1
|
Rocha NN, Silva PL, Battaglini D, Rocco PRM. Heart-lung crosstalk in acute respiratory distress syndrome. Front Physiol 2024; 15:1478514. [PMID: 39493867 PMCID: PMC11527665 DOI: 10.3389/fphys.2024.1478514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is initiated by a primary insult that triggers a cascade of pathological events, including damage to lung epithelial and endothelial cells, extracellular matrix disruption, activation of immune cells, and the release of pro-inflammatory mediators. These events lead to increased alveolar-capillary barrier permeability, resulting in interstitial/alveolar edema, collapse, and subsequent hypoxia and hypercapnia. ARDS not only affects the lungs but also significantly impacts the cardiovascular system. We conducted a comprehensive literature review on heart-lung crosstalk in ARDS, focusing on the pathophysiology, effects of mechanical ventilation, hypoxemia, and hypercapnia on cardiac function, as well as ARDS secondary to cardiac arrest and cardiac surgery. Mechanical ventilation, essential for ARDS management, can increase intrathoracic pressure, decrease venous return and right ventricle preload. Moreover, acidemia and elevations in transpulmonary pressures with mechanical ventilation both increase pulmonary vascular resistance and right ventricle afterload. Cardiac dysfunction can exacerbate pulmonary edema and impair gas exchange, creating a vicious cycle, which hinders both heart and lung therapy. In conclusion, understanding the heart-lung crosstalk in ARDS is important to optimize therapeutic strategies. Future research should focus on elucidating the precise mechanisms underlying this interplay and developing targeted interventions that address both organs simultaneously.
Collapse
Affiliation(s)
- Nazareth N. Rocha
- Biomedical Institute, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Brazil
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Jozwiak M, Teboul JL. Heart-Lungs interactions: the basics and clinical implications. Ann Intensive Care 2024; 14:122. [PMID: 39133379 PMCID: PMC11319696 DOI: 10.1186/s13613-024-01356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024] Open
Abstract
Heart-lungs interactions are related to the interplay between the cardiovascular and the respiratory system. They result from the respiratory-induced changes in intrathoracic pressure, which are transmitted to the cardiac cavities and to the changes in alveolar pressure, which may impact the lung microvessels. In spontaneously breathing patients, consequences of heart-lungs interactions are during inspiration an increase in right ventricular preload and afterload, a decrease in left ventricular preload and an increase in left ventricular afterload. In mechanically ventilated patients, consequences of heart-lungs interactions are during mechanical insufflation a decrease in right ventricular preload, an increase in right ventricular afterload, an increase in left ventricular preload and a decrease in left ventricular afterload. Physiologically and during normal breathing, heart-lungs interactions do not lead to significant hemodynamic consequences. Nevertheless, in some clinical settings such as acute exacerbation of chronic obstructive pulmonary disease, acute left heart failure or acute respiratory distress syndrome, heart-lungs interactions may lead to significant hemodynamic consequences. These are linked to complex pathophysiological mechanisms, including a marked inspiratory negativity of intrathoracic pressure, a marked inspiratory increase in transpulmonary pressure and an increase in intra-abdominal pressure. The most recent application of heart-lungs interactions is the prediction of fluid responsiveness in mechanically ventilated patients. The first test to be developed using heart-lungs interactions was the respiratory variation of pulse pressure. Subsequently, many other dynamic fluid responsiveness tests using heart-lungs interactions have been developed, such as the respiratory variations of pulse contour-based stroke volume or the respiratory variations of the inferior or superior vena cava diameters. All these tests share the same limitations, the most frequent being low tidal volume ventilation, persistent spontaneous breathing activity and cardiac arrhythmia. Nevertheless, when their main limitations are properly addressed, all these tests can help intensivists in the decision-making process regarding fluid administration and fluid removal in critically ill patients.
Collapse
Affiliation(s)
- Mathieu Jozwiak
- Service de Médecine Intensive Réanimation, CHU de Nice Hôpital Archet 1, 151 Route Saint Antoine de Ginestière, 06200, Nice, France.
- UR2CA, Unité de Recherche Clinique Côte d'Azur, Université Côte d'Azur, 06200, Nice, France.
| | - Jean-Louis Teboul
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Mekontso Dessap A, Bagate F, Repesse X, Blayau C, Fartoukh M, Canoui-Poitrine F, de Prost N, Vieillard-Baron A. Low-flow ECCO 2R conjoined with renal replacement therapy platform to manage pulmonary vascular dysfunction with refractory hypercapnia in ARDS. Heliyon 2024; 10:e23878. [PMID: 38226285 PMCID: PMC10788508 DOI: 10.1016/j.heliyon.2023.e23878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Background Hypercapnia worsens lung vascular dysfunction during acute respiratory distress syndrome (ARDS). We tested whether an extracorporeal carbon dioxide removal (ECCO2R) device based on a renal replacement therapy platform (Prismalung®) may reduce PaCO2 and alleviate lung vascular dysfunction in ARDS patients with refractory hypercapnia. Methods We planned to prospectively include 20 patients with moderate-to-severe ARDS, pulmonary vascular dysfunction on echocardiography, and PaCO2 ≥ 48 mmHg despite instrumental dead space reduction and the increase in respiratory rate. Hemodynamics, echocardiography, respiratory mechanics, and arterial blood gases were recorded at 2 (H2), 6 (H6) and 24 (H24) hours as ECCO2R treatment was continued for at least 24 h. Results Only eight patients were included, and the study was stopped due to worldwide shortage of ECCO2R membranes and the pandemic. Only one patient fulfilled the primary endpoint criterion (decrease in PaCO2 of more than 20 %) at H2, but this objective was achieved in half of patients (n = 4) at H6. The percentage of patients with a PaCO2 value < 48 mmHg increased with time, from 0/8 (0 %) at H0, to 3/8 (37.5 %) at H2 and 4/8 (50 %) at H6 (p = 0.04). There was no major change in hemodynamic and echocardiographic variables with ECCO2R, except for a significant decrease in heart rate. ECCO2R was prematurely discontinued before H24 in five (62.5 %) patients, due to membrane clotting in all cases. Conclusions This pilot study testing showed a narrow efficacy and high rate of membrane thrombosis with the first version of the system. Improved versions should be tested in future trials. Trial registration Registered at clinicaltrials.gov, identifier: NCT03303807, Registered: October 6, 2017, https://clinicaltrials.gov/ct2/show/NCT03303807.
Collapse
Affiliation(s)
- Armand Mekontso Dessap
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive Réanimation, F-94010, Créteil, France
- Univ Paris Est Créteil, CARMAS, Créteil, F-94010, France
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, F-94010, France
| | - François Bagate
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive Réanimation, F-94010, Créteil, France
- Univ Paris Est Créteil, CARMAS, Créteil, F-94010, France
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, F-94010, France
| | - Xavier Repesse
- AP-HP, Hôpital Ambroise Paré, Service de Médecine Intensive Réanimation, Boulogne Billancourt, Créteil, France
| | - Clarisse Blayau
- AP-HP, Hôpital Tenon, Service de Médecine Intensive Réanimation, Paris, France
| | - Muriel Fartoukh
- AP-HP, Hôpital Tenon, Service de Médecine Intensive Réanimation, Paris, France
| | - Florence Canoui-Poitrine
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Santé Publique, F-94010, Créteil, France
| | - Nicolas de Prost
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive Réanimation, F-94010, Créteil, France
- Univ Paris Est Créteil, CARMAS, Créteil, F-94010, France
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, F-94010, France
| | - Antoine Vieillard-Baron
- AP-HP, Hôpital Ambroise Paré, Service de Médecine Intensive Réanimation, Boulogne Billancourt, Créteil, France
| |
Collapse
|
4
|
Loosen G, Conrad AM, Essert N, Boesing C, Hagmann M, Thiel M, Luecke T, Rocco PRM, Pelosi P, Krebs J. Preload Responsiveness in Patients With Acute Respiratory Distress Syndrome Managed With Extracorporeal Membrane Oxygenation. ASAIO J 2024; 70:53-61. [PMID: 37934718 DOI: 10.1097/mat.0000000000002054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
A restrictive fluid strategy is recommended in patients with acute respiratory distress syndrome (ARDS) managed with venovenous extracorporeal membrane oxygenation (VV ECMO). However, there are no established predictors for preload responsiveness in these patients. In 20 ARDS patients managed with VV ECMO, transesophageal echocardiography was used to repeatedly evaluate dynamic parameters of the left (velocity and stroke volume variation) and right ventricular outflow tract (velocity [respiratory variations of the maximal Doppler velocity in the truncus pulmonalis {ΔV max TP}] and velocity time integral [respiratory variation of the velocity time integral measured in the truncus pulmonalis {ΔVTI_TP}] variation in the truncus pulmonalis), the diameter variation in the superior and inferior vena cava and stroke volume variation measured by pulse contour analysis (SVV_PCA). Patients were categorized as responders and nonresponders according to an increase in stroke volume measured by echocardiography during a Passive Leg Raise Test with a cutoff value ≥10%. The final analysis includes 86 measurements. Predictive values for preload responsiveness were found for ΔV max TP (area under the curve [AUC] of 0.64), ΔVTI_TP (AUC 0.67), and SVV_PCA (AUC 0.74). In conclusion, SVV_PCA and, to a lesser extent, ΔV max TP and ΔVTI_TP are the most accurate parameters to predict preload responsiveness in ARDS patients managed with VV ECMO. Transesophageal echocardiography offers no advantages over pulse contour analysis for predicting preload responsiveness and provides only intermittent monitoring and assessment.
Collapse
Affiliation(s)
- Gregor Loosen
- From the Intensive Care Unit, Department of Acute Medicine, University Hospital Basel, Basel, Switzerland
| | - Alice Marguerite Conrad
- Department of Anaesthesiology and Critical Care Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Nils Essert
- Department of Anaesthesiology and Critical Care Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Christoph Boesing
- Department of Anaesthesiology and Critical Care Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Michael Hagmann
- Department of Computational Linguistics, University of Heidelberg, Heidelberg, Germany
- Interdisciplinary Centre for Scientific Computing, Statistical Natural Language Processing Group, University of Heidelberg, Heidelberg, Germany
| | - Manfred Thiel
- Department of Anaesthesiology and Critical Care Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Thomas Luecke
- Department of Anaesthesiology and Critical Care Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Department of Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Joerg Krebs
- Department of Anaesthesiology and Critical Care Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| |
Collapse
|
5
|
Berger D, Werner Moller P, Bachmann KF. Cardiopulmonary interactions-which monitoring tools to use? Front Physiol 2023; 14:1234915. [PMID: 37621761 PMCID: PMC10445648 DOI: 10.3389/fphys.2023.1234915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Heart-lung interactions occur due to the mechanical influence of intrathoracic pressure and lung volume changes on cardiac and circulatory function. These interactions manifest as respiratory fluctuations in venous, pulmonary, and arterial pressures, potentially affecting stroke volume. In the context of functional hemodynamic monitoring, pulse or stroke volume variation (pulse pressure variation or stroke volume variability) are commonly employed to assess volume or preload responsiveness. However, correct interpretation of these parameters requires a comprehensive understanding of the physiological factors that determine pulse pressure and stroke volume. These factors include pleural pressure, venous return, pulmonary vessel function, lung mechanics, gas exchange, and specific cardiac factors. A comprehensive knowledge of heart-lung physiology is vital to avoid clinical misjudgments, particularly in cases of right ventricular (RV) failure or diastolic dysfunction. Therefore, when selecting monitoring devices or technologies, these factors must be considered. Invasive arterial pressure measurements of variations in breath-to-breath pressure swings are commonly used to monitor heart-lung interactions. Echocardiography or pulmonary artery catheters are valuable tools for differentiating preload responsiveness from right ventricular failure, while changes in diastolic function should be assessed alongside alterations in airway or pleural pressure, which can be approximated by esophageal pressure. In complex clinical scenarios like ARDS, combined forms of shock or right heart failure, additional information on gas exchange and pulmonary mechanics aids in the interpretation of heart-lung interactions. This review aims to describe monitoring techniques that provide clinicians with an integrative understanding of a patient's condition, enabling accurate assessment and patient care.
