella Zanobetti
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Steve Melly
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, Department of Pulmonology, University Medical Center Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- University of Groningen, Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- University of Groningen, Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul V Williams
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Wash
| | - Gail G Shapiro
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Wash
| | - Edward F McKone
- Department of Respiratory Medicine, St Vincent University Hospital, Dublin, Ireland
| | - Teal S Hallstrand
- Department of Pulmonary and Critical Care, School of Medicine, University of Washington, Seattle, Wash
| | - Jane Q Koenig
- Department of Environmental Health, School of Medicine, University of Washington, Seattle, Wash
| | | | - Thomas Lumley
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Anne N Fuhlbrigge
- Channing Laboratory, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Petros Koutrakis
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Joel Schwartz
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Scott T Weiss
- Channing Laboratory, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Diane R Gold
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, Mass; Channing Laboratory, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Mass.
| |
Collapse
|
13
|
Hosseini A, Hirota JA, Hackett TL, McNagny KM, Wilson SJ, Carlsten C. Morphometric analysis of inflammation in bronchial biopsies following exposure to inhaled diesel exhaust and allergen challenge in atopic subjects. Part Fibre Toxicol 2016; 13:2. [PMID: 26758251 PMCID: PMC4711081 DOI: 10.1186/s12989-016-0114-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/06/2016] [Indexed: 02/08/2023] Open
Abstract
Background Allergen exposure and air pollution are two risk factors for asthma development and airway inflammation that have been examined extensively in isolation. The impact of combined allergen and diesel exhaust exposure has received considerably less attention. Diesel exhaust (DE) is a major contributor to ambient particulate matter (PM) air pollution, which can act as an adjuvant to immune responses and augment allergic inflammation. We aimed to clarify whether DE increases allergen-induced inflammation and cellular immune response in the airways of atopic human subjects. Methods Twelve atopic subjects were exposed to DE 300 μg.m−3 or filtered air for 2 h in a blinded crossover study design with a four-week washout period between arms. One hour following either filtered air or DE exposure, subjects were exposed to allergen or saline (vehicle control) via segmental challenge. Forty-eight hours post-allergen or control exposure, bronchial biopsies were collected. The study design generated 4 different conditions: filtered air + saline (FAS), DE + saline (DES), filtered air + allergen (FAA) and DE + allergen (DEA). Biopsies sections were immunostained for tryptase, eosinophil cationic protein (ECP), neutrophil elastase (NE), CD138, CD4 and interleukin (IL)-4. The percent positivity of positive cells were quantified in the bronchial submucosa. Results The percent positivity for tryptase expression and ECP expression remained unchanged in the bronchial submucosa in all conditions. CD4 % positive staining in DEA (0.311 ± 0.060) was elevated relative to FAS (0.087 ± 0.018; p = 0.035). IL-4 % positive staining in DEA (0.548 ± 0.143) was elevated relative to FAS (0.127 ± 0.062; p = 0.034). CD138 % positive staining in DEA (0.120 ± 0.031) was elevated relative to FAS (0.017 ± 0.006; p = 0.015), DES (0.044 ± 0.024; p = 0.040), and FAA (0.044 ± 0.008; p = 0.037). CD138 % positive staining in FAA (0.044 ± 0.008) was elevated relative to FAS (0.017 ± 0.006; p = 0.049). NE percent positive staining in DEA (0.224 ± 0.047) was elevated relative to FAS (0.045 ± 0.014; p = 0.031). Conclusions In vivo allergen and DE co-exposure results in elevated CD4, IL-4, CD138 and NE in the respiratory submucosa of atopic subjects, while eosinophils and mast cells are not changed. Trial registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01792232. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0114-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ali Hosseini
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada. .,Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada. .,The Lung Center, Vancouver General Hospital (VGH) - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel Street, 7th floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Jeremy A Hirota
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada. .,Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada. .,The Lung Center, Vancouver General Hospital (VGH) - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel Street, 7th floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Tillie L Hackett
- Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada.
| | - Kelly M McNagny
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Susan J Wilson
- Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, S016 6YD, UK.
| | - Chris Carlsten
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada. .,Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada. .,The Lung Center, Vancouver General Hospital (VGH) - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel Street, 7th floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
14
|
Gavett SH, Wood CE, Williams MA, Cyphert JM, Boykin EH, Daniels MJ, Copeland LB, King C, Krantz TQ, Richards JH, Andrews DL, Jaskot RH, Gilmour MI. Soy biodiesel emissions have reduced inflammatory effects compared to diesel emissions in healthy and allergic mice. Inhal Toxicol 2015; 27:533-44. [PMID: 26514781 DOI: 10.3109/08958378.2015.1054966] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 01/14/2023]
Abstract
Toxicity of exhaust from combustion of petroleum diesel (B0), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM(2.5)) concentrations of 50, 150, or 500 μg/m(3). Studies in healthy mice showed greater levels of neutrophils and MIP-2 in bronchoalveolar lavage (BAL) fluid 2 h after a single 4-h exposure to B0 compared with mice exposed to B20 or B100. No consistent differences in BAL cells and biochemistry, or hematological parameters, were observed after 5 d or 4 weeks of exposure to any of the emissions. Air-exposed HDM-allergic mice had significantly increased responsiveness to methacholine aerosol challenge compared with non-allergic mice. Exposure to any of the emissions for 4 weeks did not further increase responsiveness in either non-allergic or HDM-allergic mice, and few parameters of allergic inflammation in BAL fluid were altered. Lung and nasal pathology were not significantly different among B0-, B20-, or B100-exposed groups. In HDM-allergic mice, exposure to B0, but not B20 or B100, significantly increased resting peribronchiolar lymph node cell proliferation and production of T(H)2 cytokines (IL-4, IL-5, and IL-13) and IL-17 in comparison with air-exposed allergic mice. These results suggest that diesel exhaust at a relatively high concentration (500 μg/m(3)) can induce inflammation acutely in healthy mice and exacerbate some components of allergic responses, while comparable concentrations of B20 or B100 soy biodiesel fuels did not elicit responses different from those caused by air exposure alone.
Collapse
Affiliation(s)
- Stephen H Gavett
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Charles E Wood
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Marc A Williams
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Jaime M Cyphert
- b Curriculum in Toxicology, UNC School of Medicine , Chapel Hill , NC , USA
| | - Elizabeth H Boykin
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Mary J Daniels
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Lisa B Copeland
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Charly King
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Todd Q Krantz
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Judy H Richards
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Debora L Andrews
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Richard H Jaskot
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - M Ian Gilmour
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| |
Collapse
|
15
|
Habert C, Garnier R. [Health effects of diesel exhaust: a state of the art]. Rev Mal Respir 2014; 32:138-54. [PMID: 25765120 DOI: 10.1016/j.rmr.2014.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/25/2014] [Indexed: 11/28/2022]
Abstract
INTRODUCTION This review presents the state of knowledge regarding the acute and chronic toxicity of diesel engine exhaust in humans. STATE OF ART The health effects of diesel engine exhaust, which is a complex mixture of gas and particulate matter (ultrafine and fine particles), are mainly irritation of the respiratory tract and carcinogenicity. They may also facilitate the development of respiratory allergies. A recent reassessment by the International Agency for Research on Cancer concluded that there is sufficient evidence of a causal association between exposure to diesel engine exhaust and lung cancer. PERSPECTIVES The epidemiologic data collected during the last two decades also show limited evidence of increased risks of bladder cancer, as well as of chronic obstructive pulmonary disease in diesel engine exhaust exposed workers. Both experimental and epidemiological studies have involved the effect of emissions from traditional diesel engine technology. Major developments in this technology have occurred recently and the toxicity of emissions from these new engines is still to be characterized. CONCLUSION Further studies are needed to explore the link between diesel engine exhaust exposure and the risks of bladder cancer, as well as of chronic obstructive pulmonary disease and respiratory allergies. Research is also needed to get more information about the toxicity of the new diesel technology emissions.
