1
|
Tang HHF, Sly PD, Holt PG, Holt KE, Inouye M. Systems biology and big data in asthma and allergy: recent discoveries and emerging challenges. Eur Respir J 2020; 55:13993003.00844-2019. [PMID: 31619470 DOI: 10.1183/13993003.00844-2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Asthma is a common condition caused by immune and respiratory dysfunction, and it is often linked to allergy. A systems perspective may prove helpful in unravelling the complexity of asthma and allergy. Our aim is to give an overview of systems biology approaches used in allergy and asthma research. Specifically, we describe recent "omic"-level findings, and examine how these findings have been systematically integrated to generate further insight.Current research suggests that allergy is driven by genetic and epigenetic factors, in concert with environmental factors such as microbiome and diet, leading to early-life disturbance in immunological development and disruption of balance within key immuno-inflammatory pathways. Variation in inherited susceptibility and exposures causes heterogeneity in manifestations of asthma and other allergic diseases. Machine learning approaches are being used to explore this heterogeneity, and to probe the pathophysiological patterns or "endotypes" that correlate with subphenotypes of asthma and allergy. Mathematical models are being built based on genomic, transcriptomic and proteomic data to predict or discriminate disease phenotypes, and to describe the biomolecular networks behind asthma.The use of systems biology in allergy and asthma research is rapidly growing, and has so far yielded fruitful results. However, the scale and multidisciplinary nature of this research means that it is accompanied by new challenges. Ultimately, it is hoped that systems medicine, with its integration of omics data into clinical practice, can pave the way to more precise, personalised and effective management of asthma.
Collapse
Affiliation(s)
- Howard H F Tang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia .,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Patrick G Holt
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Kathryn E Holt
- Dept of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia.,London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia.,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia.,The Alan Turing Institute, London, UK
| |
Collapse
|
2
|
Calvo FQ, Fillet M, de Seny D, Meuwis MA, Maree R, Crahay C, Paulissen G, Rocks N, Gueders M, Wehenkel L, Merville MP, Louis R, Foidart JM, Noël A, Cataldo D. Biomarker discovery in asthma-related inflammation and remodeling. Proteomics 2009; 9:2163-70. [PMID: 19322781 DOI: 10.1002/pmic.200800643] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Asthma is a complex inflammatory disease of airways. A network of reciprocal interactions between inflammatory cells, peptidic mediators, extracellular matrix components, and proteases is thought to be involved in the installation and maintenance of asthma-related airway inflammation and remodeling. To date, new proteic mediators displaying significant activity in the pathophysiology of asthma are still to be unveiled. The main objective of this study was to uncover potential target proteins by using surface-enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) on lung samples from mouse models of allergen-induced airway inflammation and remodeling. In this model, we pointed out several protein or peptide peaks that were preferentially expressed in diseased mice as compared to controls. We report the identification of different five proteins: found inflammatory zone 1 or RELM alpha (FIZZ-1), calcyclin (S100A6), clara cell secretory protein 10 (CC10), Ubiquitin, and Histone H4.
Collapse
Affiliation(s)
- Florence Quesada Calvo
- Laboratory of Biology of Tumours and Development, University of Liège and Centre Hospitalier Universitaire (CHU-Liège), Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ford NL, Martin EL, Lewis JF, Veldhuizen RAW, Drangova M, Holdsworth DW. In vivo characterization of lung morphology and function in anesthetized free-breathing mice using micro-computed tomography. J Appl Physiol (1985) 2007; 102:2046-55. [PMID: 17255374 DOI: 10.1152/japplphysiol.00629.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung morphology and function in human subjects can be monitored with computed tomography (CT). Because many human respiratory diseases are routinely modeled in rodents, a means of monitoring the changes in the structure and function of the rodent lung is desired. High-resolution images of the rodent lung can be attained with specialized micro-CT equipment, which provides a means of monitoring rodent models of lung disease noninvasively with a clinically relevant method. Previous studies have shown respiratory-gated images of intubated and respirated mice. Although the image quality and resolution are sufficient in these studies to make quantitative measurements, these measurements of lung structure will depend on the settings of the ventilator and not on the respiratory mechanics of the individual animals. In addition, intubation and ventilation can have unnatural effects on the respiratory dynamics of the animal, because the airway pressure, tidal volume, and respiratory rate are selected by the operator. In these experiments, important information about the symptoms of the respiratory disease being studied may be missed because the respiration is forced to conform to the ventilator settings. In this study, we implement a method of respiratory-gated micro-CT for use with anesthetized free-breathing rodents. From the micro-CT images, quantitative analysis of the structure of the lungs of healthy unconscious mice was performed to obtain airway diameters, lung and airway volumes, and CT densities at end expiration and during inspiration. Because the animals were free breathing, we were able to calculate tidal volume (0.09 +/- 0.03 ml) and functional residual capacity (0.16 +/- 0.03 ml).