Collapse
Affiliation(s)
- David Berger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Per Werner Moller
- Department of Anaesthesia, SV Hospital Group, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaspar F. Bachmann
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Estimation of Stroke Volume Variance from Arterial Blood Pressure: Using a 1-D Convolutional Neural Network. SENSORS 2021; 21:s21155130. [PMID: 34372366 PMCID: PMC8347322 DOI: 10.3390/s21155130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND We aimed to create a novel model using a deep learning method to estimate stroke volume variation (SVV), a widely used predictor of fluid responsiveness, from arterial blood pressure waveform (ABPW). METHODS In total, 557 patients and 8,512,564 SVV datasets were collected and were divided into three groups: training, validation, and test. Data was composed of 10 s of ABPW and corresponding SVV data recorded every 2 s. We built a convolutional neural network (CNN) model to estimate SVV from the ABPW with pre-existing commercialized model (EV1000) as a reference. We applied pre-processing, multichannel, and dimension reduction to improve the CNN model with diversified inputs. RESULTS Our CNN model showed an acceptable performance with sample data (r = 0.91, MSE = 6.92). Diversification of inputs, such as normalization, frequency, and slope of ABPW significantly improved the model correlation (r = 0.95), lowered mean squared error (MSE = 2.13), and resulted in a high concordance rate (96.26%) with the SVV from the commercialized model. CONCLUSIONS We developed a new CNN deep-learning model to estimate SVV. Our CNN model seems to be a viable alternative when the necessary medical device is not available, thereby allowing a wider range of application and resulting in optimal patient management.
Collapse
|
7
|
Graessler MF, Wodack KH, Pinnschmidt HO, Nishimoto S, Behem CR, Reuter DA, Trepte CJC. Assessing volume responsiveness using right ventricular dynamic indicators of preload. J Anesth 2021; 35:488-494. [PMID: 33950295 PMCID: PMC8096889 DOI: 10.1007/s00540-021-02937-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/18/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Dynamic indicators of preload currently only do reflect preload requirements of the left ventricle. To date, no dynamic indicators of right ventricular preload have been established. The aim of this study was to calculate dynamic indicators of right ventricular preload and assess their ability to predict ventricular volume responsiveness. MATERIALS AND METHODS The study was designed as experimental trial in 20 anaesthetized pigs. Micro-tip catheters and ultrasonic flow probes were used as experimental reference to enable measurement of right ventricular stroke volume and pulse pressure. Hypovolemia was induced (withdrawal of blood 20 ml/kg) and thereafter three volume-loading steps were performed. ROC analysis was performed to assess the ability of dynamic right ventricular parameters to predict volume response. RESULTS ROC analysis revealed an area under the curve (AUC) of 0.82 (CI 95% 0.73-0.89; p < 0.001) for right ventricular stroke volume variation (SVVRV), an AUC of 0.72 (CI 95% 0.53-0.85; p = 0.02) for pulmonary artery pulse pressure variation (PPVPA) and an AUC of 0.66 (CI 95% 0.51-0.79; p = 0.04) for pulmonary artery systolic pressure variation (SPVPA). CONCLUSIONS In our experimental animal setting, calculating dynamic indicators of right ventricular preload is possible and appears promising in predicting volume responsiveness.
Collapse
Affiliation(s)
- Michael F Graessler
- Department of Anesthesiology, Centre for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Karin H Wodack
- Department of Anesthesiology, Centre for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hans O Pinnschmidt
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Nishimoto
- Department of Anesthesiology, Centre for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | | | - Daniel A Reuter
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Constantin J C Trepte
- Department of Anesthesiology, Centre for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
8
|
Valenti E, Moller PW, Takala J, Berger D. Collapsibility of caval vessels and right ventricular afterload: decoupling of stroke volume variation from preload during mechanical ventilation. J Appl Physiol (1985) 2021; 130:1562-1572. [PMID: 33734829 DOI: 10.1152/japplphysiol.01039.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Collapsibility of caval vessels and stroke volume and pulse pressure variations (SVV, PPV) are used as indicators of volume responsiveness. Their behavior under increasing airway pressures and changing right ventricular afterload is incompletely understood. If the phenomena of SVV and PPV augmentation are manifestations of decreasing preload, they should be accompanied by decreasing transmural right atrial pressures. Eight healthy pigs equipped with ultrasonic flow probes on the pulmonary artery were exposed to positive end-expiratory pressure of 5 and 10 cmH2O and three volume states (Euvolemia, defined as SVV < 10%, Bleeding, and Retransfusion). SVV and PPV were calculated for the right and PPV for the left side of the circulation at increasing inspiratory airway pressures (15, 20, and 25 cmH2O). Right ventricular afterload was assessed by surrogate flow profile parameters. Transmural pressures in the right atrium and the inferior and superior caval vessels (IVC and SVC) were determined. Increasing airway pressure led to increases in ultrasonic surrogate parameters of right ventricular afterload, increasing transmural pressures in the right atrium and SVC, and a drop in transmural IVC pressure. SVV and PPV increased with increasing airway pressure, despite the increase in right atrial transmural pressure. Right ventricular stroke volume variation correlated with indicators of right ventricular afterload. This behavior was observed in both PEEP levels and all volume states. Stroke volume variation may reflect changes in right ventricular afterload rather than changes in preload.NEW & NOTEWORTHY Stroke volume variation and pulse pressure variation are used as indicators of preload or volume responsiveness of the heart. Our study shows that these variations are influenced by changes in right ventricular afterload and may therefore reflect right ventricular failure rather than pure volume responsiveness. A zone of collapse detaches the superior vena cava and its diameter variation from the right atrium.
Collapse
Affiliation(s)
- Elisa Valenti
- Department of Intensive Care Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland.,Intensive Care Unit and Department of Intensive Care, Ospedale Regionale di Lugano, Lugano, Switzerland
| | - Per W Moller
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, SV Hospital Group, Alingsas, Sweden
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - David Berger
- Department of Intensive Care Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Karamolegkos N, Albanese A, Chbat NW. Heart-Lung Interactions During Mechanical Ventilation: Analysis via a Cardiopulmonary Simulation Model. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2021; 2:324-341. [PMID: 35402980 PMCID: PMC8975239 DOI: 10.1109/ojemb.2021.3128629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Heart-lung interaction mechanisms are generally not well understood. Mechanical ventilation, for example, accentuates such interactions and could compromise cardiac activity. Thereby, assessment of ventilation-induced changes in cardiac function is considered an unmet clinical need. We believe that mathematical models of the human cardiopulmonary system can provide invaluable insights into such cardiorespiratory interactions. In this article, we aim to use a mathematical model to explain heart-lung interaction phenomena and provide physiologic hypotheses to certain contradictory experimental observations during mechanical ventilation. To accomplish this task, we highlight three model components that play a crucial role in heart-lung interactions: 1) pericardial membrane, 2) interventricular septum, and 3) pulmonary circulation that enables pulmonary capillary compression due to lung inflation. Evaluation of the model’s response under simulated ventilation scenarios shows good agreement with experimental data from the literature. A sensitivity analysis is also presented to evaluate the relative impact of the model’s highlighted components on the cyclic ventilation-induced changes in cardiac function.
Collapse
Affiliation(s)
| | | | - Nicolas W Chbat
- Columbia University New York NY 10027 USA
- Quadrus Medical Technologies White Plains NY 10607 USA
| |
Collapse
|
10
|
Vieillard-Baron A, Prigent A, Repessé X, Goudelin M, Prat G, Evrard B, Charron C, Vignon P, Geri G. Right ventricular failure in septic shock: characterization, incidence and impact on fluid responsiveness. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:630. [PMID: 33131508 PMCID: PMC7603714 DOI: 10.1186/s13054-020-03345-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Abstract
Objective Incidence of right ventricular (RV) failure in septic shock patients is not well known, and tricuspid annular plane systolic excursion (TAPSE) could be of limited value. We report the incidence of RV failure in patients with septic shock, its potential impact on the response to fluids, as well as TAPSE values. Design Ancillary study of the HEMOPRED prospective multicenter study includes patients under mechanical ventilation with circulatory failure. Setting This is a multicenter intensive care unit study Patients Two hundred and eighty-two patients with septic shock were analyzed. Patients were classified in three groups based on central venous pressure (CVP) and RV size (RV/LV end-diastolic area, EDA). In group 1, patients had no RV dilatation (RV/LVEDA < 0.6). In group 2, patients had RV dilatation (RV/LVEDA ≥ 0.6) with a CVP < 8 mmHg (no venous congestion). RV failure was defined in group 3 by RV dilatation and a CVP ≥ 8 mmHg. Pulse pressure variation (PPV) was systematically recorded. Interventions None. Measurements and main results In total, 41% of patients were in group 1, 17% in group 2 and 42% in group 3. A correlation between RV size and CVP was only observed in group 3. Higher RV size was associated with a lower response to passive leg raising for a given PPV. A large overlap of TAPSE values was observed between the 3 groups. 63.5% of patients with RV failure had a normal TAPSE. Conclusions RV failure, defined by critical care echocardiography (RV dilatation) and a surrogate of venous congestion (CVP ≥ 8 mmHg), was frequently observed in septic shock patients and negatively associated with response to a fluid challenge despite significant PPV. TAPSE was unable to discriminate patients with or without RV failure.