Collapse
Affiliation(s)
- C Habert
- Société nationale des chemins de fer, cellule de toxicologie, département prévention et santé, 44, rue de Rome, 75008 Paris, France.
| | - R Garnier
- Société nationale des chemins de fer, cellule de toxicologie, département prévention et santé, 44, rue de Rome, 75008 Paris, France; Centre antipoison de Paris, groupe hospitalier Lariboisière-Saint Louis, Assistance publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
16
|
Manners S, Alam R, Schwartz DA, Gorska MM. A mouse model links asthma susceptibility to prenatal exposure to diesel exhaust. J Allergy Clin Immunol 2014; 134:63-72. [PMID: 24365139 PMCID: PMC4065237 DOI: 10.1016/j.jaci.2013.10.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/30/2013] [Accepted: 10/14/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Most asthma begins in the first years of life. This early onset cannot be attributed merely to genetic factors because the prevalence of asthma is increasing. Epidemiologic studies have indicated roles for prenatal and early childhood exposures, including exposure to diesel exhaust. However, little is known about the mechanisms. This is largely due to a paucity of animal models. OBJECTIVE We aimed to develop a mouse model of asthma susceptibility through prenatal exposure to diesel exhaust. METHODS Pregnant C57BL/6 female mice were given repeated intranasal applications of diesel exhaust particles (DEPs) or PBS. Offspring underwent suboptimal immunization and challenge with ovalbumin (OVA) or received PBS. Pups were examined for features of asthma; lung and liver tissues were analyzed for transcription of DEP-regulated genes. RESULTS Offspring of mice exposed to DEPs were hypersensitive to OVA, as indicated by airway inflammation and hyperresponsiveness, increased serum OVA-specific IgE levels, and increased pulmonary and systemic TH2 and TH17 cytokine levels. These cytokines were primarily produced by natural killer (NK) cells. Antibody-mediated depletion of NK cells prevented airway inflammation. Asthma susceptibility was associated with increased transcription of genes known to be specifically regulated by the aryl hydrocarbon receptor and oxidative stress. Features of asthma were either marginal or absent in OVA-treated pups of PBS-exposed mice. CONCLUSION We created a mouse model that linked maternal exposure to DEPs with asthma susceptibility in offspring. Development of asthma was dependent on NK cells and associated with increased transcription from aryl hydrocarbon receptor- and oxidative stress-regulated genes.
Collapse
Affiliation(s)
- Sarah Manners
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo
| | - Rafeul Alam
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo; Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado Denver, Aurora, Colo
| | - David A Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colo
| | - Magdalena M Gorska
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo; Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado Denver, Aurora, Colo.
| |
Collapse
|
17
|
Grahame TJ, Klemm R, Schlesinger RB. Public health and components of particulate matter: the changing assessment of black carbon. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2014; 64:620-60. [PMID: 25039199 DOI: 10.1080/10962247.2014.912692] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
UNLABELLED In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments. In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries. Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models. Natural "interventions"--reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems--demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g, carbonaceous species, may cause harm, aiding interpretation of epidemiological studies. Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the US. EPA rubric for judging possible causality of PM25. mass concentrations, be used to assess which PM2.5. species are most harmful to public health. IMPLICATIONS Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. "Natural intervention" studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.
Collapse
|
18
|
Miller MR, McLean SG, Duffin R, Lawal AO, Araujo JA, Shaw CA, Mills NL, Donaldson K, Newby DE, Hadoke PWF. Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice. Part Fibre Toxicol 2013; 10:61. [PMID: 24330719 PMCID: PMC3907045 DOI: 10.1186/1743-8977-10-61] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/02/2013] [Indexed: 12/22/2022] Open
Abstract
Objective Diesel exhaust particulate (DEP), a major component of urban air pollution, has been linked to atherogenesis and precipitation of myocardial infarction. We hypothesized that DEP exposure would increase and destabilise atherosclerotic lesions in apolipoprotein E deficient (ApoE−/−) mice. Methods ApoE−/− mice were fed a ‘Western diet’ (8 weeks) to induce ‘complex’ atherosclerotic plaques, with parallel experiments in normal chow fed wild-type mice. During the last 4 weeks of feeding, mice received twice weekly instillation (oropharyngeal aspiration) of 35 μL DEP (1 mg/mL, SRM-2975) or vehicle (saline). Atherosclerotic burden was assessed by en-face staining of the thoracic aorta and histological examination of the brachiocephalic artery. Results Brachiocephalic atherosclerotic plaques were larger in ApoE−/− mice treated with DEP (59±10%) than in controls (32±7%; P = 0.017). In addition, DEP-treated mice had more plaques per section of artery (2.4±0.2 vs 1.8±0.2; P = 0.048) and buried fibrous layers (1.2±0.2 vs 0.4±0.1; P = 0.028). These changes were associated with lung inflammation and increased antioxidant gene expression in the liver, but not with changes in endothelial function, plasma lipids or systemic inflammation. Conclusions Increased atherosclerosis is caused by the particulate component of diesel exhaust producing advanced plaques with a potentially more vulnerable phenotype. These results are consistent with the suggestion that removal of the particulate component would reduce the adverse cardiovascular effects of diesel exhaust.
Collapse
Affiliation(s)
- Mark R Miller
- Centre for Cardiovascular Sciences, University of Edinburgh, 47 Little France Crescent, EH16 4TJ Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Acciani TH, Brandt EB, Khurana Hershey GK, Le Cras TD. Diesel exhaust particle exposure increases severity of allergic asthma in young mice. Clin Exp Allergy 2013; 43:1406-18. [PMID: 24112543 PMCID: PMC11653749 DOI: 10.1111/cea.12200] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/30/2013] [Accepted: 09/16/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND Epidemiologic studies have reported an association between diesel exhaust particle (DEP) exposure, allergic sensitization, and childhood wheezing, although the mechanisms remain unclear. While DEP is known to augment allergic responses in adult animal models, its effects on sensitization and asthma severity in young animals is unknown. OBJECTIVE To examine the impact of different doses of DEP and allergen co-exposure on allergic sensitization and asthma characteristics in young mice, and whether Th17 as well as Th2 responses are induced. METHODS Lungs of 3-week-old wild-type Balb/c mice were exposed by pharyngeal aspiration nine times over 3 weeks to DEP at 1.2 or 6.0 mg/kg body weight, house dust mite (HDM) at 0.8, 1.2 or 6.0 mg/kg of DEP in combination with HDM, or the same volume (50 μL) of 0.9% sterile saline. RESULTS In young mice, exposure to 1.2 mg/kg of DEP caused no detectable lung inflammation, but 6.0 mg/kg of DEP induced neutrophilic influx. Compared to HDM or DEP alone, mice exposed to either dose of DEP together with HDM demonstrated increased allergen-specific IgE, lung inflammation, airway hyperreactivity, goblet cell metaplasia, Th2/Th17 cytokines, dendritic cells, activated T cells, effector T cells, and IL-17(pos) and IL-13(pos) /IL-17A(pos) T effector cells. CONCLUSIONS AND CLINICAL RELEVANCE In young mice, co-exposure to DEP and HDM together exacerbated allergic sensitization and induced key characteristics of more severe asthma, including IL-17A, IL-17(pos) and IL-13(pos) /IL-17A(pos) T effector cells. While exposure to 1.2 mg/kg DEP alone caused no detectable changes, it did exacerbate allergic sensitization and asthma characteristics to a similar degree as a five-fold higher dose of DEP. This study demonstrates that exposure to DEP, even at a dose that alone causes no inflammation, exacerbates allergic asthma in young animals and suggests the importance of preventive measures to reduce the exposure of children to traffic related air pollution.
