1
|
Wang JG, Bose S, Viegi G. Reduced Childhood Ambient Fine Particulate Matter Exposure and Subsequent Asthma Incidence: How Low Is Low Enough? Ann Am Thorac Soc 2024; 21:1389-1390. [PMID: 39352178 PMCID: PMC11451880 DOI: 10.1513/annalsats.202407-706ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Affiliation(s)
- Jing Gennie Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Sonali Bose
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, and
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Giovanni Viegi
- National Research Council Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|
2
|
Cotter DL, Morrel J, Sukumaran K, Cardenas-Iniguez C, Schwartz J, Herting MM. Prenatal and childhood air pollution exposure, cellular immune biomarkers, and brain connectivity in early adolescents. Brain Behav Immun Health 2024; 38:100799. [PMID: 39021436 PMCID: PMC11252082 DOI: 10.1016/j.bbih.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Ambient air pollution is a neurotoxicant with hypothesized immune-related mechanisms. Adolescent brain structural and functional connectivity may be especially vulnerable to ambient pollution due to the refinement of large-scale brain networks during this period, which vary by sex and have important implications for cognitive, behavioral, and emotional functioning. In the current study we explored associations between air pollutants, immune markers, and structural and functional connectivity in early adolescence by leveraging cross-sectional sex-stratified data from the Adolescent Brain Cognitive Development℠ Study®. Methods Pollutant concentrations of fine particulate matter, nitrogen dioxide, and ozone were assigned to each child's primary residential address during the prenatal period and childhood (9-10 years-old) using an ensemble-based modeling approach. Data collected at 11-13 years-old included resting-state functional connectivity of the default mode, frontoparietal, and salience networks and limbic regions of interest, intracellular directional and isotropic diffusion of available white matter tracts, and markers of cellular immune activation. Using partial least squares correlation, a multivariate data-driven method that identifies important variables within latent dimensions, we investigated associations between 1) pollutants and structural and functional connectivity, 2) pollutants and immune markers, and 3) immune markers and structural and functional connectivity, in each sex separately. Results Air pollution exposure was related to white matter intracellular directional and isotropic diffusion at ages 11-13 years, but the direction of associations varied by sex. There were no associations between pollutants and resting-state functional connectivity at ages 11-13 years. Childhood exposure to nitrogen dioxide was negatively correlated with white blood cell count in males. Immune biomarkers were positively correlated with white matter intracellular directional diffusion in females and both white matter intracellular directional and isotropic diffusion in males. Lastly, there was a reliable negative correlation between lymphocyte-to-monocyte ratio and default mode network resting-state functional connectivity in females, as well as a compromised immune marker profile associated with lower resting-state functional connectivity between the salience network and the left hippocampus in males. In post-hoc exploratory analyses, we found that the PLSC-identified white matter tracts and resting-state networks related to processing speed and cognitive control performance from the NIH Toolbox. Conclusions We identified novel links between childhood nitrogen dioxide and cellular immune activation in males, and brain network connectivity and immune markers in both sexes. Future research should explore the potentially mediating role of immune activity in how pollutants affect neurological outcomes as well as the potential consequences of immune-related patterns of brain connectivity in service of improved brain health for all.
Collapse
Affiliation(s)
- Devyn L. Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Havens TN, LeBeau P, Calatroni A, Gern JE, O’Connor GT, Wood RA, Lamm C, Krouse RZ, Visness CM, Gergen PJ, Jackson DJ, Bacharier LB. Viral and non-viral episodes of wheezing in early life and the development of asthma and respiratory phenotypes among urban children. Pediatr Allergy Immunol 2024; 35:e14197. [PMID: 39016335 PMCID: PMC11360514 DOI: 10.1111/pai.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Viral wheezing is an important risk factor for asthma, which comprises several respiratory phenotypes. We sought to understand if the etiology of early-life wheezing illnesses relates to childhood respiratory and asthma phenotypes. METHODS Data were collected prospectively on 429 children in the Urban Environment and Childhood Asthma (URECA) birth cohort study through age 10 years. We identified wheezing illnesses and the corresponding viral etiology (PCR testing of nasal mucus) during the first 3 years of life. Six phenotypes of respiratory health were identified at 10 years of age based on trajectories of wheezing, allergic sensitization, and lung function. We compared the etiology of early wheezing illnesses to these wheezing respiratory phenotypes and the development of asthma. RESULTS In the first 3 years of life, at least one virus was detected in 324 (67%) of the 483 wheezing episodes documented in the study cohort. Using hierarchical partitioning we found that non-viral wheezing episodes accounted for the greatest variance in asthma diagnosed at both 7 and 10 years of age (8.0% and 5.8% respectively). Rhinovirus wheezing illnesses explained the most variance in respiratory phenotype outcome followed by non-viral wheezing episodes (4.9% and 3.9% respectively) at 10 years of age. CONCLUSION AND RELEVANCE Within this high-risk urban-residing cohort in early life, non-viral wheezing episodes were frequently identified and associated with asthma development. Though rhinovirus wheezing illnesses had the greatest association with phenotype outcome, the specific etiology of wheezing episodes in early life provided limited information about subsequent wheezing phenotypes.
Collapse
Affiliation(s)
- Tara N. Havens
- Department of Pediatrics, University of Michigan Health, Ann Arbor, Michigan, United States
| | - Petra LeBeau
- Work performed while at Rho Federal Systems Division, Inc., Durham, North Carolina, United States, now employed at PPD part of Thermo Fisher Scientific, Wilmington, North Carolina, United States
| | - Agustin Calatroni
- Rho Federal Systems Division, Inc., Durham, North Carolina, United States
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - George T. O’Connor
- Department of Medicine and Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Robert A. Wood
- Department of Pediatrics, Johns Hopkins University Medical Center, Baltimore, Maryland, United States
| | - Carin Lamm
- Department of Pediatrics, Columbia University, New York, New York, United States
| | - Rebecca Z. Krouse
- Work performed while at Rho Federal Systems Division, Inc., Durham, North Carolina, United States, now employed at GSK, Philadelphia, Pennsylvania, United States
| | - Cynthia M. Visness
- Rho Federal Systems Division, Inc., Durham, North Carolina, United States
| | - Peter J. Gergen
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Daniel J. Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Leonard B. Bacharier
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
4
|
Khalaf EM, Mohammadi MJ, Sulistiyani S, Ramírez-Coronel AA, Kiani F, Jalil AT, Almulla AF, Asban P, Farhadi M, Derikondi M. Effects of sulfur dioxide inhalation on human health: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:331-337. [PMID: 36635910 DOI: 10.1515/reveh-2022-0237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Sulfur dioxide (SO2) is one of the most important gaseous air pollutants and the chemical index of sulfur oxides (SOx). SO2 is one of the six criteria pollutants in the air quality index (AQI). SO2 can be emitted by natural and anthropogenic sources. Although efforts have been made to reduce sulfur dioxide emissions worldwide, this pollutant and its adverse effects remain a major concern, especially in developing countries. The aim of this study was the investigated the effects of sulfur dioxide inhalation on human health. This narrative review was done based on the literature published from 2000 to 2022 through PubMed, Springer, Web of Science, Science Direct, and Google Scholar databases. In this study, was done screened first based on the abstract and Final assessment done based on the full text of the article. Finally, 38 articles were selected for inclusion in the study. The results of this study showed that sulfur dioxide has adverse health effects on the human respiratory, cardiovascular, and nervous systems and causes type 2 diabetes and non-accidental deaths. Although some evidence suggests that sulfur dioxide in given concentrations has no adverse health effect, its synergistic effects in combination with other air pollutants may be significant. Among the most important practical results of this study can be mentioned to increase the health awareness of the general public, help the politicians of the health sector in making decisions in the health field, creating awareness among polluting producing units and industries and efforts to reduce the emission of Sulfur dioxide.
Collapse
Affiliation(s)
- Eman M Khalaf
- Department of Pharmacy, Al Maarif University College, Ramadi 31001, Anbar, Iraq
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Andrés Alexis Ramírez-Coronel
- Doctor in Epidemiology and Biostatistics, Universidad Nacional de Educación (UNAE), Universidad de Palermo, Argentina; Universidad Católica de Cuenca campus, Universidad CES, Colombia, Azogues, Ecuador
| | - Fatemeh Kiani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon 51001, Hilla, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Parisa Asban
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Farhadi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrsa Derikondi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Wolf ER, Rivara FP, Orr CJ, Sen A, Chapman DA, Woolf SH. Racial and Ethnic Disparities in All-Cause and Cause-Specific Mortality Among US Youth. JAMA 2024; 331:1732-1740. [PMID: 38703403 PMCID: PMC11070063 DOI: 10.1001/jama.2024.3908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/29/2024] [Indexed: 05/06/2024]
Abstract
Importance Mortality rates in US youth have increased in recent years. An understanding of the role of racial and ethnic disparities in these increases is lacking. Objective To compare all-cause and cause-specific mortality trends and rates among youth with Hispanic ethnicity and non-Hispanic American Indian or Alaska Native, Asian or Pacific Islander, Black, and White race. Design, Setting, and Participants This cross-sectional study conducted temporal analysis (1999-2020) and comparison of aggregate mortality rates (2016-2020) for youth aged 1 to 19 years using US Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research database. Data were analyzed from June 30, 2023, to January 17, 2024. Main Outcomes and Measures Pooled, all-cause, and cause-specific mortality rates per 100 000 youth (hereinafter, per 100 000) for leading underlying causes of death were compared. Injuries were classified by mechanism and intent. Results Between 1999 and 2020, there were 491 680 deaths among US youth, including 8894 (1.8%) American Indian or Alaska Native, 14 507 (3.0%) Asian or Pacific Islander, 110 154 (22.4%) Black, 89 251 (18.2%) Hispanic, and 267 452 (54.4%) White youth. Between 2016 and 2020, pooled all-cause mortality rates were 48.79 per 100 000 (95% CI, 46.58-51.00) in American Indian or Alaska Native youth, 15.25 per 100 000 (95% CI, 14.75-15.76) in Asian or Pacific Islander youth, 42.33 per 100 000 (95% CI, 41.81-42.86) in Black youth, 21.48 per 100 000 (95% CI, 21.19-21.77) in Hispanic youth, and 24.07 per 100 000 (95% CI, 23.86-24.28) in White youth. All-cause mortality ratios compared with White youth were 2.03 (95% CI, 1.93-2.12) among American Indian or Alaska Native youth, 0.63 (95% CI, 0.61-0.66) among Asian or Pacific Islander youth, 1.76 (95% CI, 1.73-1.79) among Black youth, and 0.89 (95% CI, 0.88-0.91) among Hispanic youth. From 2016 to 2020, the homicide rate in Black youth was 12.81 (95% CI, 12.52-13.10) per 100 000, which was 10.20 (95% CI, 9.75-10.66) times that of White youth. The suicide rate for American Indian or Alaska Native youth was 11.37 (95% CI, 10.30-12.43) per 100 000, which was 2.60 (95% CI, 2.35-2.86) times that of White youth. The firearm mortality rate for Black youth was 12.88 (95% CI, 12.59-13.17) per 100 000, which was 4.14 (95% CI, 4.00-4.28) times that of White youth. American Indian or Alaska Native youth had a firearm mortality rate of 6.67 (95% CI, 5.85-7.49) per 100 000, which was 2.14 (95% CI, 1.88- 2.43) times that of White youth. Black youth had an asthma mortality rate of 1.10 (95% CI, 1.01-1.18) per 100 000, which was 7.80 (95% CI, 6.78-8.99) times that of White youth. Conclusions and Relevance In this study, racial and ethnic disparities were observed for almost all leading causes of injury and disease that were associated with recent increases in youth mortality rates. Addressing the increasing disparities affecting American Indian or Alaska Native and Black youth will require efforts to prevent homicide and suicide, especially those events involving firearms.
Collapse
Affiliation(s)
- Elizabeth R. Wolf
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond
- Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond
| | - Frederick P. Rivara
- Department of Pediatrics, University of Washington, Seattle
- Seattle Children’s Research Institute, Seattle, Washington
- Editor, JAMA Network Open
| | - Colin J. Orr
- Department of Pediatrics, University of North Carolina at Chapel Hill
- Cecil G Sheps Center for Health Services Research, University of North Carolina at Chapel Hill
| | - Anabeel Sen
- Department of Epidemiology, Virginia Commonwealth University School of Population Health, Richmond
| | - Derek A. Chapman
- Department of Epidemiology, Virginia Commonwealth University School of Population Health, Richmond
| | - Steven H. Woolf
- Department of Family Medicine, Virginia Commonwealth University School of Medicine, Richmond
- Center on Society and Heath, Virginia Commonwealth University School of Population Health, Richmond
| |
Collapse
|
6
|
Choma EF, Robinson LA, Nadeau KC. Adopting electric school buses in the United States: Health and climate benefits. Proc Natl Acad Sci U S A 2024; 121:e2320338121. [PMID: 38768355 PMCID: PMC11145267 DOI: 10.1073/pnas.2320338121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Electric school buses have been proposed as an alternative to reduce the health and climate impacts of the current U.S. school bus fleet, of which a substantial share are highly polluting old diesel vehicles. However, the climate and health benefits of electric school buses are not well known. As they are substantially more costly than diesel buses, assessing their benefits is needed to inform policy decisions. We assess the health benefits of electric school buses in the United States from reduced adult mortality and childhood asthma onset risks due to exposure to ambient fine particulate matter (PM2.5). We also evaluate climate benefits from reduced greenhouse-gas emissions. We find that replacing the average diesel bus in the U.S. fleet in 2017 with an electric bus yields $84,200 in total benefits. Climate benefits amount to $40,400/bus, whereas health benefits amount to $43,800/bus due to 4.42*10-3 fewer PM2.5-attributable deaths ($40,000 of total) and 7.42*10-3 fewer PM2.5-attributable new childhood asthma cases ($3,700 of total). However, health benefits of electric buses vary substantially by driving location and model year (MY) of the diesel buses they replace. Replacing old, MY 2005 diesel buses in large cities yields $207,200/bus in health benefits and is likely cost-beneficial, although other policies that accelerate fleet turnover in these areas deserve consideration. Electric school buses driven in rural areas achieve small health benefits from reduced exposure to ambient PM2.5. Further research assessing benefits of reduced exposure to in-cabin air pollution among children riding buses would be valuable to inform policy decisions.
Collapse
Affiliation(s)
- Ernani F. Choma
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Lisa A. Robinson
- Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Kari C. Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA02115
| |
Collapse
|
7
|
Herrera-Luis E, Hernandez-Pacheco N. Unraveling the Complexity of Asthma: Insights from Omics Approaches. Biomedicines 2024; 12:1062. [PMID: 38791024 PMCID: PMC11118198 DOI: 10.3390/biomedicines12051062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Asthma is a heterogeneous respiratory disease that represents a substantial social and economic burden [...].