Collapse
Affiliation(s)
- Antoine Vieillard-Baron
- Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Pare, Boulogne Billancourt, France. .,Faculty of Medicine Simone Veil, Saint Quentin en Yvelines, France. .,Inserm U1018, Center for Research in Epidemiology and Population Health (CESP), Faculty of Paris Saclay, Villejuif, France.
| | - Amélie Prigent
- Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Pare, Boulogne Billancourt, France.,Faculty of Medicine Simone Veil, Saint Quentin en Yvelines, France
| | - Xavier Repessé
- Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Pare, Boulogne Billancourt, France
| | - Marine Goudelin
- Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Pare, Boulogne Billancourt, France
| | - Gwenaël Prat
- Intensive Care Unit, Brest University Hospital, Brest, France
| | - Bruno Evrard
- Intensive Care Unit, Limoges University Hospital, Limoges, France
| | - Cyril Charron
- Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Pare, Boulogne Billancourt, France
| | - Philippe Vignon
- Intensive Care Unit, Limoges University Hospital, Limoges, France.,INSERM CIC 1435, Limoges University Hospital, Limoges, France.,Faculty of Medicine, University of Limoges, Limoges, France
| | - Guillaume Geri
- Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Pare, Boulogne Billancourt, France.,Faculty of Medicine Simone Veil, Saint Quentin en Yvelines, France.,Inserm U1018, Center for Research in Epidemiology and Population Health (CESP), Faculty of Paris Saclay, Villejuif, France
| |
Collapse
|
11
|
Vistisen ST, Enevoldsen JN, Greisen J, Juhl-Olsen P. What the anaesthesiologist needs to know about heart-lung interactions. Best Pract Res Clin Anaesthesiol 2019; 33:165-177. [PMID: 31582096 DOI: 10.1016/j.bpa.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The impact of positive pressure ventilation extends the effect on lungs and gas exchange because the altered intra-thoracic pressure conditions influence determinants of cardiovascular function. These mechanisms are called heart-lung interactions, which conceptually can be divided into two components (1) The effect of positive airway pressure on the cardiovascular system, which may be more or less pronounced under various pathologic cardiac conditions, and (2) The effect of cyclic airway pressure swing on the cardiovascular system, which can be useful in the interpretation of the individual patient's current haemodynamic state. It is imperative for the anaesthesiologist to understand the fundamental mechanisms of heart-lung interactions, as they are a foundation for the understanding of optimal, personalised cardiovascular treatment of patients undergoing surgery in general anaesthesia. The aim of this review is thus to describe what the anaesthesiologist needs to know about heart-lung interactions.
Collapse
Affiliation(s)
- Simon T Vistisen
- Institute of Clinical Medicine, Aarhus University, Denmark; Department of Anaesthesiology & Intensive Care, Aarhus University Hospital, Denmark.
| | - Johannes N Enevoldsen
- Institute of Clinical Medicine, Aarhus University, Denmark; Department of Anaesthesiology & Intensive Care, Aarhus University Hospital, Denmark.
| | - Jacob Greisen
- Department of Anaesthesiology & Intensive Care, Aarhus University Hospital, Denmark; Institute of Clinical Medicine, Aarhus University, Denmark.
| | - Peter Juhl-Olsen
- Department of Anaesthesiology & Intensive Care, Aarhus University Hospital, Denmark; Institute of Clinical Medicine, Aarhus University, Denmark.
| |
Collapse
|
12
|
Araos J, Kenny JES, Rousseau-Blass F, Pang DS. Dynamic prediction of fluid responsiveness during positive pressure ventilation: a review of the physiology underlying heart-lung interactions and a critical interpretation. Vet Anaesth Analg 2019; 47:3-14. [PMID: 31831334 DOI: 10.1016/j.vaa.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 07/10/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Cardiovascular responses to hypovolemia and hypotension are depressed during general anesthesia. A considerable number of anesthetized and critically ill animals may not benefit hemodynamically from a fluid bolus; therefore, it is important to have measures for accurate prediction of fluid responsiveness. Static measures of preload, such as central venous pressure, do not provide accurate prediction of fluid responsiveness, whereas dynamic measures of cardiovascular function, obtained during positive pressure ventilation, are highly predictive. This review describes key physiological concepts behind heart-lung interactions during positive pressure ventilation, factors that can modify this relationship and provides the basis for a rational interpretation of the information obtained from dynamic measurements, with a focus on pulse pressure variation (PPV). DATABASE USED PubMed. Search items used were: heart-lung interaction, positive pressure ventilation, pulse pressure variation, dynamic index of fluid therapy, goal-directed hemodynamic therapy, dogs, cats, pigs, horses and rabbits. CONCLUSIONS The veterinary literature suggests that targeting specific PPV thresholds should guide fluid therapy in lieu of conventional assessments. Understanding the physiology of heart-lung interactions during intermittent positive pressure ventilation provides a rational basis for interpreting the literature on dynamic indices of fluid responsiveness, including PPV. Clinical trials are needed to evaluate whether goal-directed fluid therapy based on PPV results in improved outcomes in veterinary patient populations.
Collapse
Affiliation(s)
- Joaquin Araos
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | | | - Frederik Rousseau-Blass
- Centre Hospitalier Universitaire Veterinaire, Faculte de Medecine Veterinaire, Universite de Montreal, Saint-Hyacinthe, QC, Canada
| | - Daniel Sj Pang
- Centre Hospitalier Universitaire Veterinaire, Faculte de Medecine Veterinaire, Universite de Montreal, Saint-Hyacinthe, QC, Canada; Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, AB, Canada
| |
Collapse
|
13
|
Lim H, Kim DC, Kim MJ, Yoo S, Ki MJ, Kang S, Kim D. The change of stroke volume variation during thoracotomy or one lung ventilation. Anesth Pain Med (Seoul) 2019. [DOI: 10.17085/apm.2019.14.3.316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Hyungsun Lim
- Department of Anesthesiology and Pain Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Dong-Chan Kim
- Department of Anesthesiology and Pain Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Myung-Jong Kim
- Department of Anesthesiology and Pain Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Seonwoo Yoo
- Department of Anesthesiology and Pain Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Min-Jong Ki
- Department of Anesthesiology and Pain Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Sehrin Kang
- Department of Anesthesiology and Pain Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Deokkyu Kim
- Department of Anesthesiology and Pain Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| |
Collapse
|
14
|
Respiratory Variation of Pulmonary Velocity-Time Integral Is Not a Variable of Fluid Responsiveness. Crit Care Med 2019; 47:e610. [DOI: 10.1097/ccm.0000000000003725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Messina A, Colombo D, Barra FL, Cammarota G, De Mattei G, Longhini F, Romagnoli S, DellaCorte F, De Backer D, Cecconi M, Navalesi P. Sigh maneuver to enhance assessment of fluid responsiveness during pressure support ventilation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:31. [PMID: 30691523 PMCID: PMC6350369 DOI: 10.1186/s13054-018-2294-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022]
Abstract
Background Assessment of fluid responsiveness is problematic in intensive care unit (ICU) patients, in particular for those undergoing modes of partial support, such as pressure support ventilation (PSV). We propose a new test, based on application of a ventilator-generated sigh, to predict fluid responsiveness in ICU patients undergoing PSV. Methods This was a prospective bi-centric interventional study conducted in two general ICUs. In 40 critically ill patients with a stable ventilatory PSV pattern and requiring volume expansion (VE), we assessed the variations in arterial systolic pressure (SAP), pulse pressure (PP) and stroke volume index (SVI) consequent to random application of 4-s sighs at three different inspiratory pressures. A radial arterial signal was directed to the MOSTCARE™ pulse contour hemodynamic monitoring system for hemodynamic measurements. Data obtained during sigh tests were recorded beat by beat, while all the hemodynamic parameters were averaged over 30 s for the remaining period of the study protocol. VE consisted of 500 mL of crystalloids over 10 min. A patient was considered a responder if a VE-induced increase in cardiac index (CI) ≥ 15% was observed. Results The slopes for SAP, SVI and PP of were all significantly different between responders and non-responders (p < 0.0001, p = 0.0004 and p < 0.0001, respectively). The AUC of the slope of SAP (0.99; sensitivity 100.0% (79.4–100.0%) and specificity 95.8% (78.8–99.9%) was significantly greater than the AUC for PP (0.91) and SVI (0.83) (p = 0.04 and 0.009, respectively). The SAP slope best threshold value of the ROC curve was − 4.4° from baseline. The only parameter found to be independently associated with fluid responsiveness among those included in the logistic regression was the slope for SAP (p = 0.009; odds ratio 0.27 (95% confidence interval (CI95) 0.10–0.70)). The effects produced by the sigh at 35 cmH20 (Sigh35) are significantly different between responders and non-responders. For a 35% reduction in PP from baseline, the AUC was 0.91 (CI95 0.82–0.99), with sensitivity 75.0% and specificity 91.6%. Conclusions In a selected ICU population undergoing PSV, analysis of the slope for SAP after the application of three successive sighs and the nadir of PP after Sigh35 reliably predict fluid responsiveness. Trial registration Australian New Zealand Clinical Trials Registry, ACTRN12615001232527. Registered on 10 November 2015. Electronic supplementary material The online version of this article (10.1186/s13054-018-2294-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonio Messina
- Department of Anesthesia and Intensive Care Medicine, IRCCS Humanitas, Humanitas University, Via Alessandro Manzoni, 56, Rozzano, 20089, Milan, Italy.
| | - Davide Colombo
- Anesthesia and Intensive Care Medicine, Maggiore della Carità University Hospital, Novara, Italy
| | - Federico Lorenzo Barra
- Department of Anesthesia and Intensive Care Medicine, IRCCS Humanitas, Humanitas University, Via Alessandro Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Gianmaria Cammarota
- Anesthesia and Intensive Care Medicine, Maggiore della Carità University Hospital, Novara, Italy
| | - Giacomo De Mattei
- Anesthesia and Intensive Care, Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care Medicine, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Stefano Romagnoli
- Department of Anesthesia and Intensive Care, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Francesco DellaCorte
- Anesthesia and Intensive Care Medicine, Maggiore della Carità University Hospital, Novara, Italy
| | | | - Maurizio Cecconi
- Department of Anesthesia and Intensive Care Medicine, IRCCS Humanitas, Humanitas University, Via Alessandro Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Paolo Navalesi
- Anesthesia and Intensive Care Medicine, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
16
|
Berger D, Takala J. Determinants of systemic venous return and the impact of positive pressure ventilation. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:350. [PMID: 30370277 PMCID: PMC6186556 DOI: 10.21037/atm.2018.05.27] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/14/2018] [Indexed: 12/29/2022]
Abstract
Venous return, i.e., the blood flowing back to the heart, is driven by the pressure difference between mean systemic filling pressure and right atrial pressure (RAP). Besides cardiac function, it is the major determinant of cardiac output. Mean systemic filling pressure is a function of the vascular volume. The concept of venous return has a central role for heart lung interactions and the explanation of shock states. Mechanical ventilation during anaesthesia and critical illness may severely affect venous return by different mechanisms. In the first part of the following article, we will discuss the development of the concept of venous return, its specific components mean systemic and mean circulatory filling pressure (MCFP), RAP and resistance to venous return (RVR). We show how these pressures relate to the volume state of the circulation. Various interpretations and critiques are elucidated. In the second part, we focus on the impact of positive pressure ventilation on venous return and its components, including latest results from latest research.
