1
|
Salvo V, Gazzolo D, Zimmermann LJ. The Complex Interrelationship Between Mechanical Ventilation and Therapeutic Hypothermia in Asphyxiated Newborns. A Review. Ther Hypothermia Temp Manag 2024; 14:80-88. [PMID: 37625025 DOI: 10.1089/ther.2023.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
Abstract
Asphyxiated newborns often require both therapeutic hypothermia (TH) and mechanical ventilation (MV) and the complex interrelationship between these two therapeutic interventions is very interesting, which could not only have several synergistic positive effects but also some risks. Perinatal asphyxia is the leading cause of neonatal hypoxic-ischemic encephalopathy (HIE) and TH is the only approved neuroprotective treatment to limit brain injury, improving the mortality rate and long-term neurological outcomes. HIE is often associated with severe respiratory failure, requiring MV, due to different lung diseases or an impairment of the respiratory drive. The respiratory support management of asphyxiated newborns is very difficult, considering (a) various pathophysiological contexts, (b) the strong impact of TH on gas metabolism and (c) on lung mechanics, and (d) complex TH-MV interactions. Therefore, it is necessary to evaluate the real indications of MV for cooled newborns, considering the risks of respiratory overassistance (hypocapnia/hyperoxia), as well as the adequate monitoring systems. To date, specific randomized studies about the optimal respiratory approach for cooled newborns are lacking, and strategies for MV support vary from center to center. Moreover, there are many open questions about the real effects of cooling on lung mechanics and on surfactant, most appropriate method of blood gas analysis, and clear indications for pharmacological sedation. The aim of this review is to propose a reasoned approach for respiratory management of cooled newborns, considering the pathophysiological context, multiple actions of TH, and consequences of TH-MV matched action and its related risks.
Collapse
Affiliation(s)
- Vincenzo Salvo
- Mother and Child Health Department, Neonatal Intensive Care Unit, "Giovanni Paolo II" Hospital of Ragusa, ASP Ragusa, Italy
| | - Diego Gazzolo
- Neonatal Intensive Care Unit, "G. D'Annunzio" University, Chieti, Italy
| | - Luc J Zimmermann
- Department of Pediatrics and Neonatology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
- European Foundation for the Care of Newborn Infants (EFCNI), München
| |
Collapse
|
2
|
De Luca D, Alonso A, Autilio C. Bile acids-induced lung injury: update of reverse translational biology. Am J Physiol Lung Cell Mol Physiol 2022; 323:L93-L106. [DOI: 10.1152/ajplung.00523.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The presence of bile acids in lung tissue is associated with some clinical features observed in various medical specialties, but it took time to understand that these are due to a "bile acid-induced lung injury" since specific translational studies and cross-disciplinary awareness were lacking. We used a reverse translational approach to update and summarize the current knowledge about the mechanisms of bile acid-induced lung injury. This has been done in a cross-disciplinary fashion since these conditions may occur in patients of various age and in different medical fields. We here define these clinical conditions, then we review the physiopathology of these conditions and the animal models used to mimic them and, finally, their pathobiology. Mechanisms of bile acid-induced lung injury have been partially clarified overtime and are represented by: 1) the interaction with secretory phospholipase A2 pathway, 2) the effect on surfactant function and structure, 3) the biological effects on inflammation and local immunity, 4) the direct cellular toxicity. These mechanisms are schematically illustrated and histological comparisons between ARDS induced by bile acids and other triggers are also provided. Based on these mechanisms we propose possible direct therapeutic applications and, finally, we discuss further research steps to improve the understanding of processes that generate pathological clinical conditions.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Paris Saclay University Hospital, Clamart, Paris, France
- Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Le Plessis Robinson, France
| | - Alejandro Alonso
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research, Institut-Hospital, Complutense University, Madrid, Spain
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research, Institut-Hospital, Complutense University, Madrid, Spain
| |
Collapse
|
3
|
De Luca D, Autilio C. Strategies to protect surfactant and enhance its activity. Biomed J 2021; 44:654-662. [PMID: 34365021 PMCID: PMC8847817 DOI: 10.1016/j.bj.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
The knowledge about surfactant biology is now deeper and recent research has allowed to clarify its role in several human lung disorders. The balance between surfactant production and consumption is better known and the same applies to their regulatory mechanisms. This has allowed to hypothesize and investigate several new and original strategies to protect surfactant and enhance its activity. These interventions are potentially useful for several disorders and particularly for acute respiratory distress syndrome. We here highlight the mechanisms regulating surfactant consumption, encompassing surfactant catabolism but also surfactant injury due to other mechanisms, in a physiopathology-driven fashion. We then analyze each corresponding strategy to protect surfactant and enhance its activity. Some of these strategies are more advanced in terms of research & development pathway, some others are still investigational, but all are promising and deserve a joint effort from clinical-academic researchers and the industry.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Paediatrics and Neonatal Critical Care, "A.Béclère" Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France; Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France.