Collapse
Affiliation(s)
- T H Acciani
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
20
|
Sadakane K, Ichinose T, Takano H, Yanagisawa R, Koike E, Inoue KI. The alkylphenols 4-nonylphenol, 4-tert-octylphenol and 4-tert-butylphenol aggravate atopic dermatitis-like skin lesions in NC/Nga mice. J Appl Toxicol 2013; 34:893-902. [DOI: 10.1002/jat.2911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Kaori Sadakane
- Department of Health Sciences; Oita University of Nursing and Health Sciences; Megusuno Oita City Oita Japan
| | - Takamichi Ichinose
- Department of Health Sciences; Oita University of Nursing and Health Sciences; Megusuno Oita City Oita Japan
| | - Hirohisa Takano
- Department of Environmental Engineering; Kyoto University Graduate School of Engineering; Nishikyo-ku Kyoto Japan
| | - Rie Yanagisawa
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba City Ibaraki Japan
| | - Eiko Koike
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba City Ibaraki Japan
| | - Ken-ichiro Inoue
- Center for Medical Science; International University of Health and Welfare; Otawara Tochigi Japan
| |
Collapse
|
21
|
Nrf2 is a protective factor against oxidative stresses induced by diesel exhaust particle in allergic asthma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:323607. [PMID: 23738037 PMCID: PMC3655666 DOI: 10.1155/2013/323607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/18/2013] [Accepted: 04/08/2013] [Indexed: 11/18/2022]
Abstract
Epidemiological studies have shown that air pollutants, such as diesel exhaust particle (DEP), are implicated in the increased incidence of allergic airway disorders. In vitro studies of molecular mechanisms have focused on the role of reactive oxygen species generated directly and indirectly by the exposure to DEP. Antioxidants effectively reduce the allergic inflammatory effects induced by DEP both in vitro and in vivo. On the other hand, Nrf2 is a transcription factor essential for the inducible and/or constitutive expression of phase II and antioxidant enzymes. Disruption of Nrf2 enhances susceptibility to airway inflammatory responses and exacerbation of allergic inflammation induced by DEP in mice. Host responses to DEP are regulated by a balance between antioxidants and proinflammatory responses. Nrf2 may be an important protective factor against oxidative stresses induced by DEP in airway inflammation and allergic asthma and is expected to contribute to chemoprevention against DEP health effects in susceptible individuals.
Collapse
|
22
|
Plé C, Chang Y, Wallaert B, Tsicopoulos A. [Environmental pollution and allergy: immunological mechanisms]. REVUE DE PNEUMOLOGIE CLINIQUE 2013; 69:18-25. [PMID: 23333049 DOI: 10.1016/j.pneumo.2012.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
Airborne pollutants, both particulate and gaseous, represent a major environmental factor promoting allergic sensitization and disease expression. These adverse effects of particulate matter are highly dependent upon the nature and size of the particles, their content of chemicals and metals, and the subject's genetic makeup. Diesel exhaust and gases, in particular ozone, have been shown to exacerbate cellular inflammation and to act as mucosal adjuvants to skew the immune response to inhaled antigens toward a Th2-like phenotype. Growing evidence suggests that mechanisms of pollutant-induced amplification of the allergic reaction depend on oxidative stress that is under the control of susceptibility genes, as well as epigenetic mechanisms.
Collapse
Affiliation(s)
- C Plé
- Inserm U1019, CNRS UMR 8204, pulmonary immunity, center for infection and immunity of Lille, institut Pasteur de Lille, université Lille Nord de France, 1, rue du Prof.-Calmette, BP 245, 59019 Lille, France
| | | | | | | |
Collapse
|
23
|
Yamagishi N, Ito Y, Ramdhan DH, Yanagiba Y, Hayashi Y, Wang D, Li CM, Taneda S, Suzuki AK, Taya K, Watanabe G, Kamijima M, Nakajima T. Effect of nanoparticle-rich diesel exhaust on testicular and hippocampus steroidogenesis in male rats. Inhal Toxicol 2012; 24:459-67. [PMID: 22712718 DOI: 10.3109/08958378.2012.688225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Nanoparticle-rich diesel exhaust (NR-DE) has potentially adverse effects on testicular steroidogenesis. However, it is unclear whether NR-DE influences steroidogenic systems in the brain. OBJECTIVE To investigate the effect of NR-DE on hippocampal steroidogenesis of adult male rats in comparison with its effect on the testis. METHODS F344 male rats (8-week-old) were randomly divided into four groups (n = 8 or 9 per group) and exposed to clean air with 4.6 ± 3.2 μg/m(3) in mass concentration, NR-DE with 38 ± 3 μg/m(3) (a level nearly equivalent to the environmental standard in Japan (low NR-DE)), NR-DE with 149 ± 8 μg/m(3) (high NR-DE), or filtered diesel exhaust with 3.1 ± 1.9 μg/m(3) (F-DE), for 5 hours/day, 5 days/week, for 1, 2 or 3 months. F-DE was prepared by removing only particulate matters from high NR-DE with an HEPA filter. RESULTS Exposures to the high NR-DE for 1 month, and low NR-DE for 2 months, significantly increased or tended to increase plasma and testicular testosterone levels compared to clean air exposure, which might have resulted from the increased expression of mRNA of steroidogenic acute regulatory protein and its protein in the testes of rats. In the hippocampus, high NR-DE exposure for 1 month significantly increased the androstendione level compared to the clean air exposure, while no significant difference was observed in the steroidogenesis between fresh air exposure and any exposure to NR-DE or F-DE. CONCLUSION NR-DE may influence steroidogenic enzymes in the testis, but not those in the hippocampus.
Collapse
Affiliation(s)
- Nozomi Yamagishi
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Robertson S, Gray GA, Duffin R, McLean SG, Shaw CA, Hadoke PWF, Newby DE, Miller MR. Diesel exhaust particulate induces pulmonary and systemic inflammation in rats without impairing endothelial function ex vivo or in vivo. Part Fibre Toxicol 2012; 9:9. [PMID: 22480168 PMCID: PMC3361483 DOI: 10.1186/1743-8977-9-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 04/05/2012] [Indexed: 01/09/2023] Open
Abstract
Background Inhalation of diesel exhaust impairs vascular function in man, by a mechanism that has yet to be fully established. We hypothesised that pulmonary exposure to diesel exhaust particles (DEP) would cause endothelial dysfunction in rats as a consequence of pulmonary and systemic inflammation. Methods Wistar rats were exposed to DEP (0.5 mg) or saline vehicle by intratracheal instillation and hind-limb blood flow, blood pressure and heart rate were monitored in situ 6 or 24 h after exposure. Vascular function was tested by administration of the endothelium-dependent vasodilator acetylcholine (ACh) and the endothelium-independent vasodilator sodium nitroprusside (SNP) in vivo and ex vivo in isolated rings of thoracic aorta, femoral and mesenteric artery from DEP exposed rats. Bronchoalveolar lavage fluid (BALF) and blood plasma were collected to assess pulmonary (cell differentials, protein levels & interleukin-6 (IL-6)) and systemic (IL-6), tumour necrosis factor alpha (TNFα) and C-reactive protein (CRP)) inflammation, respectively. Results DEP instillation increased cell counts, total protein and IL-6 in BALF 6 h after exposure, while levels of IL-6 and TNFα were only raised in blood 24 h after DEP exposure. DEP had no effect on the increased hind-limb blood flow induced by ACh in vivo at 6 or 24 h. However, responses to SNP were impaired at both time points. In contrast, ex vivo responses to ACh and SNP were unaltered in arteries isolated from rats exposed to DEP. Conclusions Exposure of rats to DEP induces both pulmonary and systemic inflammation, but does not modify endothelium-dependent vasodilatation. Other mechanisms in vivo limit dilator responses to SNP and these require further investigation.