Collapse
Affiliation(s)
- David Berger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Vieillard-Baron A, Naeije R, Haddad F, Bogaard HJ, Bull TM, Fletcher N, Lahm T, Magder S, Orde S, Schmidt G, Pinsky MR. Diagnostic workup, etiologies and management of acute right ventricle failure : A state-of-the-art paper. Intensive Care Med 2018; 44:774-790. [PMID: 29744563 DOI: 10.1007/s00134-018-5172-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/07/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION This is a state-of-the-art article of the diagnostic process, etiologies and management of acute right ventricular (RV) failure in critically ill patients. It is based on a large review of previously published articles in the field, as well as the expertise of the authors. RESULTS The authors propose the ten key points and directions for future research in the field. RV failure (RVF) is frequent in the ICU, magnified by the frequent need for positive pressure ventilation. While no universal definition of RVF is accepted, we propose that RVF may be defined as a state in which the right ventricle is unable to meet the demands for blood flow without excessive use of the Frank-Starling mechanism (i.e. increase in stroke volume associated with increased preload). Both echocardiography and hemodynamic monitoring play a central role in the evaluation of RVF in the ICU. Management of RVF includes treatment of the causes, respiratory optimization and hemodynamic support. The administration of fluids is potentially deleterious and unlikely to lead to improvement in cardiac output in the majority of cases. Vasopressors are needed in the setting of shock to restore the systemic pressure and avoid RV ischemia; inotropic drug or inodilator therapies may also be needed. In the most severe cases, recent mechanical circulatory support devices are proposed to unload the RV and improve organ perfusion CONCLUSION: RV function evaluation is key in the critically-ill patients for hemodynamic management, as fluid optimization, vasopressor strategy and respiratory support. RV failure may be diagnosed by the association of different devices and parameters, while echocardiography is crucial.
Collapse
Affiliation(s)
- Antoine Vieillard-Baron
- Service de Réanimation, Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Paré, 92100, Boulogne-Billancourt, France.
- INSERM U-1018, CESP, Team 5, University of Versailles Saint-Quentin en Yvelines, Villejuif, France.
| | - R Naeije
- Professor Emeritus at the Université Libre de Bruxelles, Brussels, Belgium
| | - F Haddad
- Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford, USA
| | - H J Bogaard
- Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - T M Bull
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - N Fletcher
- Department of Cardiothoracic Critical Care, St Georges University Hospital NHS Trust, London, SW17 0QT, UK
| | - T Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine and Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - S Magder
- Department of Critical Care, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - S Orde
- Intensive Care Unit, Nepean Hospital, Kingswood, Sydney, NSW, Australia
| | - G Schmidt
- Department of Internal Medicine and Critical Care, University of Iowa, Iowa City, USA
| | - M R Pinsky
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
18
|
Alternatives to the Swan–Ganz catheter. Intensive Care Med 2018; 44:730-741. [DOI: 10.1007/s00134-018-5187-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022]
|
19
|
Pybus DA. Real-time, spectral analysis of the arterial pressure waveform using a wirelessly-connected, tablet computer: a pilot study. J Clin Monit Comput 2018; 33:53-63. [PMID: 29705865 PMCID: PMC6314984 DOI: 10.1007/s10877-018-0145-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/23/2018] [Indexed: 11/26/2022]
Abstract
Spectral analysis of the arterial pressure waveform, using specialized hardware, has been used for the retrospective calculation of the 'Spectral Peak Ratio' (SPeR) of the respiratory and cardiac arterial spectral peaks. The metric can quantify the cardiovascular response to volume loading by analysing the effect of changing tidal volume (indexed to body weight) (VTI) on pulse pressure variability. In this pilot study, the feasibility of real-time SPeR calculation, using a mobile computer which was wirelessly connected to the patient monitor, was evaluated by examining the determinants of SPeR in 60 cardiac-surgical patients. In 30 patients undergoing aortic valve replacement (AVR), graded cyclical changes in ventricular loading were induced by increasing VTI over 2 min, while performing spectral analysis at 1 Hz, before and after AVR. A strong, linear correlation between SPeR and VTI was found and the slope of the regression line (β) changed significantly after AVR. The change in β correlated with the width of the preoperative vena contracta. In another 30 patients, SPeR at constant VTI was calculated at 1 Hz during passive leg raising. β fell significantly on leg raising. The mean arterial pressure change during the manoeuvre was linearly related to the change in β. Real-time spectral analysis of the arterial waveform was easily accomplished. The regression of SPeR on VTI was linear. β appeared to represent the slope of the cardiac response curve at the venous return curve equilibrium point. Measurements were possible at a significantly lower VTI than the equivalent time domain metrics.
Collapse
Affiliation(s)
- David Andrew Pybus
- St. George Private Hospital, 1 South St., Kogarah, NSW, 2217, Australia.
| |
Collapse
|
20
|
Assessment of the effects of inspiratory load on right ventricular function. Curr Opin Crit Care 2018; 22:254-9. [PMID: 27054626 DOI: 10.1097/mcc.0000000000000303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The right ventricle (RV) plays a pivotal role during respiratory failure because of its high sensitivity to small loading changes during inspiration. Both RVs, preload and afterload, are altered during inspiration, either in spontaneous breathing or during mechanical ventilation. Some clinical situations especially affect RV load during inspiration, for example acute asthma and acute respiratory distress syndrome. The aim of this review is to explain and to summarize the different mechanisms leading to RV failure in these situations. RECENT FINDINGS Research has recently reemphasized the importance to well known physiology of the venous return which is a contributor of RV preload. Authors recently focused on the mean systemic filling pressure which is one of the determinants of venous return. Venous return may change in opposite direction according to the type of ventilation (spontaneous or assisted). Recent works have also demonstrated the crucial impact of lung inflation and driving pressure on RV afterload, and have confirmed the deleterious effect of severe RV failure, described as acute cor pulmonale. In most situations of RV overload induced by inspiration, significant pulse pressure variations are observed, either called 'pulsus paradoxus' in spontaneously breathing patients or 'reverse pulsus paradoxus' in mechanically ventilated patients. SUMMARY RV is very sensitive to abnormal inspiration, which is always responsible for an increase in its afterload. Pulse pressure variations, central venous pressure and especially echocardiography may monitor RV function in abnormal clinical situations. The pulmonary artery catheter was also proposed although now less used.
Collapse
|
21
|
Noel-Morgan J, Muir WW. Anesthesia-Associated Relative Hypovolemia: Mechanisms, Monitoring, and Treatment Considerations. Front Vet Sci 2018; 5:53. [PMID: 29616230 PMCID: PMC5864866 DOI: 10.3389/fvets.2018.00053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/02/2018] [Indexed: 12/14/2022] Open
Abstract
Although the utility and benefits of anesthesia and analgesia are irrefutable, their practice is not void of risks. Almost all drugs that produce anesthesia endanger cardiovascular stability by producing dose-dependent impairment of cardiac function, vascular reactivity, and compensatory autoregulatory responses. Whereas anesthesia-related depression of cardiac performance and arterial vasodilation are well recognized adverse effects contributing to anesthetic risk, far less emphasis has been placed on effects impacting venous physiology and venous return. The venous circulation, containing about 65–70% of the total blood volume, is a pivotal contributor to stroke volume and cardiac output. Vasodilation, particularly venodilation, is the primary cause of relative hypovolemia produced by anesthetic drugs and is often associated with increased venous compliance, decreased venous return, and reduced response to vasoactive substances. Depending on factors such as patient status and monitoring, a state of relative hypovolemia may remain clinically undetected, with impending consequences owing to impaired oxygen delivery and tissue perfusion. Concurrent processes related to comorbidities, hypothermia, inflammation, trauma, sepsis, or other causes of hemodynamic or metabolic compromise, may further exacerbate the condition. Despite scientific and technological advances, clinical monitoring and treatment of relative hypovolemia still pose relevant challenges to the anesthesiologist. This short perspective seeks to define relative hypovolemia, describe the venous system’s role in supporting normal cardiovascular function, characterize effects of anesthetic drugs on venous physiology, and address current considerations and challenges for monitoring and treatment of relative hypovolemia, with focus on insights for future therapies.
Collapse
Affiliation(s)
- Jessica Noel-Morgan
- Center for Cardiovascular & Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - William W Muir
- QTest Labs, Columbus, OH, United States.,College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| |
Collapse
|
22
|
Delmas J, Quenot JP, Constantin JM, Perbet S. État de choc après intubation : facteurs de risque et moyens de prévention en réanimation. MEDECINE INTENSIVE REANIMATION 2018. [DOI: 10.3166/rea-2018-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
La survenue d’un état de choc postintubation d’un patient de réanimation est fréquente. L’identification de facteurs de risque liés au patient (sujet âgé, pathologie respiratoire grave septique avec retentissement marqué, antécédents cardiorespiratoires) et à la procédure (hypnotiques, ventilation mécanique) est importante. Elle doit permettre d’anticiper des moyens de traitement de l’état de choc postintubation dans le cadre d’un bundle : présence de deux opérateurs, préoxygénation optimisée, expansion volémique, vasopresseurs, agents pour une induction en séquence rapide, préparation et initiation de la sédation d’entretien, capnographie, ventilation protectrice.
Collapse
|
23
|
Moller PW, Winkler B, Hurni S, Heinisch PP, Bloch A, Sondergaard S, Jakob SM, Takala J, Berger D. Right atrial pressure and venous return during cardiopulmonary bypass. Am J Physiol Heart Circ Physiol 2017; 313:H408-H420. [DOI: 10.1152/ajpheart.00081.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/22/2022]
Abstract
The relevance of right atrial pressure (RAP) as the backpressure for venous return (QVR) and mean systemic filling pressure as upstream pressure is controversial during dynamic changes of circulation. To examine the immediate response of QVR (sum of caval vein flows) to changes in RAP and pump function, we used a closed-chest, central cannulation, heart bypass porcine preparation ( n = 10) with venoarterial extracorporeal membrane oxygenation. Mean systemic filling pressure was determined by clamping extracorporeal membrane oxygenation tubing with open or closed arteriovenous shunt at euvolemia, volume expansion (9.75 ml/kg hydroxyethyl starch), and hypovolemia (bleeding 19.5 ml/kg after volume expansion). The responses of RAP and QVR were studied using variable pump speed at constant airway pressure (PAW) and constant pump speed at variable PAW. Within each volume state, the immediate changes in QVR and RAP could be described with a single linear regression, regardless of whether RAP was altered by pump speed or PAW ( r2 = 0.586–0.984). RAP was inversely proportional to pump speed from zero to maximum flow ( r2 = 0.859–0.999). Changing PAW caused immediate, transient, directionally opposite changes in RAP and QVR (RAP: P ≤ 0.002 and QVR: P ≤ 0.001), where the initial response was proportional to the change in QVR driving pressure. Changes in PAW generated volume shifts into and out of the right atrium, but their effect on upstream pressure was negligible. Our findings support the concept that RAP acts as backpressure to QVR and that Guyton’s model of circulatory equilibrium qualitatively predicts the dynamic response from changing RAP. NEW & NOTEWORTHY Venous return responds immediately to changes in right atrial pressure. Concomitant volume shifts within the systemic circulation due to an imbalance between cardiac output and venous return have negligible effects on mean systemic filling pressure. Guyton’s model of circulatory equilibrium can qualitatively predict the resulting changes in dynamic conditions with right atrial pressure as backpressure to venous return.