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Natalia Hernandez-Pacheco
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Everman JL, Sajuthi SP, Liegeois MA, Jackson ND, Collet EH, Peters MC, Chioccioli M, Moore CM, Patel BB, Dyjack N, Powell R, Rios C, Montgomery MT, Eng C, Elhawary JR, Mak ACY, Hu D, Huntsman S, Salazar S, Feriani L, Fairbanks-Mahnke A, Zinnen GL, Michel CR, Gomez J, Zhang X, Medina V, Chu HW, Cicuta P, Gordon ED, Zeitlin P, Ortega VE, Reisdorph N, Dunican EM, Tang M, Elicker BM, Henry TS, Bleecker ER, Castro M, Erzurum SC, Israel E, Levy BD, Mauger DT, Meyers DA, Sumino K, Gierada DS, Hastie AT, Moore WC, Denlinger LC, Jarjour NN, Schiebler ML, Wenzel SE, Woodruff PG, Rodriguez-Santana J, Pearson CG, Burchard EG, Fahy JV, Seibold MA. A common polymorphism in the Intelectin-1 gene influences mucus plugging in severe asthma. Nat Commun 2024; 15:3900. [PMID: 38724552 PMCID: PMC11082194 DOI: 10.1038/s41467-024-48034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.
Collapse
Affiliation(s)
- Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Satria P Sajuthi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Maude A Liegeois
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Erik H Collet
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Peters
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Maurizio Chioccioli
- Department of Genetics and Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Bhavika B Patel
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Roger Powell
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Michael T Montgomery
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Celeste Eng
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Jennifer R Elhawary
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Angel C Y Mak
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Donglei Hu
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Sandra Salazar
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Luigi Feriani
- Biological and Soft Systems Sector, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ana Fairbanks-Mahnke
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Gianna L Zinnen
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Joe Gomez
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Xing Zhang
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | | | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Pietro Cicuta
- Biological and Soft Systems Sector, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Erin D Gordon
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Pamela Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | | | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Eleanor M Dunican
- School of Medicine, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Monica Tang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Brett M Elicker
- University of California-San Francisco, San Francisco, CA, USA
| | | | | | - Mario Castro
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Bruce D Levy
- Brigham and Women's Hospital and Harvard University, Cambridge, MA, USA
| | | | | | - Kaharu Sumino
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Annette T Hastie
- Wake Forest University School of Medicine, Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Winston Salem, NC, USA
| | - Wendy C Moore
- Wake Forest University School of Medicine, Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Winston Salem, NC, USA
| | | | | | | | | | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | | | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Esteban G Burchard
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - John V Fahy
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
9
|
Witonsky JI, Elhawary JR, Eng C, Oh SS, Salazar S, Contreras MG, Medina V, Secor EA, Zhang P, Everman JL, Fairbanks-Mahnke A, Pruesse E, Sajuthi SP, Chang CH, Guerrero TR, Fuentes KC, Lopez N, Montanez-Lopez CA, Otero RA, Rivera RC, Rodriguez L, Vazquez G, Hu D, Huntsman S, Jackson ND, Li Y, Morin A, Nieves NA, Rios C, Serrano G, Williams BJM, Ziv E, Moore CM, Sheppard D, Burchard EG, Seibold MA, Rodriguez Santana JR. The Puerto Rican Infant Metagenomic and Epidemiologic Study of Respiratory Outcomes (PRIMERO): Design and Baseline Characteristics for a Birth Cohort Study of Early-life Viral Respiratory Illnesses and Airway Dysfunction in Puerto Rican Children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.15.24305359. [PMID: 38699325 PMCID: PMC11065009 DOI: 10.1101/2024.04.15.24305359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Epidemiologic studies demonstrate an association between early-life respiratory illnesses (RIs) and the development of childhood asthma. However, it remains uncertain whether these children are predisposed to both conditions or if early-life RIs induce alterations in airway function, immune responses, or other human biology that contribute to the development of asthma. Puerto Rican children experience a disproportionate burden of early-life RIs and asthma, making them an important population for investigating this complex interplay. PRIMERO, the Puerto Rican Infant Metagenomics and Epidemiologic Study of Respiratory Outcomes , recruited pregnant women and their newborns to investigate how the airways develop in early life among infants exposed to different viral RIs, and will thus provide a critical understanding of childhood asthma development. As the first asthma birth cohort in Puerto Rico, PRIMERO will prospectively follow 2,100 term healthy infants. Collected samples include post-term maternal peripheral blood, infant cord blood, the child's peripheral blood at the year two visit, and the child's nasal airway epithelium, collected using minimally invasive nasal swabs, at birth, during RIs over the first two years of life, and at annual healthy visits until age five. Herein, we describe the study's design, population, recruitment strategy, study visits and procedures, and primary outcomes.
Collapse
|
10
|
Liu L, Wang T, Xu H, Zhu Y, Guan X, He X, Fang J, Xie Y, Zhang Q, Song X, Zhao Q, Huang W. Exposure to ambient oxidant pollution associated with ceramide changes and cardiometabolic responses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104276. [PMID: 37717721 DOI: 10.1016/j.etap.2023.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Evidence of impact of ambient oxidant pollution on cardiometabolic responses remains limited. We aimed to examine associations of oxidant pollutants with cardiometabolic responses, and effect modification by ceramides. During 2019-2020, 152 healthy adults were visited 4 times in Beijing, China, and indicators of ceramides, glucose homeostasis, and vascular function were measured. We found significant increases in ceramides of 13.9% (p = 0.020) to 110.1% (p = 0.005) associated with an interquartile increase in oxidant pollutants at prior 1-7 days. Exposure to oxidant pollutants was also related to elevations in insulin and reductions in adiponectin, and elevations in systolic and diastolic blood pressure. Further, stratified analyses revealed larger changes in oxidant pollutant related cardiometabolic responses among participants with higher ceramide levels compared to those with lower levels. Our findings suggested cardiometabolic effects associated with exposure to oxidant pollutants, which may be modified by ceramide levels.
Collapse
Affiliation(s)
- Lingyan Liu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Department of Geriatrics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Tong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China.
| | - Yutong Zhu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Xinpeng Guan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Xinghou He
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Yunfei Xie
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Qiaochi Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Qian Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Wei Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China.
| |
Collapse
|
11
|
Stern KE, Hicks S, Gavin AR, Littman AJ, Wander PL. Cross-sectional Associations of Multiracial Identity with Self-Reported Asthma and Poor Health Among American Indian and Alaska Native Adults. J Racial Ethn Health Disparities 2023; 10:2444-2452. [PMID: 36205849 DOI: 10.1007/s40615-022-01423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 10/10/2022]
Abstract
INTRODUCTION American Indian and Alaska Native (AI/AN) multiracial subgroups are underrecognized in health outcomes research. METHODS We performed a cross-sectional analysis of Behavioral Risk Factor Surveillance System surveys (2013-2019), including adults who self-identified as AI/AN only (single race AI/AN, n = 60,413) or as AI/AN and at least one other race (multiracial AI/AN, (n = 6056)). We used log binomial regression to estimate the survey-weighted prevalence ratios (PR) and 95% confidence intervals (CI) of lifetime asthma, current asthma, and poor self-reported health among multiracial AI/AN adults compared to single race AI/AN adults, adjusting for age, obesity, and smoking status. We then examined whether associations differed by sex and by Latinx identity. RESULTS Lifetime asthma, current asthma, and poor health were reported by 25%, 18%, and 30% of multiracial AI/AN adults and 18%, 12%, and 28% single race AI/AN adults. Multiracial AI/AN was associated with a higher prevalence of lifetime (PR 1.30, 95% CI 1.18-1.43) and current asthma (PR 1.36, 95% CI 1.21-1.54), but not poor health. Associations did not differ by sex. The association of multiracial identity with current asthma was stronger among AI/AN adults who identified as Latinx (PR 1.77, 95% CI 1.08-2.94) than non-Latinx AI/AN (PR 1.18, 95% CI 1.04-1.33), p-value for interaction 0.03. CONCLUSIONS Multiracial AI/AN adults experience a higher prevalence of lifetime and current asthma compared to single race AI/AN adults. The association between multiracial identity and current asthma is stronger among AI/AN Latinx individuals. The mechanisms for these findings remain under-explored and merit further study.
Collapse
Affiliation(s)
- Katherine E Stern
- University of Washington School of Public Health, Seattle, WA, USA.
- University of California San Francisco East Bay Surgery Program, Oakland, CA, USA.
| | - Sarah Hicks
- University of Washington School of Public Health, Seattle, WA, USA
| | - Amelia R Gavin
- University of Washington School of Social Work, Seattle, WA, USA
| | - Alyson J Littman
- University of Washington School of Public Health, Seattle, WA, USA
- VA Puget Sound Health Care System, Seattle, WA, USA
| | - Pandora L Wander
- University of Washington Department of Medicine, Seattle, WA, USA
- VA Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
12
|
Singh H, Jani C, Marshall DC, Franco R, Bhatt P, Podder S, Shalhoub J, Kurman JS, Nanchal R, Uluer AZ, Salciccioli JD. Cystic fibrosis-related mortality in the United States from 1999 to 2020: an observational analysis of time trends and disparities. Sci Rep 2023; 13:15030. [PMID: 37699961 PMCID: PMC10497589 DOI: 10.1038/s41598-023-41868-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator modulators have revolutionized cystic fibrosis (CF) care in the past decade. This study explores the CF-related mortality trends in the US from 1999 to 2020. We extracted CF-related mortality data from the CDC WONDER database. CF age-standardized mortality rates (ASMRs) were identified by ICD-10 code E84 and were stratified by demographic and geographical variables. Temporal trends were analyzed using Joinpoint modeling. CF-related ASMRs decreased from 1.9 to 1.04 per million population (p = 0.013), with a greater reduction in recent years. This trend was replicated in both sexes. The median age of death increased from 24 to 37 years. CF mortality rates decreased across sex, white race, non-Hispanic ethnicity, census regions, and urbanization status. Incongruent trends were reported in non-white races and Hispanic ethnicity. A lower median age of death was observed in women, non-white races, and Hispanic ethnicity. SARS-CoV-2 infection was the primary cause of death in 1.7% of CF decedents in 2020. The national CF-related mortality rates declined and the median age of death among CF decedents increased significantly indicating better survival in the recent years. The changes were relatively slow during the earlier period of the study, followed by a greater decline lately. We observed patterns of sex, ethnic, racial, and geographical disparities associated with the worsening of the gap between ethnicities, narrowing of the gap between races and rural vs. urban counties, and closing of the gap between sexes over the study period.
Collapse
Affiliation(s)
- Harpreet Singh
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Medical Data Research Collaborative, London, UK.
| | - Chinmay Jani
- Department of Medicine, Mount Auburn Hospital/Beth Israel Lahey Health, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Medical Data Research Collaborative, London, UK
| | - Dominic C Marshall
- National Heart and Lung Institute, Imperial College London, London, UK
- Medical Data Research Collaborative, London, UK
| | - Rose Franco
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Padmanabh Bhatt
- Department of Medicine, Mount Auburn Hospital/Beth Israel Lahey Health, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Medical Data Research Collaborative, London, UK
| | - Shreya Podder
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Joseph Shalhoub
- Imperial College Healthcare NHS Trust, London, UK
- Medical Data Research Collaborative, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jonathan S Kurman
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Rahul Nanchal
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Ahmet Z Uluer
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Justin D Salciccioli
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Medical Data Research Collaborative, London, UK
| |
Collapse
|
13
|
Perez-Garcia J, Espuela-Ortiz A, Hernández-Pérez JM, González-Pérez R, Poza-Guedes P, Martin-Gonzalez E, Eng C, Sardón-Prado O, Mederos-Luis E, Corcuera-Elosegui P, Sánchez-Machín I, Korta-Murua J, Villar J, Burchard EG, Lorenzo-Diaz F, Pino-Yanes M. Human genetics influences microbiome composition involved in asthma exacerbations despite inhaled corticosteroid treatment. J Allergy Clin Immunol 2023; 152:799-806.e6. [PMID: 37301411 PMCID: PMC10522330 DOI: 10.1016/j.jaci.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The upper-airway microbiome is involved in asthma exacerbations despite inhaled corticosteroid (ICS) treatment. Although human genetics regulates microbiome composition, its influence on asthma-related airway bacteria remains unknown. OBJECTIVE We sought to identify genes and biological pathways regulating airway-microbiome traits involved in asthma exacerbations and ICS response. METHODS Saliva, nasal, and pharyngeal samples from 257 European patients with asthma were analyzed. The association of 6,296,951 genetic variants with exacerbation-related microbiome traits despite ICS treatment was tested through microbiome genome-wide association studies. Variants with 1 × 10-4 RESULTS Genes associated with exacerbation-related airway-microbiome traits were enriched in asthma comorbidities development (ie, reflux esophagitis, obesity, and smoking), and were likely regulated by trichostatin A and the nuclear factor-κB, the glucocorticosteroid receptor, and CCAAT/enhancer-binding protein transcription factors (7.8 × 10-13 ≤ false discovery rate ≤ 0.022). Enrichment in smoking, trichostatin A, nuclear factor-κB, and glucocorticosteroid receptor were replicated in the saliva samples from diverse populations (4.42 × 10-9 ≤ P ≤ .008). The ICS-response-associated single nucleotide polymorphisms rs5995653 (APOBEC3B-APOBEC3C), rs6467778 (TRIM24), and rs5752429 (TPST2) were identified as microbiome quantitative trait loci of Streptococcus, Tannerella, and Campylobacter in the upper airway (0.027 ≤ false discovery rate ≤ 0.050). CONCLUSIONS Genes associated with asthma exacerbation-related microbiome traits might influence asthma comorbidities. We reinforced the therapeutic interest of trichostatin A, nuclear factor-κB, the glucocorticosteroid receptor, and CCAAT/enhancer-binding protein in asthma exacerbations.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - José M Hernández-Pérez
- Pulmonary Medicine Service, Hospital Universitario N.S de Candelaria, La Laguna, Tenerife, Spain; Pulmonary Medicine Section, Hospital Universitario de La Palma, La Palma, Spain
| | - Ruperto González-Pérez
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Paloma Poza-Guedes
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Celeste Eng
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, Calif
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain; Department of Pediatrics, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Paula Corcuera-Elosegui
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | | | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain; Li Ka Shing Knowledge Institute at the St. Michael's Hospital, Toronto, Ontario, Canada
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco (UCSF), San Francisco, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| |
Collapse
|
14
|
Perez-Garcia J, Herrera-Luis E, Li A, Mak ACY, Huntsman S, Oh SS, Elhawary JR, Eng C, Beckman KB, Hu D, Lorenzo-Diaz F, Lenoir MA, Rodriguez-Santana J, Zaitlen N, Villar J, Borrell LN, Burchard EG, Pino-Yanes M. Multi-omic approach associates blood methylome with bronchodilator drug response in pediatric asthma. J Allergy Clin Immunol 2023; 151:1503-1512. [PMID: 36796456 DOI: 10.1016/j.jaci.2023.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Albuterol is the drug most widely used as asthma treatment among African Americans despite having a lower bronchodilator drug response (BDR) than other populations. Although BDR is affected by gene and environmental factors, the influence of DNA methylation is unknown. OBJECTIVE This study aimed to identify epigenetic markers in whole blood associated with BDR, study their functional consequences by multi-omic integration, and assess their clinical applicability in admixed populations with a high asthma burden. METHODS We studied 414 children and young adults (8-21 years old) with asthma in a discovery and replication design. We performed an epigenome-wide association study on 221 African Americans and replicated the results on 193 Latinos. Functional consequences were assessed by integrating epigenomics with genomics, transcriptomics, and environmental exposure data. Machine learning was used to develop a panel of epigenetic markers to classify treatment response. RESULTS We identified 5 differentially methylated regions and 2 CpGs genome-wide significantly associated with BDR in African Americans located in FGL2 (cg08241295, P = 6.8 × 10-9) and DNASE2 (cg15341340, P = 7.8 × 10-8), which were regulated by genetic variation and/or associated with gene expression of nearby genes (false discovery rate < 0.05). The CpG cg15341340 was replicated in Latinos (P = 3.5 × 10-3). Moreover, a panel of 70 CpGs showed good classification for those with response and nonresponse to albuterol therapy in African American and Latino children (area under the receiver operating characteristic curve for training, 0.99; for validation, 0.70-0.71). The DNA methylation model showed similar discrimination as clinical predictors (P > .05). CONCLUSIONS We report novel associations of epigenetic markers with BDR in pediatric asthma and demonstrate for the first time the applicability of pharmacoepigenetics in precision medicine of respiratory diseases.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Annie Li
- Department of Medicine, University of California, San Francisco, Calif
| | - Angel C Y Mak
- Department of Medicine, University of California, San Francisco, Calif
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, Calif
| | - Sam S Oh
- Department of Medicine, University of California, San Francisco, Calif
| | | | - Celeste Eng
- Department of Medicine, University of California, San Francisco, Calif
| | | | - Donglei Hu
- Department of Medicine, University of California, San Francisco, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), ULL, Santa Cruz de Tenerife, Spain
| | | | | | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, Calif; Department of Computational Medicine, University of California, Los Angeles, Calif
| | - Jesús Villar
- Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr Negrín, Las Palmas de Gran Canaria, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Luisa N Borrell
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Calif
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Tecnologías Biomédicas, ULL, La Laguna, Spain.