Collapse
Affiliation(s)
- Sarah Robertson
- Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yamagishi N, Ito Y, Ramdhan DH, Nakajima T. [Effects of nanoparticle-rich-diesel exhaust on steroidogenesis in rats and the mechanism underlying such effects]. Nihon Eiseigaku Zasshi 2011; 66:634-637. [PMID: 21996759 DOI: 10.1265/jjh.66.634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Diesel exhaust (DE) is one of the major air pollutants in the world. DE disrupts steroid hormone levels, which may result from the disruption of spermatogenesis. Steroidogenesis occurs not only in the testis but also in the brain. Therefore, we investigated the effects of nanoparticle-rich DE (NR-DE) on steroidogenesis in both the testis and hippocampus. Exposure to NR-DE at concentrations comparable to the environmental standard for particulate matters 2.5 (PM(2.5)) in Japan increased plasma testosterone level. This exposure increased the expression levels of genes involved in steroidogenesis in the testis, but not in the hippocampus, suggesting that NR-DE disrupts steroid hormone balance. This finding suggests the need to reconsider the environmental limit of PM(2.5) in Japan.
Collapse
Affiliation(s)
- Nozomi Yamagishi
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Japan
| | | | | | | |
Collapse
|
26
|
Abstract
The incidence of allergic diseases in most industrialized countries has increased. Although the exact mechanisms behind this rapid increase in prevalence remain uncertain, a variety of air pollutants have been attracting attention as one causative factor. Epidemiological and toxicological research suggests a causative relationship between air pollution and the increased incidence of asthma, allergic rhinitis, and other allergic disorders. These include ozone, nitrogen dioxide and, especially particulate matter, produced by traffic-related and industrial activities. Strong epidemiological evidence supports a relationship between air pollution and the exacerbation of asthma and other respiratory diseases. Recent studies have suggested that air pollutants play a role in the development of asthma and allergies. Researchers have elucidated the mechanisms whereby these pollutants induce adverse effects; they appear to affect the balance between antioxidant pathways and airway inflammation. Gene polymorphisms involved in antioxidant pathways can modify responses to air pollution exposure. While the characterization and monitoring of pollutant components currently dictates pollution control policies, it will be necessary to identify susceptible subpopulations to target therapy/prevention of pollution-induced respiratory diseases.
Collapse
Affiliation(s)
- Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
27
|
Karavitis J, Kovacs EJ. Macrophage phagocytosis: effects of environmental pollutants, alcohol, cigarette smoke, and other external factors. J Leukoc Biol 2011; 90:1065-78. [PMID: 21878544 DOI: 10.1189/jlb.0311114] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ability of a pathogen to evade host immunity successfully, in contrast to the host's capacity to defend itself against a foreign invader, is a complex struggle, in which eradication of infection is dictated by a robust immunologic response. Often, there are external factors that can alter the outcome by tipping the scale to benefit pathogen establishment rather than resolution by the host's defense system. These external sources, such a cigarettes, alcohol, or environmental pollutants, can negatively influence the effectiveness of the immune system's response to a pathogen. The observed suppression of immune function can be attributed to dysregulated cytokine and chemokine production, the loss of migratory potential, or the inability to phagocytose pathogens by immune cells. This review will focus on the mechanisms involved during the toxin-induced suppression of phagocytosis. The accumulated data support the importance of studying the mechanisms of phagocytosis following exposure to these factors, in that this effect alone cannot only leave the host susceptible to infection but also promote alterations in many other macrophage functions necessary for pathogen clearance and restoration of homeostasis.
Collapse
Affiliation(s)
- John Karavitis
- Program of Cell Biology, Neurobiology and Anatomy, Loyola University Medical Center, Maywood, Illinois, USA
| | | |
Collapse
|
28
|
Hosoya J, Tamura K, Muraki N, Okumura H, Ito T, Maeno M. A novel approach for a toxicity prediction model of environmental pollutants by using a quantitative structure-activity relationship method based on toxicogenomics. ISRN TOXICOLOGY 2011; 2011:515724. [PMID: 23724284 PMCID: PMC3658544 DOI: 10.5402/2011/515724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/30/2011] [Indexed: 11/28/2022]
Abstract
The development of automobile emission reduction technologies has decreased dramatically the particle concentration in emissions; however, there is a possibility that unexpected harmful chemicals are formed in emissions due to new technologies and fuels. Therefore, we attempted to develop new and efficient toxicity prediction models for the myriad environmental pollutants including those in automobile emissions. We chose 54 compounds related to engine exhaust and, by use of the DNA microarray, examined their effect on gene expression in human lung cells. We focused on IL-8 as a proinflammatory cytokine and developed a prediction model with quantitative structure-activity relationship (QSAR) for the IL-8 gene expression by using an in silico system. Our results demonstrate that this model showed high accuracy in predicting upregulation of the IL-8 gene. These results suggest that the prediction model with QSAR based on the gene expression from toxicogenomics may have great potential in predictive toxicology of environmental pollutants.
Collapse
Affiliation(s)
- Junichi Hosoya
- Energy and Environment Research Division, Japan Automobile Research Institute, 2530 Karima, Tsukuba, Ibaraki 305-0822, Japan ; Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Li YJ, Takizawa H, Azuma A, Kohyama T, Yamauchi Y, Kawada T, Kudoh S, Sugawara I. The effects of oxidative stress induced by prolonged low-dose diesel exhaust particle exposure on the generation of allergic airway inflammation differ between BALB/c and C57BL/6 mice. Immunopharmacol Immunotoxicol 2010; 31:230-7. [PMID: 18791914 DOI: 10.1080/08923970802383316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have recently reported that airway inflammatory responses to the oxidative stress induced by prolonged low-dose diesel exhaust particle (DEP) exposure differ markedly between BALB/c and C57BL/6 mice. In the present study, the effects of genetic differences in the response to prolonged low-dose DEP exposure on the generation of ovalbumin-induced allergic airway inflammation were further explored using the same mouse strains. In BALB/c mice, eosinophils and mucous goblet cells in histopathological pulmonary specimens increased significantly after DEP exposure, and were more marked than in C57BL/6 mice. Interleukin (IL)-5 and IL-13 levels in bronchoalveolar lavage (BAL) fluid were increased significantly by DEP exposure only in BALB/c mice. The DEP-induced increases in peribronchial eosinophils and mucous goblet cells in the lung tissues, and of IL-5 and IL-13 in the BAL fluid, were significantly attenuated by the antioxidant N-acetylcysteine. Thus, the effects of prolonged low-dose DEP exposure on the generation of allergic airway inflammation differed markedly between the mouse strains. These differences may be caused by different antioxidant responses to the oxidative stress induced by DEP exposure. Our results contribute more information to the search for genetic susceptibility factors in the response to DEP, and may thus assist in the discovery of new biomarkers for DEP-related disease.