Collapse
Affiliation(s)
- Per W. Moller
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bernhard Winkler
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; and
| | - Samuel Hurni
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; and
| | - Paul Philipp Heinisch
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; and
| | - Andreas Bloch
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Stephan M. Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Berger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Karamolegkos N, Albanese A, Chbat NW. Effects of septum and pericardium on heart-lung interactions in a cardiopulmonary simulation model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:3401-3404. [PMID: 29060627 DOI: 10.1109/embc.2017.8037586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mechanical heart-lung interactions are often overlooked in clinical settings. However, their impact on cardiac function can be quite significant. Mechanistic physiology-based models can provide invaluable insights into such cardiorespiratory interactions, which occur not only under external mechanical ventilatory support but in normal physiology as well. In this work, we focus on the cardiac component of a previously developed mathematical model of the human cardiopulmonary system, aiming to improve the model's response to the intrathoracic pressure variations that are associated with the respiratory cycle. Interventricular septum and pericardial membrane are integrated into the existing model. Their effect on the overall cardiac response is explained by means of comparison against simulation results from the original model as well as experimental data from literature.
Collapse
|
25
|
Repessé X, Charron C, Geri G, Aubry A, Paternot A, Maizel J, Slama M, Vieillard-Baron A. Impact of positive pressure ventilation on mean systemic filling pressure in critically ill patients after death. J Appl Physiol (1985) 2017; 122:1373-1378. [PMID: 28360123 DOI: 10.1152/japplphysiol.00958.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 11/22/2022] Open
Abstract
Mean systemic filling pressure (Pms) defines the pressure measured in the venous-arterial system when the cardiac output is nil. Its estimation has been proposed in patients with beating hearts by building the venous return curve, using different pairs of right atrial pressure/cardiac output during mechanical ventilation. We raised the hypothesis according to which the Pms is altered by tidal ventilation and positive end-expiratory pressure (PEEP), which would challenge this extrapolation method based on cardiopulmonary interactions. We conducted a two-center, noninterventional, observational, and prospective study, using an arterial and a venous catheter to measure the pressure in the circulatory system at the time of death in critically ill, mechanically ventilated patients with a PEEP. Arterial (Part) and venous pressures (Pra) were recorded in five conditions: at end expiration and end inspiration with and without PEEP and finally once the ventilator was disconnected. Part and Pra did not differ in any experimental conditions. Tidal ventilation increased Pra and Part by 2.4 and 1.9 mmHg, respectively, whereas PEEP increased both values by 1.2 and 1 mmHg, respectively. After disconnection of the ventilator, Pra and Part were 10.0 ± 4.2 and 9.9 ± 4.2 mmHg, respectively. Pms increases during mechanical ventilation, with an effect of tidal ventilation and PEEP. This calls into question the validity of its evaluation in heart-beating patients using cardiopulmonary interactions during mechanical ventilation.NEW & NOTEWORTHY The physiology of the mean systemic filling pressure (Pms) is not well understood in human beings. This study is the first report of a tidal ventilation- and positive end-expiratory pressure-related increase in Pms in critically ill patients. The results challenge the utility and the value estimating Pms in heart-beating patients by reconstruction of the venous return curve using varying inflation pressures.
Collapse
Affiliation(s)
- Xavier Repessé
- Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Paré, Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, Boulogne-Billancourt, France
| | - Cyril Charron
- Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Paré, Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, Boulogne-Billancourt, France
| | - Guillaume Geri
- Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Paré, Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, Boulogne-Billancourt, France.,University of Versailles Saint-Quentin en Yvelines, Faculty of Medicine Paris Ile-de-France Ouest, Saint-Quentin en Yvelines, France.,INSERM U-1018, Centre de Recherche en Épidémiologie et Santé des Populations, Team 5 (EpReC, Renal, and Cardiovascular Epidemiology), Université de Versailles Saint-Quentin en Yvelines, Villejuif, France
| | - Alix Aubry
- Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Paré, Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, Boulogne-Billancourt, France.,University of Versailles Saint-Quentin en Yvelines, Faculty of Medicine Paris Ile-de-France Ouest, Saint-Quentin en Yvelines, France
| | - Alexis Paternot
- Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Paré, Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, Boulogne-Billancourt, France.,University of Versailles Saint-Quentin en Yvelines, Faculty of Medicine Paris Ile-de-France Ouest, Saint-Quentin en Yvelines, France
| | - Julien Maizel
- Intensive Care Unit, University Hospital of Amiens, Amiens, France; and.,Unité INSERM 1088, University of Picardie Jules Verne, Amiens, France
| | - Michel Slama
- Intensive Care Unit, University Hospital of Amiens, Amiens, France; and.,Unité INSERM 1088, University of Picardie Jules Verne, Amiens, France
| | - Antoine Vieillard-Baron
- Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Paré, Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, Boulogne-Billancourt, France; .,University of Versailles Saint-Quentin en Yvelines, Faculty of Medicine Paris Ile-de-France Ouest, Saint-Quentin en Yvelines, France.,INSERM U-1018, Centre de Recherche en Épidémiologie et Santé des Populations, Team 5 (EpReC, Renal, and Cardiovascular Epidemiology), Université de Versailles Saint-Quentin en Yvelines, Villejuif, France
| |
Collapse
|
26
|
Critical care ultrasonography in acute respiratory failure. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:228. [PMID: 27524204 PMCID: PMC4983787 DOI: 10.1186/s13054-016-1400-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/01/2016] [Indexed: 12/12/2022]
Abstract
Acute respiratory failure (ARF) is a leading indication for performing critical care ultrasonography (CCUS) which, in these patients, combines critical care echocardiography (CCE) and chest ultrasonography. CCE is ideally suited to guide the diagnostic work-up in patients presenting with ARF since it allows the assessment of left ventricular filling pressure and pulmonary artery pressure, and the identification of a potential underlying cardiopathy. In addition, CCE precisely depicts the consequences of pulmonary vascular lesions on right ventricular function and helps in adjusting the ventilator settings in patients sustaining moderate-to-severe acute respiratory distress syndrome. Similarly, CCE helps in identifying patients at high risk of ventilator weaning failure, depicts the mechanisms of weaning pulmonary edema in those patients who fail a spontaneous breathing trial, and guides tailored therapeutic strategy. In all these clinical settings, CCE provides unparalleled information on both the efficacy and tolerance of therapeutic changes. Chest ultrasonography provides further insights into pleural and lung abnormalities associated with ARF, irrespective of its origin. It also allows the assessment of the effects of treatment on lung aeration or pleural effusions. The major limitation of lung ultrasonography is that it is currently based on a qualitative approach in the absence of standardized quantification parameters. CCE combined with chest ultrasonography rapidly provides highly relevant information in patients sustaining ARF. A pragmatic strategy based on the serial use of CCUS for the management of patients presenting with ARF of various origins is detailed in the present manuscript.
Collapse
|
27
|
Abstract
OBJECTIVES The objectives of this review are to discuss the mechanisms by which respiration impacts cardiovascular function and vice versa, with an emphasis on the impact of these interactions in pediatric cardiac critical care. DATA SOURCE A search of MEDLINE was conducted using PubMed. CONCLUSIONS In the presence of underlying cardiac and respiratory disease, the interplay between these two systems is significant and plays a pivotal role in the pathophysiology of acute and chronic phases of a wide spectrum of diseases. An understanding of these relationships is essential to optimizing the care of critically ill patients.
Collapse
|
28
|
Lee SH, Chun YM, Oh YJ, Shin S, Park SJ, Kim SY, Choi YS. Prediction of fluid responsiveness in the beach chair position using dynamic preload indices. J Clin Monit Comput 2015; 30:995-1002. [PMID: 26719298 DOI: 10.1007/s10877-015-9821-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022]
Abstract
Hemodynamic instability in the beach chair position (BCP) may lead to adverse outcomes. Cardiac preload optimization is a prerequisite to improve hemodynamics. We evaluated the clinical usefulness of dynamic indices for the prediction of fluid responsiveness in BCP patients under general anesthesia. Forty-two patients in the BCP under mechanical ventilation received colloids at 6 ml/kg for 10 min. Stroke volume variation (SVV), pulse pressure variation (PPV), pleth variability index (PVI), and hemodynamic data were measured before and after the fluid challenge. Patients were considered responders to volume expansion if the stroke volume index increased by ≥15 %. The areas under receiver operating characteristic curves for SVV, PPV and PVI were 0.83, 0.81 and 0.74, respectively (p < 0.05), with the corresponding optimal cut-off values of 12, 15 and 10 %. SVV, PPV and PVI can be used to predict fluid responsiveness in the BCP under mechanical ventilation.
Collapse
Affiliation(s)
- Su Hyun Lee
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Min Chun
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Jun Oh
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seokyung Shin
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Jun Park
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Young Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Yong Seon Choi
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea. .,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
29
|
Messina A, Colombo D, Cammarota G, De Lucia M, Cecconi M, Antonelli M, Corte FD, Navalesi P. Patient-ventilator asynchrony affects pulse pressure variation prediction of fluid responsiveness. J Crit Care 2015; 30:1067-71. [DOI: 10.1016/j.jcrc.2015.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022]
|
30
|
Berger D, Bloechlinger S, Takala J, Sinderby C, Brander L. Heart-lung interactions during neurally adjusted ventilatory assist. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:499. [PMID: 25212533 PMCID: PMC4189198 DOI: 10.1186/s13054-014-0499-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 08/19/2014] [Indexed: 12/27/2022]
Abstract
Introduction Assist in unison to the patient’s inspiratory neural effort and feedback-controlled limitation of lung distension with neurally adjusted ventilatory assist (NAVA) may reduce the negative effects of mechanical ventilation on right ventricular function. Methods Heart–lung interaction was evaluated in 10 intubated patients with impaired cardiac function using esophageal balloons, pulmonary artery catheters and echocardiography. Adequate NAVA level identified by a titration procedure to breathing pattern (NAVAal), 50% NAVAal, and 200% NAVAal and adequate pressure support (PSVal, defined clinically), 50% PSVal, and 150% PSVal were implemented at constant positive end-expiratory pressure for 20 minutes each. Results NAVAal was 3.1 ± 1.1cmH2O/μV and PSVal was 17 ± 2 cmH20. For all NAVA levels negative esophageal pressure deflections were observed during inspiration whereas this pattern was reversed during PSVal and PSVhigh. As compared to expiration, inspiratory right ventricular outflow tract velocity time integral (surrogating stroke volume) was 103 ± 4%, 109 ± 5%, and 100 ± 4% for NAVAlow, NAVAal, and NAVAhigh and 101 ± 3%, 89 ± 6%, and 83 ± 9% for PSVlow, PSVal, and PSVhigh, respectively (p < 0.001 level-mode interaction, ANOVA). Right ventricular systolic isovolumetric pressure increased from 11.0 ± 4.6 mmHg at PSVlow to 14.0 ± 4.6 mmHg at PSVhigh but remained unchanged (11.5 ± 4.7 mmHg (NAVAlow) and 10.8 ± 4.2 mmHg (NAVAhigh), level-mode interaction p = 0.005). Both indicate progressive right ventricular outflow impedance with increasing pressure support ventilation (PSV), but no change with increasing NAVA level. Conclusions Right ventricular performance is less impaired during NAVA compared to PSV as used in this study. Proposed mechanisms are preservation of cyclic intrathoracic pressure changes characteristic of spontaneous breathing and limitation of right-ventricular outflow impedance during inspiration, regardless of the NAVA level. Trial registration Clinicaltrials.gov Identifier: NCT00647361, registered 19 March 2008 Electronic supplementary material The online version of this article (doi:10.1186/s13054-014-0499-8) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Perel A, Pizov R, Cotev S. Respiratory variations in the arterial pressure during mechanical ventilation reflect volume status and fluid responsiveness. Intensive Care Med 2014; 40:798-807. [PMID: 24737260 DOI: 10.1007/s00134-014-3285-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/31/2014] [Indexed: 01/28/2023]
Abstract
Optimal fluid management is one of the main challenges in the care of the critically ill. However, the physiological parameters that are commonly monitored and used to guide fluid management are often inadequate and even misleading. From 1987 to 1989 we published four experimental studies which described a method for predicting the response of the cardiac output to fluid administration during mechanical ventilation. The method is based on the analysis of the variations in the arterial pressure in response to a mechanical breath, which serves as a repetitive hemodynamic challenge. Our studies showed that the systolic pressure variation and its components are able to reflect even small changes in the circulating blood volume. Moreover, these dynamic parameters provide information about the slope of the left ventricular function curve, and therefore predict the response to fluid administration better than static preload parameters. Many new dynamic parameters have been introduced since then, including the pulse pressure (PPV) and stroke volume (SVV) variations, and various echocardiographic and other parameters. Though seemingly different, all these parameters are based on measuring the response to a predefined preload-modifying maneuver. The clinical usefulness of these 'dynamic' parameters is limited by many confounding factors, the recognition of which is absolutely necessary for their proper use. With more than 20 years of hindsight we believe that our early studies helped pave the way for the recognition that fluid administration should ideally be preceded by the assessment of "fluid responsiveness". The introduction of dynamic parameters into clinical practice can therefore be viewed as a significant step towards a more rational approach to fluid management.