| |
Collapse
|
15
|
Xing Z, Yang T, Shi S, Meng X, Chen R, Long H, Hu Y, Chai D, Liu W, Tong Y, Wang Y, Ma Y, Pan M, Cui J, Sun T, Guo Y. Ambient particulate matter associates with asthma in high altitude region: A population-based study. World Allergy Organ J 2023; 16:100774. [PMID: 37214170 PMCID: PMC10193005 DOI: 10.1016/j.waojou.2023.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Background Exposure to particulate matter (PM) has been a major public health threat, but the potentially differential effects on asthma of PM remain largely unknown in high altitude settings. We evaluated the effects of ambient PM on asthma in high altitude settings. Methods The study recruited a representative sample from high altitude settings using a multistage stratified sampling procedure. Asthma was defined by a self-reported history of diagnosis by a physician or by wheezing symptoms in the preceding 12 months. The annual mean PM2.5 and PM10 concentrations were calculated for each grid cell at 1-km spatial resolution based on the geographical coordinates. Results We analyzed data for participants (mean age 39.1 years, 51.4% female) and 183 (3.7%, 95% confidence interval (CI): 3.2-4.2) of the participants had asthma. Prevalence was higher in women (4.3%, 95% CI 3.5-5.1) than in men (3.1%, 2.4-3.8) and increasing with higher concentration of PM exposures. For an interquartile range (IQR) difference (8.77 μg/m3) in PM2.5 exposure, the adjusted odds ratio (OR) was 1.64 (95% CI 1.46-1.83, P < 0.001) for risk of asthma. For PM10, there was evidence for an association with risk of asthma (OR 2.34, 95% CI: 1.75-3.15, P < 0.001 per IQR of 43.26 μg/m3). Further analyses showed that household mold or damp exposure may aggravate PM exposure associated risks of asthma. Conclusions This study identified that PM exposure could be a dominate environmental risk factor for asthma but largely unconsidered in the high-altitude areas. The association between PM exposure and asthma should be of interest for planners of national policies and encourage programs for prevention of asthma in residents living at high altitudes.
Collapse
Affiliation(s)
- ZhenZhen Xing
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, China
- National Center for Respiratory Medicine & National Clinical Research Center for Respiratory Diseases, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China
- Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Huanyu Long
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanlu Hu
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Di Chai
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - WeiMing Liu
- Department of Intensive Care Medicine, Beijing Boai Hospital, Rehabilitation Research Center, Beijing, China
| | - YaQi Tong
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - YuXia Wang
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - YaLi Ma
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - MingMing Pan
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Cui
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - TieYing Sun
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - YanFei Guo
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Rosser F, Balmes J. Ozone and childhood respiratory health: A primer for US pediatric providers and a call for a more protective standard. Pediatr Pulmonol 2023; 58:1355-1366. [PMID: 36815617 PMCID: PMC10121852 DOI: 10.1002/ppul.26368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Ground level ozone is a potent respiratory toxicant with decades of accumulated data demonstrating respiratory harms to children. Despite the ubiquity of ozone in the United States, impacting both urban and rural communities, the associated harms of exposure to this important air pollutant are often infrequently or inadequately covered during medical training including pulmonary specialization. Thus, many providers caring for children's respiratory health may have limited knowledge of the harms which may result in reduced discussion of ozone pollution during clinical encounters. Further, the current US air quality standard for ozone does not adequately protect children. In this nonsystematic review, we present basic background information for healthcare providers caring for children's respiratory health, review the US process for setting air quality standards, discuss the respiratory harms of ozone for healthy children and those with underlying respiratory disease, highlight the urgent need for a more protective ozone standard to adequately protect children's respiratory health, review impacts of climate change on ozone levels, and provide information for discussion in clinical encounters.
Collapse
Affiliation(s)
- Franziska Rosser
- Department of Pediatrics, Division of Pulmonary Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - John Balmes
- Department of Medicine, University of California, San Francisco, San Francisco, CA
- School of Public Health, University of California, Berkeley, CA
| |
Collapse
|
17
|
Neophytou AM, Lutzker L, Good KM, Mann JK, Noth EM, Holm SM, Costello S, Tyner T, Nadeau KC, Eisen EA, Lurmann F, Hammond SK, Balmes JR. Associations between prenatal and early-life air pollution exposure and lung function in young children: Exploring influential windows of exposure on lung development. ENVIRONMENTAL RESEARCH 2023; 222:115415. [PMID: 36738772 PMCID: PMC9974878 DOI: 10.1016/j.envres.2023.115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Evidence in the literature suggests that air pollution exposures experienced prenatally and early in life can be detrimental to normal lung development, however the specific timing of critical windows during development is not fully understood. OBJECTIVES We evaluated air pollution exposures during the prenatal and early-life period in association with lung function at ages 6-9, in an effort to identify potentially influential windows of exposure for lung development. METHODS Our study population consisted of 222 children aged 6-9 from the Fresno-Clovis metro area in California with spirometry data collected between May 2015 and May 2017. We used distributed-lag non-linear models to flexibly model the exposure-lag-response for monthly average exposure to fine particulate matter (PM2.5) and ozone (O3) during the prenatal months and first three years of life in association with forced vital capacity (FVC), and forced expiratory volume in the first second (FEV1), adjusted for covariates. RESULTS PM2.5 exposure during the prenatal period and the first 3-years of life was associated with lower FVC and FEV1 assessed at ages 6-9. Specifically, an increase from the 5th percentile of the observed monthly average exposure (7.55 μg/m3) to the median observed exposure (12.69 μg/m3) for the duration of the window was associated with 0.42 L lower FVC (95% confidence interval (CI): -0.82, -0.03) and 0.38 L lower FEV1 (95% CI: -0.75, -0.02). The shape of the lag-response indicated that the second half of pregnancy may be a particularly influential window of exposure. Associations for ozone were not as strong and typically CIs included the null. CONCLUSIONS Our findings indicate that prenatal and early-life exposures to PM2.5 are associated with decreased lung function later in childhood. Exposures during the latter months of pregnancy may be especially influential.
Collapse
Affiliation(s)
- Andreas M Neophytou
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Liza Lutzker
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Kristen M Good
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Division of Disease Control and Public Health Response, Colorado Department of Public Health and Environment, Denver, CO, USA
| | - Jennifer K Mann
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Elizabeth M Noth
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Stephanie M Holm
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA
| | - Sadie Costello
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Tim Tyner
- University of California, San Francisco-Fresno, Fresno, CA, USA; Central California Asthma Collaborative, Fresno, CA, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, USA; Department of Environmental Health. Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Ellen A Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | | | - S Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - John R Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; University of California, San Francisco-Fresno, Fresno, CA, USA
| |
Collapse
|
18
|
Li J, Jahan J, Newcomb P. Environmental characteristics and disparities in adult asthma in north central Texas urban counties. Public Health 2023; 217:164-172. [PMID: 36893633 DOI: 10.1016/j.puhe.2023.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVES Disparities in asthma prevalence present a persistent challenge to public health. The complex nature of the issue requires studies through a wide range of lenses. To date, little research has examined associations between asthma and multiple social and environmental factors simultaneously. This study aims to fill the gap with a focus on the impacts of multiple environmental characteristics and social determinants of health on asthma. STUDY DESIGN This study uses secondary analysis with data from a variety of sources to analyze the effects of environmental and social factors on adult asthma occurrence in North Central Texas. METHOD Hospital records and demographic and environmental data for four urban counties in North Central Texas (Collin, Dallas, Denton, and Tarrant) come from the Dallas/Fort Worth Hospital Council Foundation, the US census, the North Central Texas Council of Governments, and the Railroad Commission of Texas. The data were integrated using ArcGIS. A hotspot analysis was performed to inspect the spatial patterns of hospital visits for asthma exacerbations in 2014. The impacts of multiple environmental characteristics and social determinants of health were modeled using negative binomial regression. RESULTS The results revealed spatial clusters of adult asthma prevalence and disparities by race, class, and education. The occurrence of asthma exacerbations was positively associated with exposure to traffic-related air pollution, energy-related drilling activities, and older housing stock and negatively linked to green space. CONCLUSIONS Associations between built environmental characteristics and asthma prevalence have implications for urban planners, healthcare professionals, and policy makers. Empirical evidence for the role of social determinants of health supports continuing efforts in policies and practices to improve education and reduce socio-economic inequities.
Collapse
Affiliation(s)
- J Li
- College of Architecture, Planning and Public Affairs, University of Texas at Arlington, Box 19108, 601 W. Nedderman Drive, Suite203, Arlington, TX 76019, USA.
| | - J Jahan
- College of Architecture, Planning and Public Affairs, University of Texas at Arlington, Box 19108, 601 W. Nedderman Drive, Suite203, Arlington, TX 76019, USA.
| | - P Newcomb
- Texas Health Resources, 612 E. Lamar Boulevard, Arlington, TX 76011, USA.
| |
Collapse
|
19
|
Ly DP, Blegen MB, Gibbons MM, Norris KC, Tsugawa Y. Inequities in surgical outcomes by race and sex in the United States: retrospective cohort study. BMJ 2023; 380:e073290. [PMID: 36858422 PMCID: PMC9975928 DOI: 10.1136/bmj-2022-073290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVE To assess inequities in mortality by race and sex for eight common surgical procedures (elective and non-elective) across specialties in the United States. DESIGN Retrospective cohort study. SETTING US, 2016-18. PARTICIPANTS 1 868 036 Black and White Medicare beneficiaries aged 65-99 years undergoing one of eight common surgeries: repair of abdominal aortic aneurysm, appendectomy, cholecystectomy, colectomy, coronary artery bypass surgery, hip replacement, knee replacement, and lung resection. MAIN OUTCOME MEASURE The main outcome measure was 30 day mortality, defined as death during hospital admission or within 30 days of the surgical procedure. RESULTS Postoperative mortality overall was higher in Black men (1698 deaths, adjusted mortality rate 3.05%, 95% confidence interval 2.85% to 3.24%) compared with White men (21 833 deaths, 2.69%, 2.65% to 2.73%), White women (21 847 deaths, 2.38%, 2.35% to 2.41%), and Black women (1631 deaths, 2.18%, 2.04% to 2.31%), after adjusting for potential confounders. A similar pattern was found for elective surgeries, with Black men showing a higher adjusted mortality (393 deaths, 1.30%, 1.14% to 1.46%) compared with White men (5650 deaths, 0.85%, 0.83% to 0.88%), White women (4615 deaths, 0.82%, 0.80% to 0.84%), and Black women (359 deaths, 0.79%, 0.70% to 0.88%). This 0.45 percentage point difference implies that mortality after elective procedures was 50% higher in Black men compared with White men. For non-elective surgeries, however, mortality did not differ between Black men and White men (1305 deaths, 6.69%, 6.26% to 7.11%; and 16 183 deaths, 7.03%, 6.92% to 7.14%, respectively), although mortality was lower for White women and Black women (17 232 deaths, 6.12%, 6.02% to 6.21%; and 1272 deaths, 5.29%, 4.93% to 5.64%, respectively). These differences in mortality appeared within seven days after surgery and persisted for up to 60 days after surgery. CONCLUSIONS Postoperative mortality overall was higher among Black men compared with White men, White women, and Black women. These findings highlight the need to understand better the unique challenges Black men who require surgery face.