Collapse
Affiliation(s)
- Ying-Ji Li
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
INOUE KENICHIRO, KOIKE EIKO, ENDOH AKIKO, SUMI DAIGO, KUMAGAI YOSHITO, HAYAKAWA KAZUICHI, KIYONO MASAKO, TANAKA MICHITAKA, TAKANO HIROHISA. Diesel exhaust particles induce a Th2 phenotype in mouse naïve mononuclear cells in vitro. Exp Ther Med 2010. [DOI: 10.3892/etm.2010.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
31
|
Miyake Y, Tanaka K, Fujiwara H, Mitani Y, Ikemi H, Sasaki S, Ohya Y, Hirota Y. Residential proximity to main roads during pregnancy and the risk of allergic disorders in Japanese infants: the Osaka Maternal and Child Health Study. Pediatr Allergy Immunol 2010; 21:22-8. [PMID: 19788536 DOI: 10.1111/j.1399-3038.2009.00951.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The role of traffic-related air pollution in the initiation of allergic disorders in children is still not clearly understood. The present prospective study examined the relation between proximity of the home during pregnancy to the nearest main road, which was used as a surrogate for traffic-related air pollutants, and the risk of allergic disorders in Japanese infants in an urban area. Subjects were 756 mother-child pairs. Distance of each subject's home during pregnancy from the center line of all of the 235 main roads in Osaka Prefecture was computed using geographical information system software. The first survey during pregnancy and the second survey between 2 and 9 months post-partum collected information on potential confounding factors. In the third survey, which was from 16 to 24 months post-partum, a self-administered questionnaire included questions on allergic disorders. In the third survey, 22.1% and 18.7% of infants became positive for wheeze and atopic eczema based on criteria of the International Study of Asthma and Allergies in Childhood (ISAAC), respectively. The risk of doctor-diagnosed asthma and doctor-diagnosed atopic eczema was 4.4% and 8.9%, respectively. A shorter distance of the residence during pregnancy from the nearest main road was associated with an increased risk of doctor-diagnosed asthma and atopic eczema (adjusted odds ratios for comparison of <50 m with 200 m or more = 4.01 and 2.26, 95% confidence intervals: 1.44-11.24 and 1.08-4.59, p for trend = 0.02 and 0.03, respectively). No evident relationships were observed between the distance of the residence during pregnancy from the nearest main road and the risk of wheeze or atopic eczema based on the ISAAC criteria. It was difficult to distinguish the effect of the pre-natal from the post-natal exposure because most subjects lived at the same home address both before and after childbirth. Our results are likely to support the hypothesis that intrauterine exposure to traffic-related air pollutants and/or such exposure after birth may increase the risk of more extreme manifestations of allergic disorders in infants.
Collapse
Affiliation(s)
- Yoshihiro Miyake
- Department of Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Takahashi G, Tanaka H, Wakahara K, Nasu R, Hashimoto M, Miyoshi K, Takano H, Yamashita H, Inagaki N, Nagai H. Effect of diesel exhaust particles on house dust mite-induced airway eosinophilic inflammation and remodeling in mice. J Pharmacol Sci 2010; 112:192-202. [PMID: 20093792 DOI: 10.1254/jphs.09276fp] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Recent research has focused on the effects of ambient particulate pollution and much evidence has indicated that particulate pollution is associated with the onset of asthma and allergy; however, the effect of diesel exhaust particles (DEP) on the development of allergen-induced airway remodeling has not been fully investigated in vivo. In the present study, we examined the effects of DEP on Dermatophagoides farinae allergens (Der f)-induced asthma-like phenotypes in mice. Mice were administered i.t. 8 times with Der f. DEP were injected i.t. with Der f 4 times throughout the experiment or twice at the sensitization period. In both cases, DEP aggravated Der f-induced increases in airway responsiveness to acetylcholine, the number of eosinophils and neutrophils in the bronchoalveolar lavage fluid (BALF), serum Der f-specific IgG1 levels, Th2 cytokines and transforming growth factor-beta1 levels in BALF, and amount of hydroxyproline in the right lungs. Furthermore, goblet cell hyperplasia and subepithelial fibrosis were also markedly aggravated. These findings indicate that DEP can potentiate airway remodeling induced by repeated allergen challenge as well as Th2-drived airway hyperresponsiveness, eosinophilic inflammation, and IgG1 production and that DEP can exhibit adjuvant activity for airway remodeling, probably due to the enhancement of allergen sensitization and/or of Th2 polarizing pathways.
Collapse
Affiliation(s)
- Go Takahashi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Mitahora-higashi, Gifu 502-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Maes T, Provoost S, Lanckacker EA, Cataldo DD, Vanoirbeek JAJ, Nemery B, Tournoy KG, Joos GF. Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation. Respir Res 2010; 11:7. [PMID: 20092634 PMCID: PMC2831838 DOI: 10.1186/1465-9921-11-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/21/2010] [Indexed: 02/06/2023] Open
Abstract
Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed.
Collapse
Affiliation(s)
- Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li YJ, Kawada T, Matsumoto A, Azuma A, Kudoh S, Takizawa H, Sugawara I. AIRWAY INFLAMMATORY RESPONSES TO OXIDATIVE STRESS INDUCED BY LOW-DOSE DIESEL EXHAUST PARTICLE EXPOSURE DIFFER BETWEEN MOUSE STRAINS. Exp Lung Res 2009; 33:227-44. [PMID: 17620185 DOI: 10.1080/01902140701481062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Low-dose diesel exhaust particle (DEP) exposure induces airway inflammation and exaggerates asthmatic responses in mice, but it is unclear whether strains differ in their susceptibility to adverse effects from low-dose DEP exposure. The authors used BALB/c and C57BL/6 mouse strains to search for genetically based differences in response to low-dose DEP (100 microg/m(3)) exposure in terms of airway inflammatory response. The macrophage count in bronchoalveolar lavage (BAL) fluid soon after DE exposure began was significantly greater in C57BL/6 mice (P < .05) than that in BALB/c mice. The count did not increase significantly in BALB/c mice until later. Heme oxygenase-1 (HO-1) mRNA expression and protein production in lung tissues soon after exposure began were more marked in BALB/c mice than in C57BL/6 mice, but the reverse was true later on. The increases in interleukin (IL)-1beta and interferon (IFN)-gamma levels in BAL fluid after DE exposure were significant only in BALB/c mice; there were significantly increases in monocyte chemoattractant protein (MCP)-1, IL-12, IL-10, IL-4, and IL-13 in both strains, but these were more marked in C57BL/6 mice. These interstrain differences in airway inflammatory response after DE exposure were significantly attenuated by antioxidant N-acetylcysteine (NAC) treatment. Changes in airway hyperresponsiveness were independent of the airway inflammation induced by low-dose DEP. Thus, in BALB/c mice, innate immunity may play a central role in DE exposure response, whereas in C57BL/6 mice Th2-dominant responses play a central role. Low-dose DEP exposure induces airway inflammatory responses that differ among strains, and these differences may be caused by differences in sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Ying-Ji Li
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Fedulov AV, Kobzik L. Immunotoxicologic analysis of maternal transmission of asthma risk. J Immunotoxicol 2009; 5:445-52. [PMID: 19404877 DOI: 10.1080/15476910802481765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Asthma has origins in early life. Epidemiological studies show that maternal, more than paternal, asthma significantly increases a child's risk of developing the disease. Experimental animal models exist which reproduce the increased susceptibility to asthma seen in human studies, and allow analysis of immunotoxic mechanisms that may contribute to neonatal allergy. In addition to maternal asthma, chemically-induced skin contact hypersensitivity or exposure during pregnancy of non-allergic females to certain environmental agents, e.g., air pollution particles, can also result in increased susceptibility to asthma in their offspring. We review here experimental models of maternal transmission of asthma risk, the progress to date in identifying mechanisms, and potential directions for future research.