Collapse
Affiliation(s)
- N L Ford
- Robarts Research Institute, London, ON, Canada N6A5K8.
| | | | | | | | | | | |
Collapse
|
4
|
|
5
|
Last JA, Ward R, Temple L, Kenyon NJ. Ovalbumin-induced airway inflammation and fibrosis in mice also exposed to ozone. Inhal Toxicol 2004; 16:33-43. [PMID: 14744663 DOI: 10.1080/08958370490258237] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A murine model of allergen-induced airway inflammation was used to examine the effects of exposure to ozone on airway inflammation and remodeling. Sensitized BALB/c mice were exposed to ovalbumin aerosol for 4 wk before and after 2 wk of exposure to either 0.2 ppm or 0.5 ppm ozone. Other groups of mice were exposed to ovalbumin aerosol for 6 wk with continuous concurrent exposure to ozone during wk 1-6, or during intermittent concurrent exposure to ozone. Lung inflammation was measured by quantitative differential evaluation of lung lavage cells and by histological evaluation of stained lung sections. Alterations in lung structure (airway fibrosis) were evaluated by quantitative biochemical analysis of microdissected airways. The same total number of cells was observed in lavage fluid from animals exposed for 4 wk to ovalbumin alone or to ovalbumin for 4 wk immediately before or after exposure to 2 wk of 0.2 or 0.5 ppm ozone. Mice exposed to ovalbumin for 6 wk with concurrent exposure to either 0.2 ppm or 0.5 ppm ozone during wk 3-6 had a significant decrease in the total number of cells recovered by lavage. Values as low as 7% of the cell number found in mice exposed to ovalbumin aerosol alone were observed in the mice exposed to ovalbumin plus 0.2 ppm ozone during wk 3-6. There were significant differences in the cell differential counts in the lavage fluid from mice exposed to ovalbumin alone as compared with values from mice exposed to ovalbumin and ozone under all of the protocols studied. When ozone was given for 2 wk prior to ovalbumin exposure (Experiment 1), there were a high percentage of macrophages and low percentages of lymphocytes and eosinophils in the lung lavage. When ozone was given for 2 wk after ovalbumin exposure (Experiment 2), there were a moderate percentage of macrophages, a low percentage of eosinophils, and a high percentage of lymphocytes in the lung lavage. When ozone and ovalbumin were given simultaneously (Experiments 3 and 4), there were a high percentage of macrophages in the lavage with 0.2 ppm ozone and a high percentage of eosinophils. Ozone appears to antagonize the specific inflammatory effects of ovalbumin exposure, especially when given before or during exposure to ovalbumin. Airway remodeling was examined by two different quantitative methods. None of the groups exposed concurrently to ovalbumin and ozone had a significant increase in airway collagen content as compared to the matched groups of mice exposed to ovalbumin alone. The findings were consistent with an additive response of mice to simultaneous exposure to ovalbumin and ozone. Ozone exposure alone for 6 wk did not affect the number of goblet cells in the airways, while mice exposed to ovalbumin aerosol alone for 6 wk had about 25% goblet cells in their conducting airways. Concurrent exposure to ovalbumin and 0.2 ppm ozone caused significant increases in goblet cells (to 43% of total cells) in the conducting airways of the exposed mice. We conclude that when mice with allergen-induced airway inflammation induced by ovalbumin are also exposed to ozone, the lung inflammatory response may be modified, but that this altered response is dependent on the sequence of exposure and the concentration of ozone to which they are exposed. At the concentrations of ozone tested, we did not see changes in airway fibrosis. However, goblet-cell hyperplasia appeared to be increased in mice exposed concurrently to ovalbumin and 0.2 ppm ozone.