Collapse
Affiliation(s)
- Dan P Ly
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mariah B Blegen
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- National Clinician Scholars Program, UCLA, Los Angeles, CA, USA
| | - Melinda M Gibbons
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Keith C Norris
- Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yusuke Tsugawa
- Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA 90024, USA
| |
Collapse
|
20
|
Herrera-Luis E, Mak ACY, Perez-Garcia J, Martin-Gonzalez E, Eng C, Beckman KB, Huntsman S, Hu D, González-Pérez R, Hernández-Pérez JM, Mederos-Luis E, Sio YY, Poza-Guedes P, Sardón O, Corcuera P, Sánchez-Machín I, Korta-Murua J, Martínez-Rivera C, Mullol J, Muñoz X, Valero A, Sastre J, Garcia-Aymerich J, Llop S, Torrent M, Casas M, Rodríguez-Santana JR, Villar J, del Pozo V, Lorenzo-Diaz F, Williams LK, Melén E, Chew FT, Borrell LN, Burchard EG, Pino-Yanes M. Admixture mapping of severe asthma exacerbations in Hispanic/Latino children and youth. Thorax 2023; 78:233-241. [PMID: 36180068 PMCID: PMC9957797 DOI: 10.1136/thorax-2022-218755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/04/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND In the USA, genetically admixed populations have the highest asthma prevalence and severe asthma exacerbations rates. This could be explained not only by environmental factors but also by genetic variants that exert ethnic-specific effects. However, no admixture mapping has been performed for severe asthma exacerbations. OBJECTIVE We sought to identify genetic variants associated with severe asthma exacerbations in Hispanic/Latino subgroups by means of admixture mapping analyses and fine mapping, and to assess their transferability to other populations and potential functional roles. METHODS We performed an admixture mapping in 1124 Puerto Rican and 625 Mexican American children with asthma. Fine-mapping of the significant peaks was performed via allelic testing of common and rare variants. We performed replication across Hispanic/Latino subgroups, and the transferability to non-Hispanic/Latino populations was assessed in 1001 African Americans, 1250 Singaporeans and 941 Europeans with asthma. The effects of the variants on gene expression and DNA methylation from whole blood were also evaluated in participants with asthma and in silico with data obtained through public databases. RESULTS Genomewide significant associations of Indigenous American ancestry with severe asthma exacerbations were found at 5q32 in Mexican Americans as well as at 13q13-q13.2 and 3p13 in Puerto Ricans. The single nucleotide polymorphism (SNP) rs1144986 (C5orf46) showed consistent effects for severe asthma exacerbations across Hispanic/Latino subgroups, but it was not validated in non-Hispanics/Latinos. This SNP was associated with DPYSL3 DNA methylation and SCGB3A2 gene expression levels. CONCLUSIONS Admixture mapping study of asthma exacerbations revealed a novel locus that exhibited Hispanic/Latino-specific effects and regulated DPYSL3 and SCGB3A2.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain
| | - Angel C. Y. Mak
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | - Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain
| | - Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain
| | - Celeste Eng
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | | | - Scott Huntsman
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | - Donglei Hu
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias,
Santa Cruz de Tenerife, Tenerife, Spain,Asthma Unit, Hospital Universitario de Canarias, La Laguna,
Tenerife, Spain
| | - José M. Hernández-Pérez
- Pulmonary Medicine, Hospital Universitario de N.S de
Candelaria, Santa Cruz de Tenerife, Spain,Pulmonary Medicine, Hospital General de La Palma, La Palma,
Santa Cruz de Tenerife, Spain
| | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias,
Santa Cruz de Tenerife, Tenerife, Spain
| | - Yang Yie Sio
- Department of Biological Sciences, National University of
Singapore, Singapore
| | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias,
Santa Cruz de Tenerife, Tenerife, Spain,Asthma Unit, Hospital Universitario de Canarias, La Laguna,
Tenerife, Spain
| | - Olaia Sardón
- Division of Pediatric Respiratory Medicine, Hospital
Universitario Donostia, San Sebastián, Spain,Department of Pediatrics, University of the Basque
Country (UPV/EHU), San Sebastián, Spain
| | - Paula Corcuera
- Division of Pediatric Respiratory Medicine, Hospital
Universitario Donostia, San Sebastián, Spain
| | | | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Hospital
Universitario Donostia, San Sebastián, Spain,Department of Pediatrics, University of the Basque
Country (UPV/EHU), San Sebastián, Spain
| | - Carlos Martínez-Rivera
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Servicio de Neumología, Hospital Universitario
Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona,
Spain
| | - Joaquim Mullol
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Rhinology Unit & Smell Clinic, ENT Department;
Clinical & Experimental Respiratory Immunoallergy (IDIBAPS), Universitat de
Barcelona, Barcelona, Spain
| | - Xavier Muñoz
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Servicio de Neumología, Hospital Vall
d’Hebron, Barcelona, Spain
| | - Antonio Valero
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Allergy Unit & Severe Asthma Unit, Pneumonology and
Allergy Department, Hospital Clínic; IDIBAPS; Universitat de
Barcelona.Barcelona, Spain
| | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Allergy Department, Hospital Universitario
Fundación Jiménez Díaz, Madrid, Spain
| | - Judith Garcia-Aymerich
- Spanish Consortium for Research on Epidemiology and
Public Health (CIBERESP), Madrid, Spain,ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra, Barcelona, Spain
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and
Public Health (CIBERESP), Madrid, Spain,Epidemiology and Environmental Health Joint Research
Unit, FISABIO–Universitat Jaume I–Universitat de València,
Valencia, Spain
| | | | - Maribel Casas
- ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Multidisciplinary Organ Dysfunction Evaluation Research
Network, Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran
Canaria, Spain
| | - Victoria del Pozo
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Immunology Department, Instituto de Investigación
Sanitaria Hospital Universitario Fundación Jiménez Díaz,
Madrid, Spain
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain,Instituto Universitario de Enfermedades Tropicales y
Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La
Laguna, Tenerife, Spain
| | - L. Keoki Williams
- Center for Individualized and Genomic Medicine Research,
Department of Internal Medicine, Henry Ford Health System, Detroit, MI, U.S.A
| | - Erik Melén
- Department of Clinical Sciences and Education,
Södersjukhuset, Karolinska Institutet, Stockholm, Sweden,Sachs’ Children’s Hospital, South General
Hospital, Stockholm, Sweden
| | - Fook Tim Chew
- Department of Biological Sciences, National University of
Singapore, Singapore
| | - Luisa N. Borrell
- Department of Epidemiology & Biostatistics, Graduate
School of Public Health & Health Policy, City University of New York, New York,
NY, U.S.A
| | - Esteban G. Burchard
- UMN Genomics Center, Minneapolis, Minnesota, U.S.A.,Department of Bioengineering and Therapeutic Sciences,
University of California San Francisco, San Francisco, California, U.S.A
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain .,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Spain
| |
Collapse
|
21
|
Khreis H, Sanchez KA, Foster M, Burns J, Nieuwenhuijsen MJ, Jaikumar R, Ramani T, Zietsman J. Urban policy interventions to reduce traffic-related emissions and air pollution: A systematic evidence map. ENVIRONMENT INTERNATIONAL 2023; 172:107805. [PMID: 36780750 DOI: 10.1016/j.envint.2023.107805] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Urban areas are hot spots for human exposure to air pollution, which originates in large part from traffic. As the urban population continues to grow, a greater number of people risk exposure to traffic-related air pollution (TRAP) and its adverse, costly health effects. In many cities, there is a need and scope for air quality improvements through targeted policy interventions, which continue to grow including rapidly changing technologies. OBJECTIVE This systematic evidence map (SEM) examines and characterizes peer-reviewed evidence on urban-level policy interventions aimed at reducing traffic emissions and/or TRAP from on-road mobile sources, thus potentially reducing human exposures and adverse health effects and producing various co-benefits. METHODS This SEM follows a previously peer-reviewed and published protocol with minor deviations, explicitly outlined here. Articles indexed in Public Affairs Index, TRID, Medline and Embase were searched, limited to English, published between January 1, 2000, and June 1, 2020. Covidence was used to screen articles based on previously developed eligibility criteria. Data for included articles was extracted and manually documented into an Excel database. Data visualizations were created in Tableau. RESULTS We identified 7528 unique articles from database searches and included 376 unique articles in the final SEM. There were 58 unique policy interventions, and a total of 1,139 unique policy scenarios, comprising these interventions and different combinations thereof. The policy interventions fell under 6 overarching policy categories: 1) pricing, 2) land use, 3) infrastructure, 4) behavioral, 5) technology, and 6) management, standards, and services, with the latter being the most studied. For geographic location, 463 policy scenarios were studied in Europe, followed by 355 in Asia, 206 in North America, 57 in South America, 10 in Africa, and 7 in Australia. Alternative fuel technology was the most frequently studied intervention (271 times), followed by vehicle emission regulation (134 times). The least frequently studied interventions were vehicle ownership taxes, and studded tire regulations, studied once each. A mere 3 % of studies addressed all elements of the full-chain-traffic emissions, TRAP, exposures, and health. The evidence recorded for each unique policy scenario is hosted in an open-access, query-able Excel database, and a complementary interactive visualization tool. We showcase how users can find more about the effectiveness of the 1,139 included policy scenarios in reducing, increasing, having mixed or no effect on traffic emissions and/or TRAP. CONCLUSION This is the first peer-reviewed SEM to compile international evidence on urban-level policy interventions to reduce traffic emissions and/or TRAP in the context of human exposure and health effects. We also documented reported enablers, barriers, and co-benefits. The open-access Excel database and interactive visualization tool can be valuable resources for practitioners, policymakers, and researchers. Future updates to this work are recommended. PROTOCOL REGISTRATION Sanchez, K.A., Foster, M., Nieuwenhuijsen, M.J., May, A.D., Ramani, T., Zietsman, J. and Khreis, H., 2020. Urban policy interventions to reduce traffic emissions and traffic-related air pollution: Protocol for a systematic evidence map. Environment international, 142, p.105826.
Collapse
Affiliation(s)
- Haneen Khreis
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom.
| | - Kristen A Sanchez
- Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH), Texas A&M Transportation Institute (TTI), TX, USA; Texas A&M School of Public Health, TX, USA.
| | - Margaret Foster
- Texas A&M University, Center for Systematic Reviews and Research Syntheses, College Station, TX, USA.
| | - Jacob Burns
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig Maximilian University of Munich, Munich, Germany.
| | - Mark J Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain.
| | - Rohit Jaikumar
- Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH), Texas A&M Transportation Institute (TTI), TX, USA.
| | - Tara Ramani
- Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH), Texas A&M Transportation Institute (TTI), TX, USA.
| | - Josias Zietsman
- Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH), Texas A&M Transportation Institute (TTI), TX, USA.
| |
Collapse
|
22
|
Correa-Agudelo E, Ding L, Beck AF, Brokamp C, Altaye M, Kahn RS, Mersha TB. Understanding racial disparities in childhood asthma using individual- and neighborhood-level risk factors. J Allergy Clin Immunol 2022; 150:1427-1436.e5. [PMID: 35970309 PMCID: PMC9887733 DOI: 10.1016/j.jaci.2022.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Racial disparities in childhood asthma outcomes result from a complex interplay of individual- and neighborhood-level factors. OBJECTIVES We sought to examine racial disparities in asthma-related emergency department (ED) visits between African American (AA) and European American (EA) children. METHODS This is a retrospective study of patients younger than 18 years who visited the ED at Cincinnati Children's for asthma from 2009 to 2018. The outcome was number of ED visits during a year. We assessed 11 social, economic, and environmental variables. Mediation and mixed-effects analyses were used to assess relationships between race, mediators, and number of ED visits. RESULTS A total of 31,114 children (46.1% AA, 53.9% EA) had 186,779 asthma-related ED visits. AA children had more visits per year than EA children (2.23 vs 2.15; P < .001). Medicaid insurance was associated with a 7% increase in rate of ED visits compared with commercial insurance (1.07; 95% CI, 1.03-1.1). Neighborhood socioeconomic deprivation was associated with an increased rate of ED visits in AA but not in EA children. Area-level particulate matter with diameter less than 2.5 μm, pollen, and outdoor mold were associated with an increased rate of ED visits for both AA and EA children (all P < .001). Associations between race and number of ED visits were mediated by insurance, area-level deprivation, particulate matter with diameter less than 2.5 μm, and outdoor mold (all P < .001), altogether accounting for 55% of the effect of race on ED visits. Race was not associated with number of ED visits (P = .796) after accounting for mediators. CONCLUSIONS Racial disparities in asthma-related ED visits are mediated by social, economic, and environmental factors, which may be amenable to interventions aimed at improving outcomes and eliminating inequities.
Collapse
Affiliation(s)
- Esteban Correa-Agudelo
- Divisions of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Lili Ding
- Divisions of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Andrew F Beck
- Divisions of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio; Divisions of Hospital Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Cole Brokamp
- Divisions of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Mekibib Altaye
- Divisions of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Robert S Kahn
- Divisions of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Tesfaye B Mersha
- Divisions of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
23
|
Benamar M, Harb H, Chen Q, Wang M, Chan TMF, Fong J, Phipatanakul W, Cunningham A, Ertem D, Petty CR, Mousavi AJ, Sioutas C, Crestani E, Chatila TA. A common IL-4 receptor variant promotes asthma severity via a T reg cell GRB2-IL-6-Notch4 circuit. Allergy 2022; 77:3377-3387. [PMID: 35841382 PMCID: PMC9617759 DOI: 10.1111/all.15444] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The mechanisms by which genetic and environmental factors interact to promote asthma remain unclear. Both the IL-4 receptor alpha chain R576 (IL-4RαR576) variant and Notch4 license asthmatic lung inflammation by allergens and ambient pollutant particles by subverting lung regulatory T (Treg ) cells in an IL-6-dependent manner. OBJECTIVE We examined the interaction between IL-4RαR576 and Notch4 in promoting asthmatic inflammation. METHODS Peripheral blood mononuclear cells (PBMCs) of asthmatics were analyzed for T helper type 2 cytokine production and Notch4 expression on Treg cells as a function of IL4RR576 allele. The capacity of IL-4RαR576 to upregulate Notch4 expression on Treg cells to promote severe allergic airway inflammation was further analyzed in genetic mouse models. RESULTS Asthmatics carrying the IL4RR576 allele had increased Notch4 expression on their circulating Treg cells as a function of disease severity and serum IL-6. Mice harboring the Il4raR576 allele exhibited increased Notch4-dependent allergic airway inflammation that was inhibited upon Treg cell-specific Notch4 deletion or treatment with an anti-Notch4 antibody. Signaling via IL-4RαR576 upregulated the expression in lung Treg cells of Notch4 and its downstream mediators Yap1 and beta-catenin, leading to exacerbated lung inflammation. This upregulation was dependent on growth factor receptor-bound protein 2 (GRB2) and IL-6 receptor. CONCLUSION These results identify an IL-4RαR576-regulated GRB2-IL-6-Notch4 circuit that promotes asthma severity by subverting lung Treg cell function.