Collapse
Affiliation(s)
- Alexey V Fedulov
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
36
|
Heidenfelder BL, Reif DM, Harkema JR, Cohen Hubal EA, Hudgens EE, Bramble LA, Wagner JG, Morishita M, Keeler GJ, Edwards SW, Gallagher JE. Comparative microarray analysis and pulmonary changes in Brown Norway rats exposed to ovalbumin and concentrated air particulates. Toxicol Sci 2009; 108:207-21. [PMID: 19176365 DOI: 10.1093/toxsci/kfp005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The interaction between air particulates and genetic susceptibility has been implicated in the pathogenesis of asthma. The overall objective of this study was to determine the effects of inhalation exposure to environmentally relevant concentrated air particulates (CAPs) on the lungs of ovalbumin (ova) sensitized and challenged Brown Norway rats. Changes in gene expression were compared with lung tissue histopathology, morphometry, and biochemical and cellular parameters in bronchoalveolar lavage fluid (BALF). Ova challenge was responsible for the preponderance of gene expression changes, related largely to inflammation. CAPs exposure alone resulted in no significant gene expression changes, but CAPs and ova-exposed rodents exhibited an enhanced effect relative to ova alone with differentially expressed genes primarily related to inflammation and airway remodeling. Gene expression data was consistent with the biochemical and cellular analyses of the BALF, the pulmonary pathology, and morphometric changes when comparing the CAPs-ova group to the air-saline or CAPs-saline group. However, the gene expression data were more sensitive than the BALF cell type and number for assessing the effects of CAPs and ova versus the ova challenge alone. In addition, the gene expression results provided some additional insight into the TGF-beta-mediated molecular processes underlying these changes. The broad-based histopathology and functional genomic analyses demonstrate that exposure to CAPs exacerbates rodents with allergic inflammation induced by an allergen and suggests that asthmatics may be at increased risk for air pollution effects.
Collapse
Affiliation(s)
- Brooke L Heidenfelder
- Human Studies Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pénard-Morand C, Annesi-Maesano I. [Allergic respiratory diseases and outdoor air pollution]. Rev Mal Respir 2009; 25:1013-26. [PMID: 18971807 DOI: 10.1016/s0761-8425(08)74417-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION After having increased for some time, the prevalence of allergic diseases may have reached a plateau. During this increase, considerable concomitant changes in air pollution have occurred. Photo-oxidant air pollution, related to traffic, has become preponderant. The implication of air pollution in the epidemic of allergies is still debated. BACKGROUND Experimental studies have suggested that the effect of air pollutants, including particulates and ozone, on the worsening and even the induction of allergies is biologically plausible. In addition, epidemiological studies have shown a short term impact of the peaks of air pollution on exacerbations of asthma. On the other hand, the results of epidemiological studies dealing with the long-term effects of chronic exposure to air pollution on the prevalence of allergies are less consistent. VIEWPOINTS The implementation of new-born cohorts, the use of dispersion models to improve exposure assessment and the study of gene-environment correlations, should increase our knowledge of the role of traffic-related air pollutants in the development of allergies and identify subjects more sensitive to their effects. CONCLUSIONS Some traffic-related air pollutants may have played a more important role in the increase in the prevalence of allergies than was assumed from the first epidemiological studies.
Collapse
|
38
|
Day KC, Reed MD, McDonald JD, Seilkop SK, Barrett EG. Effects of Gasoline Engine Emissions on Preexisting Allergic Airway Responses in Mice. Inhal Toxicol 2008; 20:1145-55. [DOI: 10.1080/08958370802382723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Last JA, Ward R, Temple L, Pinkerton KE, Kenyon NJ. Ovalbumin-Induced Airway Inflammation and Fibrosis in Mice Also Exposed to Ultrafine Particles. Inhal Toxicol 2008; 16:93-102. [PMID: 15204782 DOI: 10.1080/08958370490265077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A murine model of allergen-induced airway inflammation was used to examine the effects of exposure to ultrafine particles (PM(2.5)) on airway inflammation and remodeling. Lung inflammation was measured by quantitative differential evaluation of lung lavage cells. Alterations in lung structure (airway remodeling and fibrosis) were evaluated by quantitative biochemical analysis of microdissected airways and by histological evaluation of stained lung sections. The same total number of cells was observed in lavage fluid from animals exposed for 4 wk to ovalbumin alone or to ovalbumin for 4 wk immediately before or after 6 exposures over a period of 2 wk to 235 ug/m(3) of PM(2.5). Mice exposed to ovalbumin for 6 wk with concurrent exposure to PM(2.5) during wk 5-6 had a significant decrease in the total number of cells recovered by lavage as compared with the group exposed to ovalbumin alone. There were no significant differences in the cell differential counts in the lavage fluid from mice exposed to ovalbumin alone as compared with values from mice exposed to ovalbumin and PM(2.5) under the protocols studied. Airway structural changes (remodeling) were examined by three different quantitative methods. None of the groups exposed to ovalbumin and PM had a significant increase in airway collagen content evaluated biochemically (i.e., total airway collagen) as compared to the matched groups of mice exposed to ovalbumin alone. Airway collagen content evaluated histologically by sirius red staining showed significant increases in all of the animals exposed to ovalbumin, with or without PM, and no apparent difference between the ovalbumin group and mice exposed to PM with ovalbumin. The findings were consistent with an additive, or less than additive, response of mice to exposure to PM and ovalbumin. Air or PM exposure alone for 2 wk did not result in observable goblet cells in the airways, while mice exposed to ovalbumin aerosol alone for 4 wk had about 20-25% goblet cells in their conducting airways. Sequential exposure to ovalbumin and PM (or vice versa) caused significant increases in goblet cells (to about 35% of total cells) in the conducting airways of the exposed mice. We conclude that when mice with allergen-induced airway inflammation induced by ovalbumin are also exposed to PM(2.5), the lung inflammatory response and airway remodeling may be modified, but that this altered response is dependent upon the sequence of exposure and the duration of exposure to ovalbumin aerosol. At the concentrations of PM tested, we did not see changes in airway fibrosis or airway reactivity for animals exposed to ovalbumin and PM(2.5) as compared with animals exposed only to ovalbumin aerosol. However, goblet-cell hyperplasia was significantly increased in mice exposed concurrently to ovalbumin and PM(2.5) as compared with mice exposed to ovalbumin alone.
Collapse
Affiliation(s)
- Jerold A Last
- Pulmonary and Critical Care Medicine, School of Medicine, and Center for Health and the Environment, University of California, Davis, California, USA.
| | | | | | | | | |
Collapse
|
40
|
Singh P, Madden M, Gilmour MI. Effects of Diesel Exhaust Particles and Carbon Black on Induction of Dust Mite Allergy in Brown Norway Rats. J Immunotoxicol 2008; 2:41-9. [DOI: 10.1080/15476910590952458] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
41
|
Li YJ, Takizawa H, Azuma A, Kohyama T, Yamauchi Y, Takahashi S, Yamamoto M, Kawada T, Kudoh S, Sugawara I. Disruption of Nrf2 enhances susceptibility to airway inflammatory responses induced by low-dose diesel exhaust particles in mice. Clin Immunol 2008; 128:366-73. [DOI: 10.1016/j.clim.2008.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 10/21/2022]
|
42
|
Li YJ, Kawada T, Takizawa H, Azuma A, Kudoh S, Sugawara I, Yamauchi Y, Kohyama T. Airway inflammatory responses to oxidative stress induced by prolonged low-dose diesel exhaust particle exposure from birth differ between mouse BALB/c and C57BL/6 strains. Exp Lung Res 2008; 34:125-39. [PMID: 18307122 DOI: 10.1080/01902140701884406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The authors used BALB/c and C57BL/6 mouse strains to search for genetically based differences in response to prolonged (6 months) low-dose (100 microg/m3) diesel exhaust particle (DEP) exposure from birth in terms of airway inflammatory responses. Histopathological assessment showed that inflammatory cells infiltrated the perivascular areas only in C57BL/6 mice. The count of DEP-laden alveolar macrophages in bronchoalveolar lavage (BAL) fluid was significantly greater in BALB/c mice (P < .05) than in C57BL/6 mice. The lymphocyte and eosinophil count in BAL fluid was significantly greater in C57BL/6 mice (P < .05) than in BALB/c mice. Immunoglobulin (Ig) IgG1 and IgG2 levels in serum, and the monocyte chemoattractant protein (MCP)-1 level in BAL fluid were significantly greater in BALB/c mice than in C57BL/6 mice. The interleukin (IL)-12 level in BAL fluid was significantly greater in C57BL/6 mice than in BALB/c mice, but the IL-13 level in BAL fluid was significantly less in BALB/c mice than in C57BL/6 mice. Glutathione S-transferase (GST) mRNA expression and protein production in lung tissues were significantly lower in C57BL/6 mice than in BALB/c mice, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) level in the lung tissues were significantly greater in C57BL/6 mice than in BALB/c mice. In conclusion, prolonged low-dose DEP exposure induces airway inflammatory responses that differ remarkably among mouse strains; these differences are caused by differences in the host defense response to the oxidative stress induced by DEP exposure and may be useful in the development of biomarkers.