Collapse
Affiliation(s)
- Jerold A Last
- Pulmonary and Critical Care Medicine, School of Medicine, University of California, Davis, California 95616-8723, USA.
| | | | | | | |
Collapse
|
6
|
McCusker C, Chicoine M, Hamid Q, Mazer B. Site-specific sensitization in a murine model of allergic rhinitis: role of the upper airway in lower airways disease. J Allergy Clin Immunol 2002; 110:891-8. [PMID: 12464956 DOI: 10.1067/mai.2002.130048] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is the most common atopic disease with strong links to asthma. We have developed a murine model of AR to study nasal, bronchial, and systemic immune response to local allergen stimulation. OBJECTIVES The purpose of this study was to develop and characterize a murine model of AR. METHODS Six- to 8-week-old BALB/c mice were sensitized by means of intranasal (local) application of ovalbumin (OVA) or systemic intraperitoneal injection. They were then challenged with intranasal OVA, and allergic response was assessed. RESULTS Intranasal particle deposition was found to be exclusively in the nares. All sensitized animals showed increased levels of OVA-specific serum IgE and IgG after challenge, although the timing to maximal response varied with the route and dose of allergen used. Histology of the upper and lower airways showed marked eosinophilic infiltration, and analysis of bronchoalveolar lavage fluid showed increased IL-5 and PMN infiltrates after challenge. CONCLUSION Using exclusive local sensitization and challenge of mouse nares, we were able to demonstrate inflammatory changes in both the upper and lower airways, even though distribution of allergen particles appeared to be only in the nares of these animals. This provides further evidence for the importance of the upper airway in lower airways disease. We have shown that the route of administration greatly affects the characteristics of the subsequent immune responses.
Collapse
Affiliation(s)
- Christine McCusker
- Division of Allergy and Immunology, Montreal Children's Hospital Research Institute and Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
7
|
Cataldo DD, Tournoy KG, Vermaelen K, Munaut C, Foidart JM, Louis R, Noël A, Pauwels RA. Matrix metalloproteinase-9 deficiency impairs cellular infiltration and bronchial hyperresponsiveness during allergen-induced airway inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:491-8. [PMID: 12163374 PMCID: PMC1850735 DOI: 10.1016/s0002-9440(10)64205-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We investigated the specific role of matrix metalloproteinase (MMP)-9 in allergic asthma using a murine model of allergen-induced airway inflammation and airway hyperresponsiveness in MMP-9(-/-) mice and their corresponding wild-type (WT) littermates. After a single intraperitoneal sensitization to ovalbumin, the mice were exposed daily either to ovalbumin (1%) or phosphate-buffered saline aerosols from days 14 to 21. Significantly less peribronchial mononuclear cell infiltration of the airways and less lymphocytes in the bronchoalveolar lavage fluid were detected in challenged MMP-9(-/-) as compared to WT mice. In contrast, comparable numbers of bronchoalveolar lavage fluid eosinophils were observed in both genotypes. After allergen exposure, the WT mice developed a significant airway hyperresponsiveness to carbachol whereas the MMP-9(-/-) mice failed to do so. Allergen exposure induced an increase of MMP-9-related gelatinolytic activity in WT lung extracts. Quantitative reverse transcriptase-polymerase chain reaction showed increased mRNA levels of MMP-12, MMP-14, and urokinase-type plasminogen activator after allergen exposure in the lung extracts of WT mice but not in MMP-9-deficient mice. In contrast, the expression of tissue inhibitor of metalloproteinases-1 was enhanced after allergen exposure in both groups. We conclude that MMP-9 plays a key role in the development of airway inflammation after allergen exposure.