Collapse
Affiliation(s)
- Mehdi Benamar
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Hani Harb
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
- Institute for Medical Microbiology and Virology, Technical
University Dresden, Germany
| | - Qian Chen
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Muyun Wang
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Tsz Man Fion Chan
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Jason Fong
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Wanda Phipatanakul
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Amparito Cunningham
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Deniz Ertem
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Carter R. Petty
- Institutional Centers for Clinical and Translational
Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Amirhosein J. Mousavi
- Department of Civil and Environmental Engineering,
University of Southern California, CA, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering,
University of Southern California, CA, USA
| | - Elena Crestani
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Talal A. Chatila
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| |
Collapse
|
24
|
Joo J, Mak ACY, Xiao S, Sleiman PM, Hu D, Huntsman S, Eng C, Kan M, Diwakar AR, Lasky-Su JA, Weiss ST, Sordillo JE, Wu AC, Cloutier M, Canino G, Forno E, Celedón JC, Seibold MA, Hakonarson H, Williams LK, Burchard EG, Himes BE. Genome-wide association study in minority children with asthma implicates DNAH5 in bronchodilator responsiveness. Sci Rep 2022; 12:12514. [PMID: 35869121 PMCID: PMC9307508 DOI: 10.1038/s41598-022-16488-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 12/25/2022] Open
Abstract
Variability in response to short-acting β2-agonists (e.g., albuterol) among patients with asthma from diverse racial/ethnic groups may contribute to asthma disparities. We sought to identify genetic variants associated with bronchodilator response (BDR) to identify potential mechanisms of drug response and risk factors for worse asthma outcomes. Genome-wide association studies of bronchodilator response (BDR) were performed using TOPMed Whole Genome Sequencing data of the Asthma Translational Genomic Collaboration (ATGC), which corresponded to 1136 Puerto Rican, 656 Mexican and 4337 African American patients with asthma. With the population-specific GWAS results, a trans-ethnic meta-analysis was performed to identify BDR-associated variants shared across the three populations. Replication analysis was carried out in three pediatric asthma cohorts, including CAMP (Childhood Asthma Management Program; n = 560), GACRS (Genetics of Asthma in Costa Rica Study; n = 967) and HPR (Hartford-Puerto Rico; n = 417). A genome-wide significant locus (rs35661809; P = 3.61 × 10-8) in LINC02220, a non-coding RNA gene, was identified in Puerto Ricans. While this region was devoid of protein-coding genes, capture Hi-C data showed a distal interaction with the promoter of the DNAH5 gene in lung tissue. In replication analysis, the GACRS cohort yielded a nominal association (1-tailed P < 0.05). No genetic variant was associated with BDR at the genome-wide significant threshold in Mexicans and African Americans. Our findings help inform genetic underpinnings of BDR for understudied minority patients with asthma, but the limited availability of genetic data for racial/ethnic minority children with asthma remains a paramount challenge.
Collapse
Affiliation(s)
- Jaehyun Joo
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Angel C Y Mak
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA
| | - Shujie Xiao
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Patrick M Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA
| | - Mengyuan Kan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Avantika R Diwakar
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Jessica A Lasky-Su
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joanne E Sordillo
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Ann C Wu
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Michelle Cloutier
- Department of Pediatrics, University of Connecticut, Farmington, CT, USA
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, PR, USA
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, UMPC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UMPC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Max A Seibold
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA.
- Department of Bioengineering and Therapeutic Sciences, University of Californica, San Francisco, CA, USA.
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Witonsky J, Elhawary JR, Eng C, Rodríguez-Santana JR, Borrell LN, Burchard EG. Race- and Ethnicity-Based Spirometry Reference Equations: Are They Accurate for Genetically Admixed Children? Chest 2022; 162:184-195. [PMID: 35033507 DOI: 10.1016/j.chest.2021.12.664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Variation in genetic ancestry among genetically admixed racial and ethnic groups may influence the fit of guideline-recommended spirometry reference equations, which rely on self-identified race and ethnicity. RESEARCH QUESTION What is the influence of genetic ancestry on the fit of race- and ethnicity-based spirometry reference equations in populations of genetically admixed children? STUDY DESIGN AND METHODS Cross-sectional fit of guideline-recommended race- and ethnicity-based spirometry reference equations was evaluated in healthy control participants from case-control studies of asthma. Anthropometry, blood samples, and spirometric measurements were obtained for 599 genetically admixed children 8 to 21 years of age. Genetic ancestry was estimated using genome-wide genotype data. Equation fit, measured as a mean z score, was assessed in self-identified African American (n = 275) and Puerto Rican (n = 324) children as well as genetic ancestry-defined strata of each population. RESULTS For African American children, African American-derived equations fit for predicting FEV1 and FVC in those with an African ancestry more than the median (81.4%-100.0%), whereas composite equations for "other/mixed" populations fit for predicting FEV1 and FVC in those with African ancestry at or less than the median (30.7%-81.3%). For Puerto Rican children with African ancestry at or less than the median (6.4%-21.3%), White-derived equations fit both FEV1 and FVC, whereas for those with African ancestry more than the median (21.4%-87.5%), White-derived equations fit the FEV1 and the composite equations fit the FVC. INTERPRETATION Guideline-recommended spirometry reference equations yielded biased estimates of lung function in genetically admixed children with high variation of African ancestry. Spirometry could benefit from reference equations that incorporate genetic ancestry, either for more precise application of the current equations or the derivation and use of new equations.
Collapse
Affiliation(s)
- Jonathan Witonsky
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA.
| | - Jennifer R Elhawary
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | | | - Luisa N Borrell
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY
| | - Esteban G Burchard
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
26
|
The Challenges of Using Race- and Ethnicity-Based Spirometry Reference Equations in Genetically Admixed Populations. Chest 2022; 162:11-13. [DOI: 10.1016/j.chest.2022.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
|
27
|
Nonparametric Tests for Multivariate Association. Symmetry (Basel) 2022. [DOI: 10.3390/sym14061112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Testing the existence of association between a multivariate response and predictors is an important statistical problem. In this paper, we present nonparametric procedures that make no specific distributional, regression function, and covariance matrix assumptions. Our test is motivated by recent results in MANOVA tests for a large number of groups. Two types of tests are proposed. While it is natural to consider the classical approach for constructing the test by jointly considering all the variables together, we also investigate a composite test where variable-by-variable univariate tests are combined to form a multivariate test. The asymptotic distributions of the test statistics are derived in a unified manner by deriving the asymptotic matrix variate normal distribution of random matrices involved in the construction of the statistics. The tests have good numerical performance in finite samples. The application of the methods is illustrated with gene expression profiling of bronchial airway brushings.
Collapse
|
28
|
Bobrowska-Korzeniowska M, Majak P, Brzozowska A, Polańska K, Kaleta D, Smejda K, Mospinek E, Stelmach W, Jerzyńska J. Cluster analysis of exhaled volatile organic compounds (VOCs)-link between environmental exposure and asthma in preschool children. Clin Exp Allergy 2022; 52:985-989. [PMID: 35560469 DOI: 10.1111/cea.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Paweł Majak
- Department of Pediatric Pulmonology, Copernicus Memorial Hospital, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Brzozowska
- Department of Paediatrics and Allergy, Copernicus Memorial Hospital, Medical University of Lodz, Lodz, Poland
| | - Kinga Polańska
- Department of Environmental and Occupational Health Hazards, Nofer Institute of Occupational Medicine, Lodz, Poland.,Department of Hygiene and Epidemiology, Medical University of Lodz, Lodz, Poland
| | - Dorota Kaleta
- Department of Hygiene and Epidemiology, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Smejda
- Department of Paediatrics and Allergy, Copernicus Memorial Hospital, Medical University of Lodz, Lodz, Poland
| | - Ewa Mospinek
- Department of Paediatrics and Allergy, Copernicus Memorial Hospital, Medical University of Lodz, Lodz, Poland
| | | | - Joanna Jerzyńska
- Department of Paediatrics and Allergy, Copernicus Memorial Hospital, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
29
|
Hernandez-Pacheco N, Kere M, Melén E. Gene-environment interactions in childhood asthma revisited; expanding the interaction concept. Pediatr Allergy Immunol 2022; 33:e13780. [PMID: 35616899 PMCID: PMC9325482 DOI: 10.1111/pai.13780] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 01/04/2023]
Abstract
Investigation of gene-environment interactions (GxE) may provide important insights into the gene regulatory framework in response to environmental factors of relevance for childhood asthma. Over the years, different methodological strategies have been applied, more recently using genome-wide approaches. The best example to date is the major asthma locus on the 17q12-21 chromosome region, viral infections, and airway epithelium processes where recent studies have shed much light on mechanisms in childhood asthma. However, there are challenges with the traditional single variant-single exposure interaction models, as they do not encompass the complexity and cumulative effects of multiple exposures or multiple genetic variants. As such, we need to redefine our traditional GxE thinking, and we propose in this review to expand the GxE concept by also evaluating other omics layers, such as epigenetics, transcriptomics, metabolomics, and proteomics. In addition, host factors such as age, gender, and other exposures are very likely to influence GxE effects and need firmly to be considered in future studies.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Maura Kere
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, South General Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Sajuthi SP, Everman JL, Jackson ND, Saef B, Rios CL, Moore CM, Mak ACY, Eng C, Fairbanks-Mahnke A, Salazar S, Elhawary J, Huntsman S, Medina V, Nickerson DA, Germer S, Zody MC, Abecasis G, Kang HM, Rice KM, Kumar R, Zaitlen NA, Oh S, Rodríguez-Santana J, Burchard EG, Seibold MA. Nasal airway transcriptome-wide association study of asthma reveals genetically driven mucus pathobiology. Nat Commun 2022; 13:1632. [PMID: 35347136 PMCID: PMC8960819 DOI: 10.1038/s41467-022-28973-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
To identify genetic determinants of airway dysfunction, we performed a transcriptome-wide association study for asthma by combining RNA-seq data from the nasal airway epithelium of 681 children, with UK Biobank genetic association data. Our airway analysis identified 95 asthma genes, 58 of which were not identified by transcriptome-wide association analyses using other asthma-relevant tissues. Among these genes were MUC5AC, an airway mucin, and FOXA3, a transcriptional driver of mucus metaplasia. Muco-ciliary epithelial cultures from genotyped donors revealed that the MUC5AC risk variant increases MUC5AC protein secretion and mucus secretory cell frequency. Airway transcriptome-wide association analyses for mucus production and chronic cough also identified MUC5AC. These cis-expression variants were associated with trans effects on expression; the MUC5AC variant was associated with upregulation of non-inflammatory mucus secretory network genes, while the FOXA3 variant was associated with upregulation of type-2 inflammation-induced mucus-metaplasia pathway genes. Our results reveal genetic mechanisms of airway mucus pathobiology.
Collapse
Affiliation(s)
- Satria P Sajuthi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Benjamin Saef
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Cydney L Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Denver, CO, USA
| | - Angel C Y Mak
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Celeste Eng
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Ana Fairbanks-Mahnke
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Sandra Salazar
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Jennifer Elhawary
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Gonçalo Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Hyun Min Kang
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Rajesh Kumar
- Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University, Chicago, IL, USA
| | - Noah A Zaitlen
- Department of Neurology and Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sam Oh
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | | | - Esteban G Burchard
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
31
|
Kumar M, Yano N, Fedulov AV. Gestational exposure to titanium dioxide, diesel exhaust, and concentrated urban air particles affects levels of specialized pro-resolving mediators in response to allergen in asthma-susceptible neonate lungs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:243-261. [PMID: 34802391 PMCID: PMC8785906 DOI: 10.1080/15287394.2021.2000906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Maternal gestational exposures to traffic and urban air pollutant particulates have been linked to increased risk and/or worsening asthma in children; however, mechanisms underlying this vertical transmission are not entirely understood. It was postulated that gestational particle exposure might affect the ability to elicit specialized proresolving mediator (SPM) responses upon allergen encounter in neonates. Lipidomic profiling of 50 SPMs was performed in lungs of neonates born to mice exposed to concentrated urban air particles (CAP), diesel exhaust particles (DEP), or less immunotoxic titanium dioxide particles (TiO2). While asthma-like phenotypes were induced with identical eosinophilia intensity across neonates of all particle-exposed mothers, levels of LXA4, HEPE and HETE isoforms, and HDoHe were only decreased by CAP and DEP only but not by TiO2. However, RvE2 and RvD1 were inhibited by all particles. In contrast, isomers of Maresin1 and Protectin D1 were variably elevated by CAP and DEP, whereas Protectin DX, PGE2, and TxB2 were increased in all groups. Only Protectin D1/DX, MaR1(n-3,DPA), 5(S),15(S)-DiHETE, PGE2, and RvE3 correlated with eosinophilia but the majority of other analytes, elevated or inhibited, showed no marked correlation with inflammation intensity. Evidence indicates that gestational particle exposure leads to both particle-specific and nonspecific effects on the SPM network.
