Salaberria C, Chávez-Zichinelli CA, López-Rull I, Romano MC, Schondube JE. Physiological status of House Sparrows (Passer domesticus) along an ozone pollution gradient.
ECOTOXICOLOGY (LONDON, ENGLAND) 2023;
32:261-272. [PMID:
36810751 PMCID:
PMC10008774 DOI:
10.1007/s10646-023-02632-z]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Mexico City is one of the most polluted cities in the world, and one in which air contamination is considered a public health threat. Numerous studies have related high concentrations of particulate matter and ozone to several respiratory and cardiovascular diseases and a higher human mortality risk. However, almost all of those studies have focused on human health outcomes, and the effects of anthropogenic air pollution on wildlife species is still poorly understood. In this study, we investigated the impacts of air pollution in the Mexico City Metropolitan Area (MCMA) on house sparrows (Passer domesticus). We assessed two physiological responses commonly used as biomarkers: stress response (the corticosterone concentration in feathers), and constitutive innate immune response (the concentration of both natural antibodies and lytic complement proteins), which are non-invasive techniques. We found a negative relationship between the ozone concentration and the natural antibodies response (p = 0.003). However, no relationship was found between the ozone concentration and the stress response or the complement system activity (p > 0.05). These results suggest that ozone concentrations in air pollution within MCMA may constrain the natural antibody response in the immune system of house sparrows. Our study shows, for the first time, the potential impact of ozone pollution on a wild species in the MCMA presenting the Nabs activity and the house sparrow as suitable indicators to assess the effect of air contamination on the songbirds.
Collapse