Collapse
Affiliation(s)
- Ying-Ji Li
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yasuda A, Takano H, Osakabe N, Sanbongi C, Fukuda K, Natsume M, Yanagisawa R, Inoue K, Kato Y, Osawa T, Yoshikawa T. Cacao Liquor Proanthocyanidins Inhibit Lung Injury Induced by Diesel Exhaust Particles. Int J Immunopathol Pharmacol 2008; 21:279-88. [DOI: 10.1177/039463200802100204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Epidemiological and experimental studies have suggested that diesel exhaust particles (DEPs), which generate reactive oxygen species, may be involved in the recent increase in the prevalence of lung diseases. Cacao liquor proanthocyanidins (CPs) are naturally occurring polyphenols with antioxidative activities. We carried out a study in mice to investigate the effects of dietary supplementation of CPs on lung injury induced by intratracheal administration of DEPs (500 μg/body). Dietary supplementation with 1.0% CPs inhibited DEP-induced lung injury, characterized by neutrophil sequestration and edema. Immunohistochemical analyses showed that CPs prevented enhanced expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 caused by DEPs in the lung injury. Numerous adducts of nitrotyrosine, N-(hexanonyl) lysine, 4-hydroxy-2-nonenal, and 8-OHdG were also observed immunohistochemically in the lungs of mice treated with DEPs. However, these indicators of oxidative stress were barely visible in mice pretreated with CP supplementation. In addition, the level of thiobarbituric acid reactive substances in the lung was decreased by CP supplementation in the presence of DEPs. These results suggest that CPs inhibit DEP-induced lung injury by reducing oxidative stress, in association with a reduction in the expression of adhesion molecules.
Collapse
Affiliation(s)
| | - H. Takano
- Environmental Health Sciences Division, National Institute for Environmental Studies, Ibaraki
- Infection and Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | - R. Yanagisawa
- Environmental Health Sciences Division, National Institute for Environmental Studies, Ibaraki
| | - K. Inoue
- Environmental Health Sciences Division, National Institute for Environmental Studies, Ibaraki
- Infection and Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Y. Kato
- Laboratories of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, Aichi
| | - T. Osawa
- Infection and Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - T. Yoshikawa
- School of Humanities for Environmental Policy and Technology, Himeji Institute of Technology, Hyogo
| |
Collapse
|
44
|
Cesaroni G, Badaloni C, Porta D, Forastiere F, Perucci CA. Comparison between various indices of exposure to traffic-related air pollution and their impact on respiratory health in adults. Occup Environ Med 2008; 65:683-90. [PMID: 18203803 PMCID: PMC2771851 DOI: 10.1136/oem.2007.037846] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objective: To evaluate the association of different indices of traffic-related air pollution (self-report of traffic intensity, distance from busy roads from geographical information system (GIS), area-based emissions of particulate matter (PM), and estimated concentrations of nitrogen dioxide (NO2) from a land-use regression model) with respiratory health in adults. Methods: A sample of 9488 25–59-year-old Rome residents completed a self-administered questionnaire on respiratory health and various risk factors, including education, occupation, housing conditions, smoking, and traffic intensity in their area of residence. The study used GIS to calculate the distance between their home address and the closest high-traffic road. For each subject, PM emissions in the area of residence as well as estimated NO2 concentrations as assessed by a land-use regression model (R2 value = 0.69), were available. Generalised estimating equations (GEE) were used to analyse the association between air pollution measures and prevalence of “ever” chronic bronchitis, asthma, and rhinitis taking into account the effects of age, gender, education, smoking habits, socioeconomic position, and the correlation of variables for members of the same family. Results: Three hundred and ninety seven subjects (4% of the study population) reported chronic bronchitis, 472 (5%) asthma, and 1227 (13%) rhinitis. Fifteen per cent of subjects reported living in high traffic areas, 11% lived within 50 m of a high traffic road, and 28% in areas with estimated NO2 greater than 50 μg/m3. Prevalence of asthma was associated only with self-reported traffic intensity whereas no association was found for the other more objective indices. Rhinitis, on the other hand, was strongly associated with all traffic-related indicators (eg, OR = 1.13, 95% CI: 1.04 to 1.22 for 10 μg/m3 NO2), especially among non-smokers. Conclusions: Indices of exposure to traffic-related air pollution are consistently associated with an increased risk of rhinitis in adults, especially among non-smokers. The results for asthma are weak, possibly due to ascertainment problems.
Collapse
Affiliation(s)
- G Cesaroni
- Epidemiology Department, Local Health Unit, ASL RME, Via S. Costanza 53, 00198 Rome, Italy.
| | | | | | | | | |
Collapse
|
45
|
Samuelsen M, Nygaard UC, Løvik M. Allergy adjuvant effect of particles from wood smoke and road traffic. Toxicology 2008; 246:124-31. [PMID: 18289765 DOI: 10.1016/j.tox.2008.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/21/2007] [Accepted: 01/03/2008] [Indexed: 11/28/2022]
Abstract
There is growing evidence that in addition to augmenting the severity of asthma and allergic diseases, particulate air pollution also increases the incidence of allergy and asthma. We studied the adjuvant effect of particles from wood smoke and road traffic on the immune response to the allergen ovalbumin (OVA). OVA with and without particles was injected into one hind footpad of Balb/cA mice. All particles together with OVA significantly increased the level of OVA-specific immunoglobulin E (IgE) in serum, compared to groups given OVA or particles alone. Reference diesel exhaust particles (DEP) with OVA induced the highest levels of IgE, whereas no clear difference was observed between particles from road traffic and wood smoke. Road traffic particles collected in the autumn induced higher IgE values with OVA than corresponding particles collected during the winter season when studded tires are used, suggesting that studded tire-generated road pavement particles have less allergy adjuvant activity than exhaust particles. Compared to OVA or particles alone, all particles with OVA increased popliteal lymph node cell numbers, cell proliferation, ex vivo secretion of IL-4 and IL-10 after ConA stimulation, and the expression of several cell surface molecules (CD19, MHC class II, CD86 and CD23). Wood smoke particles with OVA induced somewhat higher cellular responses than road traffic particles, but less than DEP with OVA which seemed to be the most potent particle in inducing cellular as well as antibody responses. Thus, wood smoke particles had about the same capacity to enhance allergic sensitization as road traffic particles, but less than diesel exhaust particles.