Collapse
Affiliation(s)
- Mohan Kumar
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Naohiro Yano
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Alexey V. Fedulov
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| |
Collapse
|
32
|
Witonsky J, Elhawary JR, Eng C, Rodríguez-Santana JR, Borrell LN, Burchard EG. Genetic Ancestry to Improve Precision of Race/Ethnicity-based Lung Function Equations in Children. Am J Respir Crit Care Med 2022; 205:725-727. [PMID: 35085059 DOI: 10.1164/rccm.202109-2088le] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Celeste Eng
- University of California San Francisco San Francisco, California
| | | | | | | |
Collapse
|
33
|
Kopp MV, Muche-Borowski C, Abou-Dakn M, Ahrens B, Beyer K, Blümchen K, Bubel P, Chaker A, Cremer M, Ensenauer R, Gerstlauer M, Gieler U, Hübner IM, Horak F, Klimek L, Koletzko BV, Koletzko S, Lau S, Lob-Corzilius T, Nemat K, Peters EM, Pizzulli A, Reese I, Rolinck-Werninghaus C, Rouw E, Schaub B, Schmidt S, Steiß JO, Striegel AK, Szépfalusi Z, Schlembach D, Spindler T, Taube C, Trendelenburg V, Treudler R, Umpfenbach U, Vogelberg C, Wagenmann M, Weißenborn A, Werfel T, Worm M, Sitter H, Hamelmann E. S3 guideline Allergy Prevention. Allergol Select 2022; 6:61-97. [PMID: 35274076 PMCID: PMC8905073 DOI: 10.5414/alx02303e] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The persistently high prevalence of allergic diseases in Western industrial nations and the limited possibilities of causal therapy make evidence-based recommendations for primary prevention necessary. METHODS The recommendations of the S3 guideline Allergy Prevention, published in its last version in 2014, were revised and consulted on the basis of a current systematic literature search. The evidence search was conducted for the period 06/2013 - 11/2020 in the electronic databases Cochrane and MEDLINE, as well as in the reference lists of current reviews and through references from experts. The literature found was screened in two filtering processes, first by title and abstract, and the remaining papers were screened in the full text for relevance. The studies included after this were sorted by level of evidence, and the study quality was indicated in terms of potential bias (low/high). The revised recommendations were formally agreed and consented upon with the participation of representatives of the relevant professional societies and (self-help) organizations (nominal group process). Of 5,681 hits, 286 studies were included and assessed. RESULTS Recommendations on maternal nutrition during pregnancy and breastfeeding as well as on infant nutrition in the first months of life again play an important role in the updated guideline: Many of the previous recommendations were confirmed by the current data. It was specified that breastfeeding should be exclusive for the first 4 - 6 months after birth, if possible, and that breastfeeding should continue with the introduction of complementary foods. A new recommendation is that supplementary feeding of cow's milk-based formula should be avoided in the first days of life if the mother wishes to breastfeed. Furthermore, it was determined that the evidence for a clear recommendation for hydrolyzed infant formula in non-breastfed infants at risk is currently no longer sufficient. It is therefore currently recommended to check whether an infant formula with proven efficacy in allergy prevention studies is available until the introduction of complementary feeding. Finally, based on the EAACI guideline, recommendations were made for the prevention of chicken egg allergy by introducing and regularly giving thoroughly heated (e.g., baked or hard-boiled) but not "raw" chicken egg (also no scrambled egg) with the complementary food. The recommendation to introduce peanut in complementary feeding was formulated cautiously for the German-speaking countries: In families who usually consume peanut, the regular administration of peanut-containing foods in age-appropriate form (e.g., peanut butter) with the complementary diet can be considered for the primary prevention of peanut allergy in infants with atopic dermatitis (AD). Before introduction, a clinically relevant peanut allergy must be ruled out, especially in infants with moderate to severe AD. There is still insufficient evidence for an allergy-preventive efficacy of prebiotics or probiotics, vitamin D, or other vitamins in the form of supplements so that recommendations against their supplementation were adopted for the first time in the current guideline. Biodiversity plays an important role in the development of immunological tolerance to environmental and food allergens: there is clear evidence that growing up on a farm is associated with a lower risk of developing asthma and allergic diseases. This is associated with early non-specific immune stimulation due to, among other things, the greater microbial biodiversity of house dust in this habitat. This aspect is also reflected in the recommendations on animal husbandry, on which a differentiated statement was made: In families without a recognizable increased allergy risk, pet keeping with cats or dogs should not generally be restricted. Families with an increased allergy risk or with children with already existing AD should not acquire a new cat - in contrast, however, dog ownership should not be discouraged. Interventions to reduce exposure to dust mite allergens in the home, such as the use of mite allergen-proof mattress covers ("encasings"), should be restricted to patients with already proven specific sensitization against house dust mite allergen. Children born by caesarean section have a slightly increased risk of asthma - this should be taken into account when advising on mode of delivery outside of emergency situations. Recent work also supports the recommendations on air pollutants: Active and passive exposure to tobacco smoke increase the risk of allergies, especially asthma, and should therefore be avoided. Exposure to nitrogen oxides, ozone, and small particles (PM 2.5) is associated with an increased risk, especially for asthma. Therefore, exposure to emissions of nitrogen oxides, ozone, and small particles (PM 2.5) should be kept low. The authors of this guideline are unanimously in favor of enacting appropriate regulations to minimize these air pollutants. There is no evidence that vaccinations increase the risk of allergies, but conversely there is evidence that vaccinations can reduce the risk of allergies. All children, including children at risk, should be vaccinated according to the current recommendations of the national public health institutes, also for reasons of allergy prevention. CONCLUSION The consensus of recommendations in this guideline is based on an extensive evidence base. The update of the guideline enables evidence-based and up-to-date recommendations for the prevention of allergic diseases including asthma and atopic dermatitis.
Collapse
Affiliation(s)
- Matthias V. Kopp
- Airway Research Center North, University of Lübeck, Member of Deutsches Zentrum für Lungenforschung, Universitätsklinik für Kinderheilkunde, Inselspital, Bern, Switzerland
| | - Cathleen Muche-Borowski
- Institut für Allgemeinmedizin, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Abou-Dakn
- Clinic for Gynecology and Obstetrics, St. Joseph-Krankenhaus Berlin-Tempelhof, Germany
| | - Birgit Ahrens
- Children’s Hospital, University Hospital Frankfurt, Germany
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Germany
| | | | | | - Adam Chaker
- HNO-Klinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Monika Cremer
- Ökotrophologin, Journalistin, Idstein/Taunus, Germany
| | - Regina Ensenauer
- Institut für Kinderernährung, Max Rubner-Institut, Karlsruhe, Germany
| | | | - Uwe Gieler
- Klinik für Psychosomatik und Psychotherapie des UKGM, Universitätsklinik, Giessen, Germany
| | - Inga-Marie Hübner
- Arbeitsgemeinschaft Dermatologiche Prävention e.V., Hamburg, Germany
| | | | - Ludger Klimek
- Zentrum für Rhinologie und Allergologie, Wiesbaden, Germany
| | - Berthold V. Koletzko
- Integriertes Sozialpädiatrisches Zentrum, Dr. von Haunerschen Kinderspital, LMU Klinikum der Universität München, Munich, Germany
| | - Sybille Koletzko
- Abteilung für Stoffwechsel und Ernährung, Dr. von Haunersches Kinderspital, LMU Klinikum der Universität München, Munich, Germany
| | - Susanne Lau
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Germany
| | | | - Katja Nemat
- Kinderzentrum Dresden-Friedrichstadt, Dresden, Germany
| | - Eva M.J. Peters
- Klinik für Psychosomatik und Psychotherapie des UKGM, Universitätsklinik, Giessen, Germany
| | - Antonio Pizzulli
- Schwerpunktpraxis für Allergologie und Lungenheilkunde im Kinder- und Jugendalter, Berlin, Germany
| | - Imke Reese
- Ernährungsberatung und -therapie mit Schwerpunkt Allergologie, Munich, Germany
| | | | | | - Bianca Schaub
- Asthma- und Allergieambulanz, Dr. von Haunersches Kinderspital, LMU Klinikum der Universität, Munich, Germany
| | - Sebastian Schmidt
- Allgemeine Pädiatrie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | | | | | - Zsolt Szépfalusi
- Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Vienna, Austria
| | | | | | - Christian Taube
- Klinik für Pneumologie, Ruhrlandklinik, Westdeutsches Lungenzentrum am Universitätsklinikum, Essen, Germany
| | - Valérie Trendelenburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Germany
| | - Regina Treudler
- Klinik für Dermatologie, Venerologie und Allergologie, Leipziger Allergie-Centrum LICA – CAC, Universitätsmedizin, Leipzig, Germany
| | | | - Christian Vogelberg
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität, Dresden, Germany
| | - Martin Wagenmann
- HNO-Klinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Anke Weißenborn
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thomas Werfel
- Klinik für Dermatologie, Allergologie und Venerologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Margitta Worm
- Klinik für Dermatologie, Allergologie und Venerologie, Campus Charité Mitte, Universitätsmedizin Berlin, Berlin, Germany
| | - Helmut Sitter
- Institut für Chirurgische Forschung, Philipps-Universität, Marburg, Germany, and
| | - Eckard Hamelmann
- Kinder-Zentrum Bethel, Evangelisches Klinikum Bethel, Universitätsklinik für Kinder- und Jugendmedizin, Universitätsklinikum OWL, Universität Bielefeld, Bielefeld, Germany
| |
Collapse
|
34
|
Bakshi A, Van Doren A, Maser C, Aubin K, Stewart C, Soileau S, Friedman K, Williams A. Identifying Louisiana communities at the crossroads of environmental and social vulnerability, COVID-19, and asthma. PLoS One 2022; 17:e0264336. [PMID: 35196332 PMCID: PMC8865632 DOI: 10.1371/journal.pone.0264336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/08/2022] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic has disproportionately affected the socially and environmentally vulnerable, including through indirect effects on other health conditions. Asthma is one such condition, which may be exacerbated by both prolonged adverse in-home exposures if quarantining in unhealthy homes and prolonged outdoor exposures if the ambient air quality is unhealthy or hazardous. As both are often the case in Environmental Justice (EJ) communities, here we have analyzed data at the census tract (CT) level for Louisiana to assess any correlation between social and environmental vulnerability, and health issues like COVID-19 and asthma. Higher Social Vulnerability Index (SVI), Particulate Matter less than 2.5 μm in diameter (PM2.5) and Ozone levels were associated with higher rates of cumulative COVID-19 incidence at various time points during the pandemic, as well as higher average annual asthma hospitalization rates and estimated asthma prevalence. Further, cumulative COVID-19 incidence during the first three months of the pandemic was moderately correlated with both asthma hospitalizations and estimated prevalence, suggesting similar underlying factors may be affecting both conditions. Additionally, 137 CTs were identified where social and environmental vulnerabilities co-existed, of which 75 (55%) had high estimated prevalence of asthma. These areas are likely to benefit from asthma outreach that considers both social and environmental risk factors. Fifteen out of the 137 CTs (11%) not only had higher estimated prevalence of asthma but also a high burden of COVID-19. Further research in these areas may help to elucidate any common social determinants of health that underlie both asthma and COVID-19 burdens, as well as better clarify the possible role of the environment as related to the COVID-19 burden in Louisiana.
Collapse
Affiliation(s)
- Arundhati Bakshi
- Section of Environmental Epidemiology and Toxicology, Office of Public Health, Louisiana Department of Health, Baton Rouge, Louisiana, United States of America
| | - Alicia Van Doren
- Section of Environmental Epidemiology and Toxicology, Office of Public Health, Louisiana Department of Health, Baton Rouge, Louisiana, United States of America
| | - Colette Maser
- Section of Environmental Epidemiology and Toxicology, Office of Public Health, Louisiana Department of Health, Baton Rouge, Louisiana, United States of America
| | - Kathleen Aubin
- Section of Environmental Epidemiology and Toxicology, Office of Public Health, Louisiana Department of Health, Baton Rouge, Louisiana, United States of America
| | - Collette Stewart
- Section of Environmental Epidemiology and Toxicology, Office of Public Health, Louisiana Department of Health, Baton Rouge, Louisiana, United States of America
| | - Shannon Soileau
- Section of Environmental Epidemiology and Toxicology, Office of Public Health, Louisiana Department of Health, Baton Rouge, Louisiana, United States of America
| | - Kate Friedman
- Section of Environmental Epidemiology and Toxicology, Office of Public Health, Louisiana Department of Health, Baton Rouge, Louisiana, United States of America
| | - Alexis Williams
- Section of Environmental Epidemiology and Toxicology, Office of Public Health, Louisiana Department of Health, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
35
|
Espinosa J, Raja S. Social Disparities in Benign Lung Diseases. Thorac Surg Clin 2022; 32:43-49. [PMID: 34801194 PMCID: PMC9760325 DOI: 10.1016/j.thorsurg.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The many socioeconomic disparities in the myriad of diagnoses that make up benign lung diseases are unfortunately a global issue that was most recently highlighted by the COVID-19 pandemic of 2020. In this chapter, we will be reviewing the socioeconomic disparities in benign lung disease from both a United States perspective as well as a global perspective. We will cover the spectrum of infectious, obstructive, and restrictive lung disease and review the evidence on how social disparities affect these populations and their access to medical care.
Collapse
Affiliation(s)
- Jairo Espinosa
- Department of Thoracic Surgery, Temple University Hospital, 3401 N. Broad Street, Suite C501, Parkinson Pavilion, Philadelphia, PA 19140, USA.
| | - Siva Raja
- Department of Thoracic Surgery, Cleveland Clinic 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|
36
|
Fishe J, Zheng Y, Lyu T, Bian J, Hu H. Environmental effects on acute exacerbations of respiratory diseases: A real-world big data study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150352. [PMID: 34555607 PMCID: PMC8627495 DOI: 10.1016/j.scitotenv.2021.150352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND The effects of weather periods, race/ethnicity, and sex on environmental triggers for respiratory exacerbations are not well understood. This study linked the OneFlorida network (~15 million patients) with an external exposome database to analyze environmental triggers for asthma, bronchitis, and COPD exacerbations while accounting for seasonality, sex, and race/ethnicity. METHODS This is a case-crossover study of OneFlorida database from 2012 to 2017 examining associations of asthma, bronchitis, and COPD exacerbations with exposures to heat index, PM 2.5 and O 3. We spatiotemporally linked exposures using patients' residential addresses to generate average exposures during hazard and control periods, with each case serving as its own control. We considered age, sex, race/ethnicity, and neighborhood deprivation index as potential effect modifiers in conditional logistic regression models. RESULTS A total of 1,148,506 exacerbations among 533,446 patients were included. Across all three conditions, hotter heat indices conferred increasing exacerbation odds, except during November to March, where the opposite was seen. There were significant differences when stratified by race/ethnicity (e.g., for asthma in April, May, and October, heat index quartile 4, odds were 1.49 (95% confidence interval (CI) 1.42-1.57) for Non-Hispanic Blacks and 2.04 (95% CI 1.92-2.17) for Hispanics compared to 1.27 (95% CI 1.19-1.36) for Non-Hispanic Whites). Pediatric patients' odds of asthma and bronchitis exacerbations were significantly lower than adults in certain circumstances (e.g., for asthma during June - September, pediatric odds 0.71 (95% CI 0.68-0.74) and adult odds 0.82 (95% CI 0.79-0.85) for the highest quartile of PM 2.5). CONCLUSION This study of acute exacerbations of asthma, bronchitis, and COPD found exacerbation risk after exposure to heat index, PM 2.5 and O 3 varies by weather period, age, and race/ethnicity. Future work can build upon these results to alert vulnerable populations to exacerbation triggers.
Collapse
Affiliation(s)
- Jennifer Fishe
- Department of Emergency Medicine, University of Florida College of Medicine - Jacksonville, United States of America; Center for Data Solutions, University of Florida College of Medicine - Jacksonville, United States of America.
| | - Yi Zheng
- Department of Epidemiology, University of Florida College of Medicine & College of Public Health and Health Professions, United States of America
| | - Tianchen Lyu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Hui Hu
- Department of Epidemiology, University of Florida College of Medicine & College of Public Health and Health Professions, United States of America
| |
Collapse
|
37
|
Herrera-Luis E, Li A, Mak ACY, Perez-Garcia J, Elhawary JR, Oh SS, Hu D, Eng C, Keys KL, Huntsman S, Beckman KB, Borrell LN, Rodriguez-Santana J, Burchard EG, Pino-Yanes M. Epigenome-wide association study of lung function in Latino children and youth with asthma. Clin Epigenetics 2022; 14:9. [PMID: 35033200 PMCID: PMC8760660 DOI: 10.1186/s13148-022-01227-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
DNA methylation studies have associated methylation levels at different CpG sites or genomic regions with lung function. Moreover, genetic ancestry has been associated with lung function in Latinos. However, no epigenome-wide association study (EWAS) of lung function has been performed in this population. Here, we aimed to identify DNA methylation patterns associated with lung function in pediatric asthma among Latinos.