Collapse
Affiliation(s)
- Azriel Perel
- Department of Anesthesiology and Intensive Care, Sheba Medical Center, Tel Aviv University, Tel Hashomer, 52621, Tel Aviv, Israel,
| | | | | |
Collapse
|
32
|
Pulse pressure variation is comparable with central venous pressure to guide fluid resuscitation in experimental hemorrhagic shock with endotoxemia. Shock 2014; 40:303-11. [PMID: 23807247 DOI: 10.1097/shk.0b013e3182a0ca00] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Pulse pressure variation (PPV) has been proposed as a promising resuscitation goal, but its ability to predict fluid responsiveness has been questioned in various conditions. The purpose of this study was to assess the performance of PPV in predicting fluid responsiveness in experimental hemorrhagic shock with endotoxemia, while comparing it with goals determined by a conventional set of guidelines. METHODS Twenty-seven pigs were submitted to acute hemorrhagic shock with intravenous infusion of endotoxin and randomized to three groups: (i) control; (ii) conventional treatment with crystalloids to achieve and maintain central venous pressure (CVP) 12 to 15 mmHg, mean arterial pressure of 65 mmHg or greater, and SvO2 (mixed venous oxygen saturation) of 65% or greater; (iii) treatment to achieve and maintain PPV of 13% or less. Parametric data were analyzed by two-way analysis of variance and Tukey test and differences in crystalloid volumes by t test. Predictive values of variables regarding fluid responsiveness were evaluated by receiver operating characteristic curves and multiple logistic regression. RESULTS Both treatments produced satisfactory hemodynamic recovery, without statistical differences in fluid administration (P = 0.066), but conventional treatment induced higher CVP (P = 0.001). Areas under receiver operating characteristic curves were larger for CVP (0.77; 95% confidence interval, 0.68-0.86) and PPV (0.74; 95% confidence interval, 0.65-0.83), and these variables were further selected by multiple logistic regression as independent predictors of responsiveness. Optimal PPV cutoff was 15%, with false-positive results involving mean pulmonary arterial pressure of 27 mmHg or greater. CONCLUSIONS Acute resuscitation guided by PPV was comparable with the strategy guided by CVP, mean arterial pressure, and SvO2. Central venous pressure and PPV were individually limited but independently predictive of fluid responsiveness.
Collapse
|
33
|
Biais M, Calderon J, Pernot M, Barandon L, Couffinhal T, Ouattara A, Sztark F. Predicting fluid responsiveness during infrarenal aortic cross-clamping in pigs. J Cardiothorac Vasc Anesth 2013; 27:1101-7. [PMID: 24060469 DOI: 10.1053/j.jvca.2013.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Infrarenal aortic cross-clamping (ACC) induces hemodynamic disturbances that may affect respiratory-induced variations in stroke volume and, therefore, affect the ability of dynamic parameters such as pulse-pressure variation (PPV) to predict fluid responsiveness. Since this issue has not been investigated yet to authors' knowledge, the hypothesis was tested that ACC may change PPV and impair its ability to predict fluid responsiveness. DESIGN Prospective laboratory experiment. SETTING A university research laboratory. PARTICIPANTS Nineteen anesthetized and mechanically ventilated pigs. INTERVENTIONS Two courses of volume expansion were performed using 500 mL of saline before and during ACC. Animals were monitored using a systemic arterial catheter, and a pulmonary arterial catheter (stroke volume, central venous pressure, pulmonary arterial occlusion pressure). Animals were defined as responders to volume expansion if stroke volume increased ≥ 15%. RESULTS Before ACC, 13 animals were responders. Fluid responsiveness was predicted by a PPV ≥ 14% with a sensitivity of 77% (95% CI = 46%-95%) and a specificity of 83% (95% CI = 36%-97%). The area under the receiver operating characteristic curve was 0.90(95% CI = 0.67-0.99) and was higher than those generated for central venous pressure and pulmonary arterial occlusion pressure. ACC induced an increase in PPV (p<0.0005). During ACC, 8 animals were responders. An 18% PPV threshold discriminated between responders and non-responders to volume expansion, with a sensitivity of 87% (95% CI = 47%-98%) and a specificity of 54% (95% CI = 23%-83%). The area under the receiver operating characteristic curve was 0.72 (95% CI = 0.47-0.90) and was not different from those generated for central venous pressure and pulmonary arterial occlusion pressure. CONCLUSIONS ACC induced a significant increase in PPV and reduced its ability to predict fluid responsiveness.
Collapse
Affiliation(s)
- Matthieu Biais
- Emergency Department, University Hospital of Bordeaux, Bordeaux, France; Cardiovascular Adaptation to Ischemia, National Institute of Health and Medical Research, INSERM U1034, Pessac, France; Cardiovascular Adaptation to Ischemia, University of Bordeaux, Pessac, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Perel A, Habicher M, Sander M. Bench-to-bedside review: functional hemodynamics during surgery - should it be used for all high-risk cases? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:203. [PMID: 23356477 PMCID: PMC4056316 DOI: 10.1186/cc11448] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The administration of a fluid bolus is done frequently in the perioperative period to increase the cardiac output. Yet fluid loading fails to increase the cardiac output in more than 50% of critically ill and surgical patients. The assessment of fluid responsiveness (the slope of the left ventricular function curve) prior to fluid administration may thus not only help in detecting patients in need of fluids but may also prevent unnecessary and harmful fluid overload. Unfortunately, commonly used hemodynamic parameters, including the cardiac output itself, are poor predictors of fluid responsiveness, which is best assessed by functional hemodynamic parameters. These dynamic parameters reflect the response of cardiac output to a preload-modifying maneuver (for example, a mechanical breath or passive leg-raising), thus providing information about fluid responsiveness without the actual administration of fluids. All dynamic parameters, which include the respiratory variations in systolic blood pressure, pulse pressure, stroke volume and plethysmographic waveform, have been repeatedly shown to be superior to commonly used static preload parameters in predicting the response to fluid loading. Within their respective limitations, functional hemodynamic parameters should be used to guide fluid therapy as part of or independently of goal-directed therapy strategies in the perioperative period.
Collapse
|
35
|
Sumler ML, Andritsos MJ, Blank RS. Anesthetic management of the patient with dilated cardiomyopathy undergoing pulmonary resection surgery: a case-based discussion. Semin Cardiothorac Vasc Anesth 2012; 17:9-27. [PMID: 22892328 DOI: 10.1177/1089253212453620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interactions between the cardiovascular and respiratory systems are complex and profound. General anesthesia, muscle relaxation, and positive-pressure ventilation all impose physiological effects on cardiovascular function. In patients presenting for pulmonary resection, additional effects resulting from positioning, 1-lung ventilation, surgical procedures, and contraction of the pulmonary vascular bed may impose an additional physiological burden. For most patients with adequate pulmonary and cardiovascular reserve, these effects are well tolerated. However, the cardiothoracic anesthesiologist may be asked to provide anesthetic care for patients with significantly reduced cardiac function who require potentially curative pulmonary resection for lung cancer. These patients present a major perioperative challenge and a thoughtful approach to intraoperative management is required. The authors review a case of a patient with severely impaired biventricular function who presented for elective pulmonary lobectomy in an attempt to effect a curative resection of lung cancer and present a discussion of physiological and pathophysiological considerations for clinical management.
Collapse
Affiliation(s)
- Michele L Sumler
- University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
36
|
Biais M, Cottenceau V, Stecken L, Jean M, Ottolenghi L, Roullet S, Quinart A, Sztark F. Evaluation of stroke volume variations obtained with the pressure recording analytic method. Crit Care Med 2012; 40:1186-91. [PMID: 22425817 DOI: 10.1097/ccm.0b013e31823bc632] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To investigate whether stroke volume variations obtained with the pressure recording analytic method can predict fluid responsiveness in mechanically ventilated patients with circulatory failure. DESIGN Prospective study. SETTING Surgical intensive care unit of a university hospital. PATIENTS Thirty-five mechanically ventilated patients with circulatory failure for whom the decision to give fluid was taken by the physician were included. Exclusion criteria were: Arrhythmia, tidal volume <8 mL/kg, left ventricular ejection fraction<50%, right ventricular dysfunction, and heart rate/respiratory rate ratio <3.6. INTERVENTIONS Fluid challenge with 500 mL of saline over 15 mins. MEASUREMENTS AND MAIN RESULTS Stroke volume variations and cardiac output obtained with a pressure recording analytic method, pulse pressure variations, and cardiac output estimated by echocardiography were recorded before and after volume expansion. Patients were defined as responders if stroke volume obtained using echocardiography increased by ≥15% after volume expansion. Nineteen patients responded to the fluid challenge. Median [interquartile range, 25% to 75%] stroke volume variation values at baseline were not different in responders and nonresponders (10% [8-16] vs. 14% [12-16]), whereas pulse pressure variations were significantly higher in responders (17% [13-19] vs. 7% [5-10]; p < .0001). A 12.6% stroke volume variations threshold discriminated between responders and nonresponders with a sensitivity of 63% (95% confidence interval 38% to 84%) and a specificity of 69% (95% confidence interval 41% to 89%). A 10% pulse pressure variation threshold discriminated between responders and nonresponders with a sensitivity of 89% (95% confidence interval 67% to 99%) and a specificity of 88% (95% confidence interval 62% to 98%). The area under the receiver operating characteristic curves was different between pulse pressure variations (0.95; 95% confidence interval 0.82-0.99) and stroke volume variations (0.60; 95% confidence interval 0.43-0.76); p < .0001). Volume expansion-induced changes in cardiac output measured using echocardiography or pressure recording analytic method were not correlated (r = 0.14; p > .05) and the concordance rate of the direction of change in cardiac output was 60%. CONCLUSION Stroke volume variations obtained with a pressure recording analytic method cannot predict fluid responsiveness in intensive care unit patients under mechanical ventilation. Cardiac output measured by this device is not able to track changes in cardiac output induced by volume expansion.