Collapse
Affiliation(s)
- Mari Samuelsen
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O.Box 4404 Nydalen, NO-0403 Oslo, Norway.
| | | | | |
Collapse
|
46
|
Stevens T, Krantz QT, Linak WP, Hester S, Gilmour MI. Increased transcription of immune and metabolic pathways in naive and allergic mice exposed to diesel exhaust. Toxicol Sci 2008; 102:359-70. [PMID: 18192680 DOI: 10.1093/toxsci/kfn006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diesel exhaust (DE) has been shown to enhance allergic sensitization in animals following high-dose instillation or chronic inhalation exposure scenarios. The purpose of this study was to determine if short-term exposures to diluted DE enhance allergic immune responses to antigen, and identify possible mechanisms using microarray technology. BALB/c mice were exposed to filtered air or diluted DE to yield particle concentrations of 500 or 2000 mug/m(3) 4 h/day on days 0-4. Mice were immunized intranasally with ovalbumin (OVA) antigen or saline on days 0-2, challenged on day 18 with OVA or saline, and all mice were challenged with OVA on day 28. Mice were necropsied either 4 h after the last DE exposure on day 4, or 18, 48, and 96 h after the last challenge. Immunological endpoints included OVA-specific serum IgE, biochemical and cellular profiles of bronchoalveolar lavage (BAL), and cytokine production in the BAL. OVA-immunized mice exposed to both concentrations of DE had increased eosinophils, neutrophils, lymphocytes, and interleukin-6 (high dose only) post-challenge compared with OVA control, whereas DE/saline exposure yielded increases in neutrophils at the high dose only. Transcriptional microarray analysis 4 h after the last DE exposure demonstrated distinct gene expression profiles for the high-dose DE/OVA and DE/saline groups. DE/OVA induced oxidative stress and metabolism pathways, whereas DE in the absence of immunization modulated cell cycle control, growth and differentiation, G-proteins, and cell adhesion pathways. This study shows for the first time early changes in gene expression induced by the combination of DE inhalation and mucosal immunization, which resulted in stronger development of allergic eosinophilia.
Collapse
Affiliation(s)
- Tina Stevens
- Curriculum of Toxicology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
47
|
Fedulov AV, Leme A, Yang Z, Dahl M, Lim R, Mariani TJ, Kobzik L. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am J Respir Cell Mol Biol 2007; 38:57-67. [PMID: 17656681 PMCID: PMC2176127 DOI: 10.1165/rcmb.2007-0124oc] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Maternal immune responses can promote allergy development in offspring, as shown in a model of increased susceptibility to asthma in babies of ovalbumin (OVA)-sensitized and -challenged mother mice. We investigated whether inflammatory responses to air pollution particles (diesel exhaust particles, DEP) or control "inert" titanium dioxide (TiO(2)) particles are enhanced during pregnancy and whether exposure to particles can cause increased neonatal susceptibility to asthma. Pregnant BALB/c mice (or nonpregnant controls) received particle suspensions intranasally at Day 14 of pregnancy. Lung inflammatory responses were evaluated 48 hours after exposure. Offspring of particle- or buffer-treated mothers were sensitized and aerosolized with OVA, followed by assays of airway hyperresponsiveness (AHR) and allergic inflammation (AI). Nonpregnant females had the expected minimal response to "inert" TiO(2). In contrast, pregnant mice showed robust and persistent acute inflammation after both TiO(2) and DEP. Genomic profiling identified genes differentially expressed in pregnant lungs exposed to TiO(2). Neonates of mothers exposed to TiO(2) (and DEP, but not PBS) developed AHR and AI, indicating that pregnancy exposure to both "inert" TiO(2) and DEP caused increased asthma susceptibility in offspring. We conclude that (1) pregnancy enhances lung inflammatory responses to otherwise relatively innocuous inert particles; and (2) exposures of nonallergic pregnant females to inert or toxic environmental air particles can cause increased allergic susceptibility in offspring.
Collapse
Affiliation(s)
- Alexey V Fedulov
- Harvard School of Public Health, Dept. of Environmental Health, Molecular and Integrative Physiological Sciences Program, 665 Huntington Ave, HSPH-12, Room 1313, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Barrett EG, Henson RD, Seilkop SK, McDonald JD, Reed MD. Effects of hardwood smoke exposure on allergic airway inflammation in mice. Inhal Toxicol 2007; 18:33-43. [PMID: 16326399 DOI: 10.1080/08958370500282340] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hardwood smoke (HWS) from wood burning stoves and fireplaces can be a significant contributor to the composition of ambient air pollution. We hypothesize that the inhalation of HWS by ovalbumin (OVA)-sensitized mice with preexisting lung inflammation leads to the exacerbation of allergic airway responses. Two different models were employed to characterize the effects of inhaled wood smoke on allergic airway inflammation. In both models, male BALB/c mice were sensitized by injection with OVA and alum. In one model, mice were challenged by inhalation with OVA 1 day prior to exposure to HWS (30, 100, 300, or 1000 microg particulate matter [PM]/m(3)) for 6 h/day on 3 consecutive days. In the other model, mice were exposed by inhalation to OVA, rested for 11 days, were exposed to HWS for 3 consecutive days, and then were exposed to OVA immediately after the final HWS exposure. Bronchoalveolar lavage (BAL), and blood collection were performed approximately 18 h after the last HWS or OVA exposure. HWS exposure after the final allergen challenge (first model) led to a significant increase in BAL eosinophils only at the 300 microg/m(3) level. In contrast, changes in BAL cells did not reach statistical significance in the second model. There were no HWS-induced changes in BAL interleukin (IL)-2, IL-4, IL-13, and interferon (IFN)gamma levels in either model following OVA challenge. These results suggest that acute HWS exposure can minimally exacerbate some indices of allergic airway inflammation when a final OVA challenge precedes HWS exposure, but does not alter Th1/Th2 cytokine levels.
Collapse
Affiliation(s)
- Edward G Barrett
- Respiratory Immunology and Asthma Program and Experimental Toxicology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA.
| | | | | | | | | |
Collapse
|
49
|
Dorsey TF, Lafleur AL, Kumata H, Takada H, Herrero-Jimenez P, Thilly WG. Correlations of asthma mortality with traffic-related factors: use of catalytic converters and radial tires. J Occup Environ Med 2007; 48:1321-7. [PMID: 17159648 DOI: 10.1097/01.jom.0000236402.08284.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE : The objective of this study was to test the hypotheses that the post-1970 rise in asthma mortality in industrialized nations was related to introduction of catalytic converters and/or radial tires. METHODS : Annual asthma mortality data were plotted on linear coordinates for fraction of automobile fleet with converters or radial tires in Canada, Germany, Japan, and the United States. RESULTS : Catalytic converter association could not account for asthma mortality that rose in Germany before general adoption of the technology there. Radial tire use was, however, linearly correlated with asthma mortality in all four countries. CONCLUSION : Rising exposure to materials related to radial tire use may account for a substantial fraction of increased asthma mortality risk since approximately 1970.
Collapse
Affiliation(s)
- Thomas F Dorsey
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
50
|
Matsumoto A, Hiramatsu K, Li Y, Azuma A, Kudoh S, Takizawa H, Sugawara I. Repeated exposure to low-dose diesel exhaust after allergen challenge exaggerates asthmatic responses in mice. Clin Immunol 2006; 121:227-35. [PMID: 16979384 DOI: 10.1016/j.clim.2006.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 07/18/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND In conjunction with allergens, diesel exhaust particles act as an adjuvant to enhance IgE responses, inducing expression of cytokines/chemokines and adhesion molecules, and increasing airway hyper-responsiveness (AHR). As most studies were designed to expose animals to diesel exhaust throughout the periods of both sensitization and allergen challenge, it remains unclear whether diesel exhaust (DE) exposure exaggerates airway responses in asthmatic animals. OBJECTIVE To study effects of exposure to low-dose DE on AHR and allergic airway inflammation in asthmatic mice. METHODS BALB/c mice were sensitized by intraperitoneal injection of ovalbumin and challenged by intranasal administration with ovalbumin. They were exposed to low-dose DE for 7 h/day, 5 days/week, for up to 12 weeks. AHR to methacholine was evaluated by whole-body plethysmography as well as bronchoalveolar lavage cell analysis and cytokine gene expression in lungs. RESULTS Repeated exposure of asthmatic mice to low-dose DE resulted in increased AHR and gene expression of several pro-asthmatic cytokines/chemokines, but these effects rapidly subsided with continued exposure to DE. CONCLUSION Repeated exposure to low-dose DE after ovalbumin challenge exaggerates allergic responses in mice, but effects are not prolonged with continuous DE exposure.
Collapse
Affiliation(s)
- Aki Matsumoto
- Fourth Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|