Results
We conducted an EWAS in whole blood from 250 Puerto Rican and 148 Mexican American children and young adults with asthma. A total of five CpGs exceeded the genome-wide significance threshold of p = 1.17 × 10−7 in the combined analyses from Puerto Ricans and Mexican Americans: cg06035600 (MAP3K6, p = 6.13 × 10−8) showed significant association with pre-bronchodilator Tiffeneau–Pinelli index, the probes cg00914963 (TBC1D16, p = 1.04 × 10−7), cg16405908 (MRGPRE, p = 2.05 × 10−8), and cg07428101 (MUC2, p = 5.02 × 10−9) were associated with post-bronchodilator forced vital capacity (FVC), and cg20515679 (KCNJ6) with post-bronchodilator Tiffeneau–Pinelli index (p = 1.13 × 10−8). However, these markers did not show significant associations in publicly available data from Europeans (p > 0.05). A methylation quantitative trait loci analysis revealed that methylation levels at these CpG sites were regulated by genetic variation in Latinos and the Biobank-based Integrative Omics Studies (BIOS) consortium. Additionally, two differentially methylated regions in REXOC and AURKC were associated with pre-bronchodilator Tiffeneau–Pinelli index (adjusted p < 0.05) in Puerto Ricans and Mexican Americans. Moreover, we replicated some of the previous differentially methylated signals associated with lung function in non-Latino populations.
Conclusions
We replicated previous associations of epigenetic markers with lung function in whole blood and identified novel population-specific associations shared among Latino subgroups.
Collapse
|
38
|
Abstract
The spatiotemporal patterns of ground level ozone (O3) concentrations in the New York City (NYC) metropolitan region for the 2007–2017 period were examined conjointly with local emissions of O3 precursors and the frequency of wildfires. Daily 8-h and 1-h O3 and nitric oxide (NO) concentrations were retrieved from the US Environmental Protection Agency (EPA) Air Data. Annual emission inventories for 2008 and 2017 were acquired from EPA National Emissions Inventory (NEI). The number and area burnt by natural and human-ignited wildfires were acquired from the National Interagency Fire Center (NIFC). The highest daily 8-h max O3 concentrations varied from 90 to 111 parts per billion volume (ppbv) with the highest concentrations measured perimetrically to NYC urban agglomeration. The monthly 8-h max O3 levels have been declining for most of the peri-urban sites but increasing (from +0.18 to +1.39 ppbv/year) for sites within the urban agglomeration. Slightly higher O3 concentrations were measured during weekend than those measured during the weekdays in urban sites probably due to reduced O3 titration by NO. Significant reductions of locally emitted anthropogenic nitrogen oxides (NOx) and volatile organic compounds (VOCs) may have triggered the transition from VOC-limited to NOX-limited conditions, with downwind VOCs sources being critically important. Strong correlations between the monthly 8-h max O3 concentrations and wildfires in Eastern US were computed. More and destructive wildfires in the region were ignited by lightning for years with moderate and strong La Niña conditions. These findings indicate that climate change may counterbalance current and future gains on O3 precursor’s reductions by amending the VOCs-to-NOx balance.
Collapse
|
39
|
Air Quality Index and Emergency Department Visits and Hospitalizations for Childhood Asthma. Ann Am Thorac Soc 2022; 19:1139-1148. [DOI: 10.1513/annalsats.202105-539oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Grisales-Romero H, Piñeros-Jiménez JG, Nieto E, Porras-Cataño S, Montealegre N, González D, Ospina D. Local attributable burden disease to PM 2.5 ambient air pollution in Medellín, Colombia, 2010-2016. F1000Res 2021; 10:428. [PMID: 34745558 PMCID: PMC8564742 DOI: 10.12688/f1000research.52025.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Exposure to 2.5-micron diameter air pollutants (PM
2.5) has been associated with an increased risk of illness and death worldwide; however, in Latin American health impacts assessment of this risk factor is scarce. Medellín is one of the most polluted cities in the region, with a population growth rate that is twice as high as that of other Colombian cities, which implies a growing population at risk. Methods: A descriptive study of the disease burden was carried out using the city as the unit of observation. Health events were selected based on epidemiologic evidence and the availability of the population attributable fraction associated with PM
2.5. The mortality records were taken from the module of deceased of the Single Registry of Affiliates of the Health System; the morbidity records were taken from the Individual Health Services Registries. For the estimation of the burden of disease, the current Global Burden of Disease guidelines were followed. Results: Attributable disability-adjusted life years to exposure to ambient PM
2.5 pollution (DALYs
PM2.5) constituted 13.8% of total burden of the city. Males showed the greatest loss of DALYs
PM2.5 due to acute events, while in women the greatest loss was due to chronic events. Ischemic heart disease, chronic diseases of the lower respiratory tract, and influenza and pneumonia were the events that contributed the most to DALYs
PM2.5. 71.4% of the DALYs
PM2.5 corresponded to mortality, mainly in the population over 65 years of age. Regarding attributable morbidity, acute events were more prevalent in both sexes, especially due to respiratory diseases Conclusion: Premature death among the elderly population has the greatest weight on burden of disease attributable to ambient PM
2.5 pollution, mainly due to respiratory and cardiovascular diseases, without significant differences according to gender.
Collapse
|
41
|
Martinez A, de la Rosa R, Mujahid M, Thakur N. Structural racism and its pathways to asthma and atopic dermatitis. J Allergy Clin Immunol 2021; 148:1112-1120. [PMID: 34743832 DOI: 10.1016/j.jaci.2021.09.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022]
Abstract
Black, Latinx, and Indigenous people in the United States experience a disproportionate burden of asthma and atopic dermatitis. The study of these disease disparities has focused on proximal socioenvironmental exposures and on the biomechanistic (including genetic) differences between racial and ethnic groups. Although biomedical research in allergy and immunology stands to benefit from the inclusion of diverse study populations, the narrow focus on biologic mechanisms disregards the complexity of interactions across biologic and structural factors, including the effects of structural racism. Structural racism is the totality of ways in which society fosters discrimination by creating and reinforcing inequitable systems through intentional policies and practices sanctioned by government and institutions. It is embedded across multiple levels, including the economic, educational, health care, and judicial systems, which are manifested in inequity in the physical and social environment. In this review, we present a conceptual framework and pull from the literature to demonstrate how structural racism is a root cause of atopic disease disparities by way of residential segregation, socioeconomic position, and mass incarceration, which may lead to aberrations in the innate and adaptive immune response and the augmentation of physiologic stress responses, contributing to a disproportionate disease burden for racial and ethnic populations.
Collapse
Affiliation(s)
- Adali Martinez
- School of Medicine, the University of California San Francisco, San Francisco, Calif
| | | | - Mahasin Mujahid
- School of Public Health, University of California Berkeley, Berkeley, Calif
| | - Neeta Thakur
- School of Medicine, the University of California San Francisco, San Francisco, Calif.
| |
Collapse
|
42
|
Grisales-Romero H, Piñeros-Jiménez JG, Nieto E, Porras-Cataño S, Montealegre N, González D, Ospina D. Local attributable burden disease to PM 2.5 ambient air pollution in Medellín, Colombia, 2010-2016. F1000Res 2021; 10:428. [PMID: 34745558 DOI: 10.12688/f1000research.52025.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Exposure to 2.5-micron diameter air pollutants (PM 2.5) has been associated with an increased risk of illness and death worldwide; however, in Latin American health impacts assessment of this risk factor is scarce. Medellín is one of the most polluted cities in the region, with a population growth rate that is twice as high as that of other Colombian cities, which implies a growing population at risk. Methods: A descriptive study of the disease burden was carried out using the city as the unit of observation. Health events were selected based on epidemiologic evidence and the availability of the population attributable fraction associated with PM 2.5. The mortality records were taken from the module of deceased of the Single Registry of Affiliates of the Health System; the morbidity records were taken from the Individual Health Services Registries. For the estimation of the burden of disease, the current Global Burden of Disease guidelines were followed. Results: Attributable disability-adjusted life years to exposure to ambient PM 2.5 pollution (DALYs PM2.5) constituted 13.8% of total burden of the city. Males showed the greatest loss of DALYs PM2.5 due to acute events, while in women the greatest loss was due to chronic events. Ischemic heart disease, chronic diseases of the lower respiratory tract, and influenza and pneumonia were the events that contributed the most to DALYs PM2.5. 71.4% of the DALYs PM2.5 corresponded to mortality, mainly in the population over 65 years of age. Regarding attributable morbidity, acute events were more prevalent in both sexes, especially due to respiratory diseases Conclusion: Premature death among the elderly population has the greatest weight on burden of disease attributable to ambient PM 2.5 pollution, mainly due to respiratory and cardiovascular diseases, without significant differences according to gender.
Collapse
|
43
|
Espuela-Ortiz A, Herrera-Luis E, Lorenzo-Díaz F, Hu D, Eng C, Villar J, Rodriguez-Santana JR, Burchard EG, Pino-Yanes M. Role of Sex on the Genetic Susceptibility to Childhood Asthma in Latinos and African Americans. J Pers Med 2021; 11:1140. [PMID: 34834492 PMCID: PMC8625344 DOI: 10.3390/jpm11111140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 01/08/2023] Open
Abstract
Asthma is a respiratory disease whose prevalence changes throughout the lifespan and differs by sex, being more prevalent in males during childhood and in females after puberty. In this study, we assessed the influence of sex on the genetic susceptibility to childhood asthma in admixed populations. Sex-interaction and sex-stratified genome-wide association studies (GWAS) were performed in 4291 Latinos and 1730 African Americans separately, and results were meta-analyzed. Genome-wide (p ≤ 9.35 × 10-8) and suggestive (p ≤ 1.87 × 10-6) population-specific significance thresholds were calculated based on 1000 Genomes Project data. Additionally, protein quantitative trait locus (pQTL) information was gathered for the suggestively associated variants, and enrichment analyses of the proteins identified were carried out. Four independent loci showed interaction with sex at a suggestive level. The stratified GWAS highlighted the 17q12-21 asthma locus as a contributor to asthma susceptibility in both sexes but reached genome-wide significance only in females (p-females < 9.2 × 10-8; p-males < 1.25 × 10-2). Conversely, genetic variants upstream of ligand-dependent nuclear receptor corepressor-like gene (LCORL), previously involved in height determination and spermatogenesis, were associated with asthma only in males (minimum p = 5.31 × 10-8 for rs4593128). Enrichment analyses revealed an overrepresentation of processes related to the immune system and highlighted differences between sexes. In conclusion, we identified sex-specific polymorphisms that could contribute to the differences in the prevalence of childhood asthma between males and females.
Collapse
Grants
- SAF2017-83417R European Regional Development Fund from the European Union
- P60MD006902, R01MD010443, and R56MD013312 NIMHD NIH HHS
- SAF2017-83417R State Research Agency
- M-ULL MICIU/ULL
- Amos Medical Faculty Development Program Robert Wood Johnson Foundation
- R01ES015794 NIEHS NIH HHS
- R21ES24844 NIEHS NIH HHS
- R01HL128439, R01HL135156, R01HL141992, and R01HL141845 National Heart Lung and Blood Institute
- RL5 GM118984 NIGMS NIH HHS
- RYC-2015-17205 Spanish Ministry of Science, Innovation, and Universities
- American Asthma Foundation
- R01HL117004 and X01HL134589 National Heart Lung and Blood Institute
- SAF2017-83417R Spanish Ministry of Science, Innovation, and Universities
- Distinguished Professorship in Pharmaceutical Sciences II Harry Wm. and Diana V. Hind
- U01HG009080 NHGRI NIH HHS
- 24RT-0025 and 27IR-0030 Tobacco-Related Disease Research Program
- PRE2018-083837 Spanish Ministry of Science, Innovation, and Universities
- UL1 TR001872 NCATS NIH HHS
- RL5GM118984 NIGMS NIH HHS
- Sandler Foundation
Collapse
Affiliation(s)
- Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.E.-O.); (E.H.-L.); (F.L.-D.)
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.E.-O.); (E.H.-L.); (F.L.-D.)
| | - Fabián Lorenzo-Díaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.E.-O.); (E.H.-L.); (F.L.-D.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (D.H.); (C.E.); (E.G.B.)
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (D.H.); (C.E.); (E.G.B.)
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | | | - Esteban G. Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (D.H.); (C.E.); (E.G.B.)
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - María Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.E.-O.); (E.H.-L.); (F.L.-D.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
44
|
Wohlford EM, Huang PF, Elhawary JR, Millette LA, Contreras MG, Witonsky J, Holweg CTJ, Oh SS, Lee C, Merenda C, Rabin RL, Araojo R, Mak ACY, Eng CS, Hu D, Huntsman S, LeNoir MA, Rodríguez-Santana JR, Borrell LN, Burchard EG. Racial/ethnic differences in eligibility for asthma biologics among pediatric populations. J Allergy Clin Immunol 2021; 148:1324-1331.e12. [PMID: 34536416 PMCID: PMC9211042 DOI: 10.1016/j.jaci.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Asthma is a heterogeneous disease. Clinical blood parameters differ by race/ethnicity and are used to distinguish asthma subtypes and inform therapies. Differences in subtypes may explain population-specific trends in asthma outcomes. However, these differences in racial/ethnic minority pediatric populations are unclear. OBJECTIVE We investigated the association of blood parameters and asthma subtypes with asthma outcomes and examined population-specific eligibility for biologic therapies in minority pediatric populations. METHODS Using data from 2 asthma case-control studies of pediatric minority populations, we performed case-control (N = 3738) and case-only (N = 2743) logistic regressions to quantify the association of blood parameters and asthma subtypes with asthma outcomes. Heterogeneity of these associations was tested using an interaction term between race/ethnicity and each exposure. Differences in therapeutic eligibility were investigated using chi-square tests. RESULTS Race/ethnicity modified the association between total IgE and asthma exacerbations. Elevated IgE level was associated with worse asthma outcomes in Puerto Ricans. Allergic asthma was associated with worse outcomes in Mexican Americans, whereas eosinophilic asthma was associated with worse outcomes in Puerto Ricans. A lower proportion of Puerto Ricans met dosing criteria for allergic asthma-directed biologic therapy than other groups. A higher proportion of Puerto Ricans qualified for eosinophilic asthma-directed biologic therapy than African Americans. CONCLUSIONS We found population-specific associations between blood parameters and asthma subtypes with asthma outcomes. Our findings suggest that eligibility for asthma biologic therapies differs across pediatric racial/ethnic populations. These findings call for more studies in diverse populations for equitable treatment of minority patients with asthma.