Collapse
Affiliation(s)
- Matthieu Biais
- Emergency Department, Centre Hospitalier Universitaire de Bordeaux, France.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Radhakrishnan M, Mohanvelu K, Veena S, Sripathy G, Umamaheswara Rao GS. Pulse-plethysmographic variables in hemodynamic assessment during mannitol infusion. J Clin Monit Comput 2012; 26:99-106. [PMID: 22318409 DOI: 10.1007/s10877-012-9339-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 01/18/2012] [Indexed: 11/25/2022]
Abstract
Plethysmographic signal using pulse oximetry may be used to assess fluid status of patients during surgery as it resembles arterial pressure waveform. This will avoid placement of invasive arterial lines. This study was designed to find out whether intravascular volume changes induced by mannitol bolus in neurosurgical patients are detected by variations in arterial pressure and plethysmographic waveforms and also to assess the strength of correlation between different variables derived from these two waveforms. The time difference between the onset of arterial and plethysmographic waveforms as means of significant hemodynamic changes was also evaluated. Forty one adult ASA I and II neurosurgical patients requiring mannitol infusion were recruited. Arterial line and plethysmographic probe were placed in the same limb. Digitized waveforms were collected before, at the end, and 15, 30 and 60 min after mannitol infusion. Using MATLAB, the following parameters were collected for three consecutive respiratory cycles,-systolic pressure variation (SPV), pulse pressure variation (PPV), plethysmographic peak variation (Pl-PV), plethysmographic amplitude variation (Pl-AV) and blood pressure-plethysmographic time lag (BP-Pleth time lag). Changes in above parameters over the study period were studied using repeated measure analysis of variance. Correlation between the parameters was analysed. SPV and Pl-PV showed significant increase at 15, 30 and 60 min compared to end of mannitol infusion (P < 0.01 for SPV; P < 0.05 for Pl-PV). PPV and Pl-AV showed significant increase only at 30 min (P < 0.05). The correlation between ∆SPV-∆Pl-PV, ∆PPV-∆Pl-AV and ∆SPV-∆BP-Pleth time lag were significant (r = 0.3; P < 0.01). SPV and time lag had no significant interaction. Pl-PV correlates well with SPV following mannitol infusion and can be used as an alternative to SPV. (BP-Pleth) time-lag promises to be an important parameter in assessing the state of peripheral vascular resistance and deserves further investigation.
Collapse
Affiliation(s)
- M Radhakrishnan
- Department of Neuroanaesthesia, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | | | | | | | | |
Collapse
|
38
|
Lansdorp B, Ouweneel D, de Keijzer A, van der Hoeven J, Lemson J, Pickkers P. Non-invasive measurement of pulse pressure variation and systolic pressure variation using a finger cuff corresponds with intra-arterial measurement. Br J Anaesth 2011; 107:540-5. [DOI: 10.1093/bja/aer187] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
39
|
Abstract
Arterial waveform analysis that does not require continuous calibration, impedance cardiography, electrical cardiometry, velocity-encoded phase contrast magnetic resonance imaging (MRI), pulsed dye densitometry, noninvasive pulse pressure analysis using tonometry, suprasternal Doppler, partial CO2 rebreathing techniques, and transcutaneous Doppler are just some of the other emerging technologies not described in this review that may be used routinely in the management of sepsis and septic shock in the very near future. These innovative approaches may further increase our ability to optimize patients' fluid status and hemodynamics. We also have ability to monitor the microcirculation. This increasingly sophisticated approach to the management of sepsis and septic shock will hopefully translate into better patient outcomes. However, optimal use of any hemodynamic monitoring requires an understanding of its physiologic underpinnings. Accurate interpretation of the hemodynamic information coupled with a protocolized management algorithm is the cornerstone of an effective resuscitation effort. Many forms of hemodynamic monitoring have emerged over the past 20 to 30 years with no convincing evidence for the superiority of any single techniques (Table 2). The goal of hemodynamic monitoring and optimization is to combat the systemic imbalance between tissue oxygen supply and demand ranging from global tissue hypoxia to overt shock and multiorgan failure. It remains unproven that hemodynamic monitoring of disease progression can effectively change patient outcome. However, despite our increased understanding of sepsis pathophysiology, mortality and morbidity from the disease remains high. Therefore, the search for the optimal parameters in resuscitation and the best way they can be monitored will continue.
Collapse
Affiliation(s)
- Brian Casserly
- Division of Pulmonary and Critical Care Medicine, The Memorial Hospital of Rhode Island, Pawtucket, USA
| | | | | |
Collapse
|
40
|
Biais M, Cottenceau V, Petit L, Masson F, Cochard JF, Sztark F. Impact of norepinephrine on the relationship between pleth variability index and pulse pressure variations in ICU adult patients. Crit Care 2011; 15:R168. [PMID: 21749695 PMCID: PMC3387606 DOI: 10.1186/cc10310] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/05/2011] [Accepted: 07/12/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Pleth Variability Index (PVI) is an automated and continuous calculation of respiratory variations in the perfusion index. PVI correlates well with respiratory variations in pulse pressure (ΔPP) and is able to predict fluid responsiveness in the operating room. ICU patients may receive vasopressive drugs, which modify vascular tone and could affect PVI assessment. We hypothesized that the correlation between PVI and ΔPP and the ability of PVI to identify patients with ΔPP > 13% is dependent on norepinephrine (NE) use. METHODS 67 consecutive mechanically ventilated patients in the ICU were prospectively included. Three were excluded. The administration and dosage of NE, heart rate, mean arterial pressure, PVI and ΔPP were measured simultaneously. RESULTS In all patients, the correlation between PVI and ΔPP was weak (r2 = 0.21; p = 0.001). 23 patients exhibited a ΔPP > 13%. A PVI > 11% was able to identify patients with a ΔPP > 13% with a sensitivity of 70% (95% confidence interval: 47%-87%) and a specificity of 71% (95% confidence interval: 54%-84%). The area under the curve was 0.80 ± 0.06. 35 patients (53%) received norepinephrine (NE(+)). In NE(+) patients, PVI and ΔPP were not correlated (r2 = 0.04, p > 0.05) and a PVI > 10% was able to identify patients with a ΔPP > 13% with a sensitivity of 58% (95% confidence interval: 28%-85%) and a specificity of 61% (95% confidence interval:39%-80%). The area under the ROC (receiver operating characteristics) curve was 0.69 ± 0.01. In contrast, NE(-) patients exhibited a correlation between PVI and ΔPP (r2 = 0.52; p < 0.001) and a PVI > 10% was able to identify patients with a ΔPP > 13% with a sensitivity of 100% (95% confidence interval: 71%-100%) and a specificity of 72% (95% confidence interval: 49%-90%). The area under the ROC curve was 0.93 ± 0.06 for NE(-) patients and was significantly higher than the area under the ROC curve for NE(+) patients (p = 0.02). CONCLUSIONS Our results suggest that in mechanically ventilated adult patients, NE alters the correlation between PVI and ΔPP and the ability of PVI to predict ΔPP > 13% in ICU patients.
Collapse
Affiliation(s)
- Matthieu Biais
- Emergency Department, Hôpital Pellegrin, Centre Hospitalier Universitaire de Bordeaux, Place Amélie Raba Léon, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | |
Collapse
|
41
|
Biais M, Stecken L, Ottolenghi L, Roullet S, Quinart A, Masson F, Sztark F. The ability of pulse pressure variations obtained with CNAP™ device to predict fluid responsiveness in the operating room. Anesth Analg 2011; 113:523-8. [PMID: 21642606 DOI: 10.1213/ane.0b013e3182240054] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Respiratory-induced pulse pressure variations obtained with an arterial line (ΔPP(ART)) indicate fluid responsiveness in mechanically ventilated patients. The Infinity® CNAP™ SmartPod® (Dräger Medical AG & Co. KG, Lübeck, Germany) provides noninvasive continuous beat-to-beat arterial blood pressure measurements and a near real-time pressure waveform. We hypothesized that respiratory-induced pulse pressure variations obtained with the CNAP system (ΔPP(CNAP)) predict fluid responsiveness as well as ΔPP(ART) predicts fluid responsiveness in mechanically ventilated patients during general anesthesia. METHODS Thirty-five patients undergoing vascular surgery were studied after induction of general anesthesia. Stroke volume (SV) measured with the Vigileo™/FloTrac™ (Edwards Lifesciences, Irvine, CA), ΔPP(ART), and ΔPP(CNAP) were recorded before and after intravascular volume expansion (VE) (500 mL of 6% hydroxyethyl starch 130/0.4). Subjects were defined as responders if SV increased by ≥15% after VE. RESULTS Twenty patients responded to VE and 15 did not. The correlation coefficient between ΔPP(ART) and ΔPP(CNAP) before VE was r = 0.90 (95% confidence interval [CI] = 0.84-0.96; P < 0.0001). Before VE, ΔPP(ART) and ΔPP(CNAP) were significantly higher in responders than in nonresponders (P < 0.0001). The values of ΔPP(ART) and ΔPP(CNAP) before VE were significantly correlated with the percent increase in SV induced by VE (respectively, r(2) = 0.50; P < 0.0001 and r(2) = 0.57; P < 0.0001). Before VE, a ΔPP(ART) >10% discriminated between responders and nonresponders with a sensitivity of 90% (95% CI = 69%-99%) and a specificity of 87% (95% CI = 60%-98%). The area under the receiver operating characteristic (ROC) curve was 0.957 ± 0.035 for ΔPP(ART). Before VE, a ΔPP(CNAP) >11% discriminated between responders and nonresponders with a sensitivity of 85% (95% CI = 62%-97%) and a specificity of 100% (95% CI = 78%-100%). The area under the ROC curve was 0.942 ± 0.040 for ΔPP(CNAP). There was no significant difference between the area under the ROC curve for ΔPP(ART) and ΔPP(CNAP). CONCLUSIONS A value of ΔPP(CNAP) >11% has a sensitivity of at least 62% in predicting preload-dependent responders to VE in mechanically ventilated patients during general anesthesia.
