1
|
S. aureus Evades Macrophage Killing through NLRP3-Dependent Effects on Mitochondrial Trafficking. Cell Rep 2019; 22:2431-2441. [PMID: 29490278 PMCID: PMC7160668 DOI: 10.1016/j.celrep.2018.02.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 01/05/2018] [Accepted: 02/06/2018] [Indexed: 12/28/2022] Open
Abstract
Clinical severity of Staphylococcus aureus respiratory infection correlates with alpha toxin (AT) expression. AT activates the NLRP3 inflammasome; deletion of Nlrp3, or AT neutralization, protects mice from lethal S. aureus pneumonia. We tested the hypothesis that this protection is not due to a reduction in inflammasome-dependent cytokines (IL-1β/IL-18) but increased bactericidal function of macrophages. In vivo, neutralization of AT or NLRP3 improved bacterial clearance and survival, while blocking IL-1β/IL-18 did not. Primary human monocytes were used in vitro to determine the mechanism through which NLRP3 alters bacterial killing. In cells treated with small interfering RNA (siRNA) targeting NLRP3 or infected with AT-null S. aureus, mitochondria co-localize with bacterial-containing phagosomes. Mitochondrial engagement activates caspase-1, a process dependent on complex II of the electron transport chain, near the phagosome, promoting its acidification. These data demonstrate a mechanism utilized by S. aureus to sequester itself from antimicrobial processes within the cell.
Collapse
|
2
|
Liu J, Cai M, Yan H, Fu J, Wu G, Zhao Z, Zhao Y, Wang Y, Sun Y, You Y, Lin L, Huang J, Huang R, Zeng J. Yunnan Baiyao reduces hospital-acquired pressure ulcers via suppressing virulence gene expression and biofilm formation of Staphylococcus aureus. Int J Med Sci 2019; 16:1078-1088. [PMID: 31523169 PMCID: PMC6743274 DOI: 10.7150/ijms.33723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/17/2019] [Indexed: 01/28/2023] Open
Abstract
Yunnan Baiyao (YB) as a kind of famous Chinese herbal medicine, possessed hemostatic, invigorating the circulation of blood, and anti-inflammatory effects. Identifying strategies to protect patients at risk for hospital-acquired pressure ulcers (HAPU) is essential. Herein, our results showed that YB treatment can effectively reduce the acne wound area and improve efficacy in a comparative study of 60 cases HAPU patients with S. aureus positive of acne wound pathogens. Furthermore, YB inhibited HIa expression and suppressed accessory gene regulator (agr) system controlled by regulatory RNA II and RNA III molecule using pALC1740, pALC1742 and pALC1743 S. aureus strain linked to gfpuvr reporter gene. Moreover, YB downregulated cao mRNA expression and inhibited coagulase activity by RT-PCR, slide and tube coagulase test. Additionally, YB downregulated seb, sec, sed, and tsst-1 mRNA expression to suppress enterotoxin and tsst-1 secretion and adhesion function related genes sarA, icaA, and cidA mRNA expression. Taken together, the data suggest that YB may reduce HAPU via suppressing virulence gene expression and biofilm formation of S. aureus.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Mufa Cai
- Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Huimin Yan
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Guocai Wu
- Department of Blood Internal Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zuguo Zhao
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yi Zhao
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yan Wang
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongke You
- School of Chinese Medicine, The University of Hongkong, Pokfulam, Hongkong
| | - Liyao Lin
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Juan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|