Collapse
Affiliation(s)
- Didier D Cataldo
- Department of Respiratory Diseases and Laboratory of Biology of Tumours and Development, University of Liege, Liege, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kimmel EC, Whitehead GS, Reboulet JE, Carpenter RL. Carbon dioxide accumulation during small animal, whole body plethysmography: effects on ventilation, indices of airway function, and aerosol deposition. JOURNAL OF AEROSOL MEDICINE : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR AEROSOLS IN MEDICINE 2002; 15:37-49. [PMID: 12006144 DOI: 10.1089/08942680252908566] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Barometric (whole body) plethysmography is used to examine changes in ventilation and breathing pattern in unrestrained animals during exposure to therapeutic or toxic aerosols. Whole body plethysmographs (WBP) may be operated with a bias flow in order to maintain an adequate supply of oxygen and remove expired CO(2). However, some aerosol generation and delivery methods may require operation of the WBP without bias flow, which would artificially deplete aerosol concentration. Under these conditions, expired CO(2) accumulates in the plethysmograph and stimulates ventilation, increasing total aerosol deposition, shifting regional deposition, and significantly altering some airway function indices. We characterized these effects in guinea pigs using a commercially available 4.5-L WBP, with and without a 1 L/min bias flow. CO(2)-induced changes in breathing frequency (f), tidal volume (Vt), minute ventilation (Ve), and indices of airway function -- including enhanced pause (penh), flow derived parameter (FDP), and respiratory duty cycle -- were measured. Without bias flow, CO(2) in the plethysmograph increased steadily to 5.4% after 30 min compared to a steady state 0.9% with bias flow. This resulted in a moderate suppression of f, and significant increases in Vt and Ve by factors of 1.5 and 1.4, respectively. Changes in regional deposition were stimulated for 300 mg/m(3) polydisperse aerosols with mass median aerodynamic diameters of 0.3, 1, 3, or 7 microm and geometric standard deviations of 1.7. Percent increase in aerosol deposition from CO(2) inhalation ranged from 24% to 90%, by mass, depending on aerosol size distribution and respiratory tract region. In addition, fractional deposition shifted toward the pulmonary region. Empirical indices of airway constriction, penh and FDP, also were increased significantly to 1.7 and 1.3 times their respective baseline values. The study quantifies the effect of inadvertent coexposure to CO(2) on ventilation, aerosol deposition, and airway function in WBP evaluation of aerosol effects in airway function.
Collapse
Affiliation(s)
- Edgar C Kimmel
- Geo-Centers, Inc. at NHRC/TD, Wright-Patterson AFB, Ohio 45433-7903, USA.
| | | | | | | |
Collapse
|
9
|
Vicentini L, Mazzi P, Caveggion E, Continolo S, Fumagalli L, Lapinet-Vera JA, Lowell CA, Berton G. Fgr deficiency results in defective eosinophil recruitment to the lung during allergic airway inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6446-54. [PMID: 12055264 DOI: 10.4049/jimmunol.168.12.6446] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using a mouse model of allergic lung inflammation, we found that mice deficient of Fgr, a Src family tyrosine kinase highly expressed in myelomonocytic cells, fail to develop lung eosinophilia in response to repeated challenge with aerosolized OVA. Both tissue and airway eosinophilia were markedly reduced in fgr(-/-) mice, whereas mice with the sole deficiency of Hck, another Src family member, responded normally. Release of allergic mediators, such as histamine, IL-4, RANTES/CCL5, and eotaxin/CCL11, in the airways of OVA-treated animals was equal in wild-type and fgr(-/-) mice. However, lung eosinophilia in Fgr-deficient mice correlated with a defective accumulation of GM-CSF and IL-5 in the airways, whereas secretion of these cytokines by spleen cells in response to OVA was normal. Examination of mRNA expression in whole lung tissue allowed us to detect comparable expression of transcripts for eotaxin/CCL11, macrophage-inflammatory protein-1 alpha/CCL3, macrophage-inflammatory protein-1 beta/CCL4, monocyte chemoattractant protein-1/CCL2, TCA-3/CCL1, IL-4, IL-10, IL-2, IL-3, IL-9, IL-15, and IFN-gamma in OVA-sensitized wild-type and fgr(-/-) mice. In contrast, the increase in IL-5 and IL-13 mRNA expression was lower in fgr(-/-) compared with wild-type mice. These findings suggest that deficiency of Fgr results in a marked reduction of lung eosinophilia and the establishment of a positive feedback loop based on autocrine secretion of eosinophil-active cytokines. These results identify Fgr as a novel pharmacological target to control allergic inflammation.