Collapse
Affiliation(s)
- Matthieu Biais
- Service d'Anesthésie et de Réanimation 1, Hôpital Pellegrin, CHU Bordeaux, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Determinants of arterial and central venous blood pressure variation in ventilated critically ill children. Intensive Care Med 2010; 37:118-23. [PMID: 20953583 DOI: 10.1007/s00134-010-2046-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 07/25/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Ventilation-induced arterial pressure variation predicts volume responsiveness in adults. Several factors are known to influence the interpretability of these variations. We analysed ventilation-induced variations in critically ill children with reference to ventilatory and circulatory parameters. METHODS We prospectively included 20 paediatric patients. Variation of systolic pressure (SPV), pulse pressure (PPV) and central venous pressure (CVP) were assessed during pressure-controlled ventilation with inspiratory pressures (P(insp)) of 20 and 28 cmH(2)O. Blood gases were analysed and echocardiography was performed. RESULTS SPV, PPV and CVP variation significantly increased with elevated P(insp) (p < 0.001, p = 0.008 and p = 0.003). Baseline CVP and shortening fraction were significant negative predictors of PPV and SPV. CONCLUSION This preliminary study identified P(insp) as a determinant of SPV, PPV and CVP variation in children. Further independent determinants of SPV and PPV were baseline CVP and ventricular performance, both of which must be considered when interpreting pressure variations.
Collapse
|
43
|
Abstract
Ultrasound applications in perioperative medicine have expanded enormously over the past decade. Transoesophageal echocardiography has been performed by anaesthetists during cardiac surgery for over 20 years. With the increasing availability of portable ultrasound systems, the use of ultrasound to assist in vascular cannulation and regional anaesthesia has been well described. Portable ultrasound systems come with a range of probes for different applications, including transthoracic echocardiography. While transthoracic echocardiography has traditionally been the domain of cardiologists, its use has been increasing in critical care, the emergency room and, recently, by anaesthetists in the perioperative period. Unlike formal cardiology-based transthoracic echocardiography, focused, goal-directed transthoracic echocardiography is often more appropriate in the perioperative period to address a particular question and can be performed in just a few minutes. Transthoracic echocardiography allows rapid, noninvasive, point-of-care assessment of ventricular function, valvular integrity, volume status and fluid responsiveness. It can help distinguish undifferentiated systolic murmurs preoperatively, give valuable information on the aetiology of unexplained hypotension and cardiovascular collapse and assess response to therapeutic interventions such as vasoactive drugs and volume resuscitation. Focused transthoracic echocardiography should include qualitative assessment of left and right ventricular function, an estimate of aortic valve gradient, right ventricular systolic pressure and intravascular volume status as minimum requirements. Transthoracic echocardiography is a valuable tool in the perioperative period and ideally the equipment and expertise should be available in all operating rooms.
Collapse
Affiliation(s)
- B. S. Cowie
- Department of Anaesthesia, St. Vincent's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Biais M, Bernard O, Ha JC, Degryse C, Sztark F. Abilities of pulse pressure variations and stroke volume variations to predict fluid responsiveness in prone position during scoliosis surgery. Br J Anaesth 2010; 104:407-13. [PMID: 20190260 DOI: 10.1093/bja/aeq031] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pulse pressure variation (PPV) and stroke volume variation (SVV) are robust indicators of fluid responsiveness in mechanically ventilated supine patients. The aim of the study was to evaluate the ability of PPV and SVV to predict fluid responsiveness in mechanically ventilated patients in the prone position (PP) during scoliosis surgery. METHODS Thirty subjects were studied after the induction of anaesthesia in the supine position [before and after volume expansion (VE) with 500 ml of hetastarch 6%] and in PP (immediately after PP and before and after VE). PPV, SVV, cardiac output (CO), and static compliance of the respiratory system were recorded at each interval. Subjects were defined as responders (Rs) to VE if CO increased > or =15%. RESULTS Three subjects were excluded. In the supine position, 16 subjects were Rs. PPV and SVV before VE were correlated with VE-induced changes in CO (r(2)=0.64, P<0.0001 and r(2)=0.56, P<0.0001, respectively). Fluid responsiveness was predicted by PPV >11% (sensitivity=88%, specificity=82%) and by SVV >9% (sensitivity=88%, specificity=91%). PP induced an increase in PPV and SVV (P<0.0001) and a decrease in the static compliance of the respiratory system (P<0.0001). In PP, 17 patients were Rs. PPV and SVV before VE were correlated with VE-induced changes in CO (r(2)=0.59, P<0.0001 and r(2)=0.55, P<0.0005, respectively). Fluid responsiveness was predicted in PP by PPV >15% (sensitivity=100%, specificity=80%) and by SVV >14% (sensitivity=94%, specificity=80%). CONCLUSIONS PP induces a significant increase in PPV and SVV but does not alter their abilities to predict fluid responsiveness.
Collapse
Affiliation(s)
- M Biais
- Université Victor Segalen Bordeaux, Hôpital Pellegrin, CHU Bordeaux, France.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Tissue hypoperfusion is an important factor in the development of multiple organ failure. Therefore, recognition of sepsis-induced tissue hypoperfusion and timely clinical intervention to prevent and correct this are fundamental aspects of managing patients with sepsis and septic shock. Hemodynamic monitoring plays a key role in the management of the critically ill and is used to identify hemodynamic instability and its cause and to monitor response to therapy. However, the utility of many forms of hemodynamic monitoring that are used in management of sepsis and septic shock remain controversial and unproven. This article examines emerging technologies as well as more established techniques used to monitor hemodynamics in sepsis and assesses their potential roles in optimization of sepsis-induced tissue hypoperfusion.
Collapse
|
46
|
Less invasive indicators of changes in thermodilution cardiac output by ventilatory changes after cardiac surgery. Eur J Anaesthesiol 2009; 26:863-7. [PMID: 19390444 DOI: 10.1097/eja.0b013e32832ac5fe] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE We studied whether changes in less invasive, noncalibrated pulse-contour cardiac output (by modified ModelFlow, COmf) and derived stroke volume variations (SVV), as well as systolic and pulse pressure variations, predict changes in bolus thermodilution cardiac output (COtd), evoked by continuous and cyclic increases in intrathoracic pressure by increases in positive end-expiratory pressure (PEEP) and tidal volume (Vt), respectively. METHODS Prospective study on 17 critically ill postcardiac surgery patients on full mechanical ventilatory support, in the intensive care unit. RESULTS In contrast to systolic pressure variation and pulse pressure variation, SVV increased from (mean +/- SD) 6.2 +/- 4.4 to 8.1 +/- 5.6 at PEEP 10 cmH2O (P = 0.064) and to 7.8 +/- 3.5% at PEEP 15 cmH2O (P = 0.031), concomitantly with a 12 +/- 7 and 11 +/- 8% decrease in COmf and COtd (P < 0.001), respectively. For pooled data, changes in COmf correlated with those in COtd (r = 0.55, P = 0.002), but changes in SVV did not. Variables did not change when Vt was increased up to 50%. CONCLUSION A fall in COmf is more sensitive than a rise in SVV, which is more sensitive than systolic pressure variation and pulse pressure variation, in tracking a fall in COtd during continuous (and not cyclic) increases in intrathoracic pressure, in mechanically ventilated patients after cardiac surgery. This suggests a reduction in biventricular preload as the main factor in decreasing cardiac output and increasing SVV with PEEP.
Collapse
|
47
|
Abstract
Echography has developed as an indispensable tool in diagnosis and subsequent therapy in the critically ill. Although pulmonary and abdominal ultrasounds play a major role in their management, this article will discuss the advantages and indications of echocardiography in the intensive care unit (ICU). The assessment of morphological abnormalities, left or right ventricular malfunction, pulmonary arterial hypertension and valvular dysfunctions is a routine indication of echocardiography. Actually, besides contractility, several preload and even afterload indicators can also be assessed. In short, this bedside tool rapidly provides insight in the haemodynamics without invasive pressure estimations.
Collapse
Affiliation(s)
- Jan Poelaert
- Department of Anesthesiology and Perioperative Medicine, Flemish University Hospital, Laarbeeklaan 101, 81090 Brussels, Belgium.
| |
Collapse
|
48
|
Assessing fluid responsiveness in critically ill patients: False-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med 2009; 37:2570-5. [PMID: 19623051 DOI: 10.1097/ccm.0b013e3181a380a3] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine whether peak systolic velocity of tricuspid annular motion assessed by tissue Doppler echocardiography (Sta), a right ventricular function parameter, can discriminate patients with true- and false-positive pulse pressure variation. Pulse pressure variation is used to predict fluid responsiveness in mechanically ventilated patients. However, this parameter has been reported to be falsely positive, especially in patients with right ventricular dysfunction. DESIGN A prospective study. SETTING Medical and surgical intensive care unit of a university hospital. PATIENTS Thirty- five mechanically ventilated patients hospitalized for >24 hrs with a pulse pressure variation of >12%. INTERVENTIONS Doppler echocardiography (including measurement of Sta and stroke volume) was performed before and after infusion of 500 mL of colloid solution. Patients were classified into two groups according to their response to fluid infusion: responders (at least 15% increase in stroke volume) and nonresponders. MEASUREMENTS AND MAIN RESULTS Twenty-three patients (66%) were responders (true-positive group) and 12 (34%) were nonresponders (false-positive group). Before volume expansion, Sta was statistically lower in the nonresponder group (0.13 [0.04] vs. 0.20 [0.05], p = .0004). The area under the curve of the receiver operating characteristic curve was 0.87 (95% confidence interval, 0.74-1). In patients with pulse pressure variation of >12%, a Sta cutoff value of 0.15 m/s discriminated between responders and nonresponders with a sensitivity of 91% (80-100) and a specificity of 83% (62-100). CONCLUSIONS A Sta value of <0.15 m/s seems to be an accurate parameter to detect false-positive pulse pressure variation. Echocardiography should therefore be performed before fluid infusion in patients with pulse pressure variation of >12%.
Collapse
|
49
|
Pulse pressure variations adjusted by alveolar driving pressure to assess fluid responsiveness. Intensive Care Med 2009; 35:1004-10. [DOI: 10.1007/s00134-009-1478-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Accepted: 01/10/2009] [Indexed: 12/11/2022]
|
50
|
Pulse oximetry and photoplethysmographic waveform analysis of the esophagus and bowel. Curr Opin Anaesthesiol 2009; 21:779-83. [PMID: 18997529 DOI: 10.1097/aco.0b013e328317794d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This article reviews the development of novel reflectance pulse oximetry sensors for the esophagus and bowel, and presents some of the techniques used to analyze the waveforms acquired with such devices. RECENT FINDINGS There has been much research in recent years to expand the utility of pulse oximetry beyond the simple measurement of arterial oxygen saturation from the finger or earlobe. Experimental sensors based on reflectance pulse oximetry have been developed for use in internal sites such as the esophagus and bowel. Analysis of the photoplethysmographic waveforms produced by these sensors is beginning to shed light on some of the potentially useful information hidden in these signals. SUMMARY The use of novel reflectance pulse oximetry sensors has been successfully demonstrated. Such sensors, combined with the application of more advanced signal processing, will hopefully open new avenues of research leading to the development of new types of pulse oximetry-based monitoring techniques.
Collapse
|