Collapse
Affiliation(s)
- Eric M Wohlford
- Division of Pediatric Allergy and Immunology, University of California San Francisco, San Francisco, Calif; Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Peter F Huang
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Jennifer R Elhawary
- Department of Medicine, University of California San Francisco, San Francisco, Calif.
| | | | - Maria G Contreras
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Jonathan Witonsky
- Division of Pediatric Allergy and Immunology, University of California San Francisco, San Francisco, Calif; Department of Medicine, University of California San Francisco, San Francisco, Calif
| | | | - Sam S Oh
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Christine Lee
- Office of Minority Health and Health Equity, US Food and Drug Administration, Silver Spring, Md
| | - Christine Merenda
- Office of Minority Health and Health Equity, US Food and Drug Administration, Silver Spring, Md
| | - Ronald L Rabin
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Md
| | - Richardae Araojo
- Office of Minority Health and Health Equity, US Food and Drug Administration, Silver Spring, Md
| | - Angel C Y Mak
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Celeste S Eng
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Scott Huntsman
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | | | | | - Luisa N Borrell
- Department of Epidemiology & Biostatistics, Graduate School of Public Health & Health Policy, City University of New York, New York, NY
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, Calif
| |
Collapse
|
45
|
Castellanos CA, Ren X, Gonzalez SL, Li HK, Schroeder AW, Liang HE, Laidlaw BJ, Hu D, Mak AC, Eng C, Rodríguez-Santana JR, LeNoir M, Yan Q, Celedón JC, Burchard EG, Zamvil SS, Ishido S, Locksley RM, Cyster JG, Huang X, Shin JS. Lymph node-resident dendritic cells drive T H2 cell development involving MARCH1. Sci Immunol 2021; 6:eabh0707. [PMID: 34652961 PMCID: PMC8736284 DOI: 10.1126/sciimmunol.abh0707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 2 T helper (TH2) cells are protective against parasitic worm infections but also aggravate allergic inflammation. Although the role of dendritic cells (DCs) in TH2 cell differentiation is well established, the underlying mechanisms are largely unknown. Here, we show that DC induction of TH2 cells depends on membrane-associated RING-CH-1 (MARCH1) ubiquitin ligase. The pro-TH2 effect of MARCH1 relied on lymph node (LN)–resident DCs, which triggered T cell receptor (TCR) signaling and induced GATA-3 expression from naïve CD4+ T cells independent of tissue-driven migratory DCs. Mice with mutations in the ubiquitin acceptor sites of MHCII and CD86, the two substrates of MARCH1, failed to develop TH2 cells. These findings suggest that TH2 cell development depends on ubiquitin-mediated clearance of antigen-presenting and costimulatory molecules by LN-resident DCs and consequent control of TCR signaling.
Collapse
Affiliation(s)
- Carlos A. Castellanos
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xin Ren
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven Lomeli Gonzalez
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hong Kun Li
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew W. Schroeder
- Department of Pulmonology, Genomics CoLabs, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hong-Erh Liang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian J. Laidlaw
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Angel C.Y. Mak
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott S. Zamvil
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Richard M. Locksley
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason G. Cyster
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaozhu Huang
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
46
|
Stilp AM, Emery LS, Broome JG, Buth EJ, Khan AT, Laurie CA, Wang FF, Wong Q, Chen D, D’Augustine CM, Heard-Costa NL, Hohensee CR, Johnson WC, Juarez LD, Liu J, Mutalik KM, Raffield LM, Wiggins KL, de Vries PS, Kelly TN, Kooperberg C, Natarajan P, Peloso GM, Peyser PA, Reiner AP, Arnett DK, Aslibekyan S, Barnes KC, Bielak LF, Bis JC, Cade BE, Chen MH, Correa A, Cupples LA, de Andrade M, Ellinor PT, Fornage M, Franceschini N, Gan W, Ganesh SK, Graffelman J, Grove ML, Guo X, Hawley NL, Hsu WL, Jackson RD, Jaquish CE, Johnson AD, Kardia SLR, Kelly S, Lee J, Mathias RA, McGarvey ST, Mitchell BD, Montasser ME, Morrison AC, North KE, Nouraie SM, Oelsner EC, Pankratz N, Rich SS, Rotter JI, Smith JA, Taylor KD, Vasan RS, Weeks DE, Weiss ST, Wilson CG, Yanek LR, Psaty BM, Heckbert SR, Laurie CC. A System for Phenotype Harmonization in the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine (TOPMed) Program. Am J Epidemiol 2021; 190:1977-1992. [PMID: 33861317 PMCID: PMC8485147 DOI: 10.1093/aje/kwab115] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
Genotype-phenotype association studies often combine phenotype data from multiple studies to increase statistical power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data-set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data-sharing mechanisms. This system was developed for the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program, which is generating genomic and other -omics data for more than 80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants (recruited in 1948-2012) from up to 17 studies per phenotype. Here we discuss challenges in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include 1) the software code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify, or extend these harmonizations to additional studies, and 2) the results of labeling thousands of phenotype variables with controlled vocabulary terms.
Collapse
Affiliation(s)
- Adrienne M Stilp
- Correspondence to Dr. Adrienne Stilp, Department of Biostatistics, School of Public Health, University of Washington, Box 359461, Seattle, WA 98195 (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
LTA4H rs2660845 association with montelukast response in early and late-onset asthma. PLoS One 2021; 16:e0257396. [PMID: 34550981 PMCID: PMC8457475 DOI: 10.1371/journal.pone.0257396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Leukotrienes play a central pathophysiological role in both paediatric and adult asthma. However, 35% to 78% of asthmatics do not respond to leukotriene inhibitors. In this study we tested the role of the LTA4H regulatory variant rs2660845 and age of asthma onset in response to montelukast in ethnically diverse populations. We identified and genotyped 3,594 asthma patients treated with montelukast (2,514 late-onset and 1,080 early-onset) from seven cohorts (UKBiobank, GoSHARE, BREATHE, Tayside RCT, PAGES, GALA II and SAGE). Individuals under montelukast treatment experiencing at least one exacerbation in a 12-month period were compared against individuals with no exacerbation, using logistic regression for each cohort and meta-analysis. While no significant association was found with European late-onset subjects, a meta-analysis of 523 early-onset individuals from European ancestry demonstrated the odds of experiencing asthma exacerbations by carriers of at least one G allele, despite montelukast treatment, were increased (odds-ratio = 2.92, 95%confidence interval (CI): 1.04–8.18, I2 = 62%, p = 0.0412) compared to those in the AA group. When meta-analysing with other ethnic groups, no significant increased risk of asthma exacerbations was found (OR = 1.60, 95% CI: 0.61–4.19, I2 = 85%, p = 0.342). Our study demonstrates that genetic variation in LTA4H, together with timing of asthma onset, may contribute to variability in montelukast response. European individuals with early-onset (≤18y) carrying at least one copy of rs2660845 have increased odd of exacerbation under montelukast treatment, presumably due to the up-regulation of LTA4H activity. These findings support a precision medicine approach for the treatment of asthma with montelukast.
Collapse
|
48
|
Karimi L, Vijverberg SJ, Engelkes M, Hernandez-Pacheco N, Farzan N, Soares P, Pino-Yanes M, Jorgensen AL, Eng C, Mukhopadhyay S, Schieck M, Kabesch M, Burchard EG, Chew FT, Sio YY, Potočnik U, Gorenjak M, Hawcutt DB, Palmer CN, Turner S, Janssens HM, Maitland-van der Zee AH, Verhamme KM. ADRB2 haplotypes and asthma exacerbations in children and young adults: An individual participant data meta-analysis. Clin Exp Allergy 2021; 51:1157-1171. [PMID: 34128573 PMCID: PMC8503671 DOI: 10.1111/cea.13965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND The polymorphism Arg16 in β2 -adrenergic receptor (ADRB2) gene has been associated with an increased risk of exacerbations in asthmatic children treated with long-acting β2 -agonists (LABA). However, it remains unclear whether this increased risk is mainly attributed to this single variant or the combined effect of the haplotypes of polymorphisms at codons 16 and 27. OBJECTIVE We assessed whether the haplotype analysis could explain the association between the polymorphisms at codons 16 (Arg16Gly) and 27 (Gln27Glu) in ADRB2 and risk of asthma exacerbations in patients treated with inhaled corticosteroids (ICS) plus LABA. METHODS The study was undertaken using data from 10 independent studies (n = 5903) participating in the multi-ethnic Pharmacogenomics in Childhood Asthma (PiCA) consortium. Asthma exacerbations were defined as asthma-related use of oral corticosteroids or hospitalizations/emergency department visits in the past 6 or 12 months prior to the study visit/enrolment. The association between the haplotypes and the risk of asthma exacerbations was performed per study using haplo.stats package adjusted for age and sex. Results were meta-analysed using the inverse variance weighting method assuming random-effects. RESULTS In subjects treated with ICS and LABA (n = 832, age: 3-21 years), Arg16/Gln27 versus Gly16/Glu27 (OR: 1.40, 95% CI: 1.05-1.87, I2 = 0.0%) and Arg16/Gln27 versus Gly16/Gln27 (OR: 1.43, 95% CI: 1.05-1.94, I2 = 0.0%), but not Gly16/Gln27 versus Gly16/Glu27 (OR: 0.99, 95% CI: 0.71-1.39, I2 = 0.0%), were significantly associated with an increased risk of asthma exacerbations. The sensitivity analyses indicated no significant association between the ADRB2 haplotypes and asthma exacerbations in the other treatment categories, namely as-required short-acting β2 -agonists (n = 973), ICS monotherapy (n = 2623), ICS plus leukotriene receptor antagonists (LTRA; n = 338), or ICS plus LABA plus LTRA (n = 686). CONCLUSION AND CLINICAL RELEVANCE The ADRB2 Arg16 haplotype, presumably mainly driven by the Arg16, increased the risk of asthma exacerbations in patients treated with ICS plus LABA. This finding could be beneficial in ADRB2 genotype-guided treatment which might improve clinical outcomes in asthmatic patients.
Collapse
Affiliation(s)
- Leila Karimi
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma Children’s Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Marjolein Engelkes
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Niloufar Farzan
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Patricia Soares
- Academic department of Pediatrics, Brighton & Sussex Medical School, Royal Alexandra Children’s Hospital, Brighton, United Kingdom
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Andrea L. Jorgensen
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Somnath Mukhopadhyay
- Academic department of Pediatrics, Brighton & Sussex Medical School, Royal Alexandra Children’s Hospital, Brighton, United Kingdom
| | - Maximilian Schieck
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Regensburg, Germany
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Regensburg, Germany
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States
| | - Fook Tim Chew
- Department of Biological Science, National University of Singapore, Singapore
| | - Yang Yie Sio
- Department of Biological Science, National University of Singapore, Singapore
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Daniel B. Hawcutt
- University of Liverpool and Alder Hey Children’s Hospital, members of Liverpool Health Partners, Liverpool, UK
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children’s Hospital, Liverpool, UK
| | - Colin N. Palmer
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Hettie M. Janssens
- Department of Pediatrics/division Respiratory Medicine and Allergology Erasmus MC/Sophia Children’s Hospital, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Anke H. Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma Children’s Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Katia M.C. Verhamme
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Bioanalysis, Ghent University, Ghent, Belgium
| |
Collapse
|
49
|
Long- and Short-Term Exposures to PM 10 Can Shorten Telomere Length in Individuals Affected by Overweight and Obesity. Life (Basel) 2021; 11:life11080808. [PMID: 34440552 PMCID: PMC8400348 DOI: 10.3390/life11080808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 11/16/2022] Open
Abstract
Reduced telomere length (TL) has been associated with increased risk of age-related diseases, most likely through oxidative stress and inflammation, which have also been claimed as mechanisms underlying health effects of air pollution exposure. We aimed to verify whether exposure to particulate matter with diameter ≤10 µm (PM10) affects TL. We recruited 1792 participants with overweight/obesity in Milan (Italy) in 2010-2015 who completed a structured questionnaire on sociodemographic data, gave a blood sample for TL measurement by real-time PCR, and were assigned air pollution and meteorological data of their residential address. In multivariate mixed-effects linear models (with a random intercept on PCR plate), we observed a -0.51% change in TL (95% confidence interval (CI): -0.98; -0.05)) per 10 µg/m3 increase in PM10 at the day of recruitment. A similar decreasing trend in TL was observed up to two weeks before withdrawal, with percentage changes as low as -1.53% (average exposure of the 12 days before recruitment). Mean annual exposure to PM10 was associated with -2.57% TL reduction (95%CI: -5.06; -0.08). By showing consistent associations between short- and long-term PM10 exposures and reduced TL, our findings shed light on the potential mechanisms responsible for the excess of age-related diseases associated with air pollution exposure.
Collapse
|
50
|
Defining pediatric asthma: phenotypes to endotypes and beyond. Pediatr Res 2021; 90:45-51. [PMID: 33173175 PMCID: PMC8107196 DOI: 10.1038/s41390-020-01231-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/26/2020] [Accepted: 10/03/2020] [Indexed: 01/19/2023]
Abstract
Asthma is the most common chronic pediatric lung disease that has traditionally been defined as a syndrome of airway inflammation characterized by clinical symptoms of cough and wheeze. Highlighting the complex and heterogeneous nature of asthma, this review summarizes recent advances in asthma classification that are based on pathobiology, and thereby directly addresses limitations of existent definitions of asthma. By reviewing and contrasting clinical and mechanistic features of adult and childhood asthma, the review summarizes key biomarkers that distinguish childhood asthma subtypes. While atopy and its severity are important features of childhood asthma, there is evidence to support the existence of a childhood asthma endotype distinct from the atopic endotype. Although biomarkers of non-atopic asthma are an area of future research, we summarize a clinical approach that includes existing measures of airway-specific and systemic measures of atopy, co-existing morbidities, and disease severity and control, in the definition of childhood asthma, to empower health care providers to better characterize asthma disease burden in children. Identification of biomarkers of non-atopic asthma and the contribution of genetics and epigenetics to pediatric asthma burden remains a research need, which can potentially allow delivery of precision medicine to pediatric asthma. IMPACT: This review highlights asthma as a complex and heterogeneous disease and discusses recent advances in the understanding of the pathobiology of asthma to demonstrate the need for a more nuanced definitions of asthma. We review current knowledge of asthma phenotypes and endotypes and put forth an approach to endotyping asthma that may be useful for defining asthma for clinical care as well as for future research studies in the realm of personalized medicine for asthma.
Collapse
|