Collapse
Affiliation(s)
- Lucia Vicentini
- Department of Pathology, Section of General Pathology, University of Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kimmel EC, Reboulet JE, Courson DL, Still KR. Airway reactivity response to aged carbon-graphite/epoxy composite material smoke. J Appl Toxicol 2002; 22:193-206. [PMID: 12015800 DOI: 10.1002/jat.849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exposure of naïve guinea pigs for a total of 30 min to aged smoke from pyrolysis of 5, 10 and 100 g of carbon-graphite/epoxy-advanced composite material (cgeCM) elicited changes in the ventilation and breathing pattern reminiscent of an acute, asthmatic episode. The severity of these responses was dose related. Although breathing pattern changes were not definitive of stimulation by a single type of respiratory irritant, non-dimensional indices derived from breath structure appeared to be characteristic of bronchoconstriction possibly complicated by CO(2)-stimulated ventilation. The highest exposure concentration also elicited convulsions in the animals, which may or may not be related to the airway reactivity (AR) response. Upon treatment with fresh air, breathing returned to normal. However, this recovery was transient with some respiratory parameters returning to abnormal levels, possibly indicating a rebound or delayed component of the response. Filtration of particulate material from the smoke moderated but did not eliminate the AR response. Animals exposed to diluted smoke from the pyrolysis of 2 g of cgeCM showed no remarkable changes in breathing or ventilation, suggesting that there may be a threshold for aged cgeCM smoke-elicited AR response.
Collapse
Affiliation(s)
- Edgar C Kimmel
- Geo-Centers Inc., Naval Health Research Center Detachment (Toxicology), NHRC/TD, Bldg 433, 2612 5th St. Wringht-Patterson AFB, OH 45433-7903, USA
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- M J Tobin
- Division of Pulmonary and Critical Care Medicine, Loyola University of Chicago Stritch School of Medicine and Edward Hines, Jr., Veterans Affairs Hospital, Hines, Illinois 6041, USA.
| |
Collapse
|
12
|
Tournoy KG, Kips JC, Pauwels RA. Counterbalancing of TH2-driven allergic airway inflammation by IL-12 does not require IL-10. J Allergy Clin Immunol 2001; 107:483-91. [PMID: 11240949 DOI: 10.1067/mai.2001.112693] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Asthma is characterized by allergen-induced airway inflammation orchestrated by TH2 cells. The TH1-promoting cytokine IL-12 is capable of inhibiting the TH2-driven allergen-induced airway changes in mice and is therefore regarded as an interesting strategy for treating asthma. OBJECTIVE The antiallergic effects of IL-12 are only partially dependent of IFN-gamma. Because IL-12 is a potent inducer of the anti-inflammatory cytokine IL-10, the aim of the present study was to investigate in vivo whether the antiallergic effects of IL-12 are mediated through IL-10. METHODS C57BL/6J-IL-10 knock-out (IL-10(-/-)) mice were sensitized intraperitoneally to ovalbumin (OVA) and subsequently exposed from day 14 to day 21 to aerosolized OVA (1%). IL-12 was administered intraperitoneally during sensitization, subsequent OVA exposure, or both. RESULTS IL-12 inhibited the OVA-induced airway eosinophilia, despite the absence of IL-10. Moreover, a shift from a TH2 inflammatory pattern toward a TH1 reaction was observed, with concomitant pronounced mononuclear peribronchial inflammation after IL-12 treatment. Allergen-specific IgE synthesis was completely suppressed only when IL-12 was administered along with the allergen sensitization. Furthermore, treating the animals with IL-12 at the time of the secondary allergen challenge resulted not only in a significant suppression of the airway responsiveness but also in an important IFN-gamma-associated toxicity. CONCLUSIONS These results indicate that IL-12 is able to inhibit allergen-induced airway changes, even in the absence of IL-10. In addition, our results raise concerns regarding the redirection of TH2 inflammation by TH1-inducing therapies because treatment with IL-12 resulted not only in a disappearance of the TH2 inflammation but also in a TH1-driven inflammatory pulmonary pathology.
Collapse
Affiliation(s)
- K G Tournoy
- Department of Respiratory Diseases, Ghent University Hospital, Ghent, Belgium
| | | | | |
Collapse
|