| | - Chiara Autilio
- Dpt. of Biochemistry and Molecular Biology and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| |
Collapse
|
4
|
El-Dib M, Szakmar E, Chakkarapani E, Aly H. Challenges in respiratory management during therapeutic hypothermia for neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101263. [PMID: 34244080 DOI: 10.1016/j.siny.2021.101263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neonatal encephalopathy (NE) is a serious condition with devastating neurological outcomes that can impact oxygenation and ventilation. The currently recommended therapeutic hypothermia (TH) for these infants may also has several respiratory implications. It decreases metabolic rate and oxygen demands; however, it increases oxygen solubility in the blood and impacts its release to peripheral tissue including the brain. Respiratory management of infants treated with TH should aim for minimizing exposure to hypocapnia or hyperoxia. Inspiratory gas should be heated to 37 °C and humidified to prevent airway and alveolar injury. Blood gas values should be corrected to the core temperature during TH and the use of alkaline buffers is discouraged. While mild sedation/analgesia may ameliorate the discomfort related to cooling, paralytic agents/heavy sedation should be used with caution considering their side effects. Finally, the use of caffeine still needs careful investigation in this population.
Collapse
Affiliation(s)
- Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., CWN#418, Boston, MA, 02115, USA.
| | - Eniko Szakmar
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., CWN#418, Boston, MA, 02115, USA; 1st Department of Pediatrics, Semmelweis University, 54 Bokay St., HU-1083, Budapest, Hungary.
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Regional Neonatal Intensive Care Unit, St Michael's Hospital University Hospitals Bristol NHS Trust, Southwell Street, Bristol, BS2 8EG, United Kingdom.
| | - Hany Aly
- Department of Neonatology, Cleveland Clinic Children's Hospital, 9500 Euclid Avenue # M31-37 Cleveland, OH, 44195, USA.
| | | |
Collapse
|
5
|
Regiroli G, Loi B, Fortas F, Centorrino R, Mosca F, De Luca D. Effect of inspired gas temperature on lung mechanics and gas exchange in neonates in normothermia or therapeutic hypothermia. Resuscitation 2021; 163:116-123. [PMID: 33895234 DOI: 10.1016/j.resuscitation.2021.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Respiratory critical care guidelines suggest heating the air/oxygen mixture but do not recommend a specific temperature target. We aimed to clarify if the inspired gas temperature influences lung mechanics and gas exchange in intubated patients treated with whole body hypothermia (WBH) or normothermia (NT). METHODS Prospective cohort study enrolling neonates ventilated for perinatal asphyxia resuscitation (no lung disease) or acute hypoxemic respiratory failure. Patients were divided between those ventilated in NT or WBH. Compliance (Cdyn), airway resistances (Raw), oxygenation index (OI), PaO2/FiO2, A-a gradient, a/A ratio, estimated alveolar dead space (VDalv), ventilatory index (VI) and CO2 production (VCO2) were registered at the study beginning (inspired gas at 37°C). Then, gas temperature was decreased (32 °C) and variables were recorded again after 1 and 3 h. Data were analysed with univariate and multivariate repeated measures-ANOVA. RESULTS Cdyn, Raw, OI, PaO2/FiO2, A-a gradient, a/A ratio, VDalv, VI and VCO2 are similar between WBH and NT at any timepoint (between-subjects effect); these results do not change adjusting for the presence of respiratory failure. When this is considered in multivariate ANOVA (within-subjects effect), Cdyn (p = 0.016), Raw (p = 0.034) and VDalv (p < 0.001) were worse in patients with respiratory failure than in those without lung disease. CONCLUSIONS Decreasing the gas temperature from 37 °C to 32 °C for 3 h does not change lung mechanics and gas exchange, neither in neonates with, nor in those without respiratory failure and in those treated in NT or WBH. These findings fill a knowledge gap regarding the effect of inspired gas temperature during WBH: they may inform future respiratory critical care guidelines.
Collapse
Affiliation(s)
- Giulia Regiroli
- Division of Pediatrics and Neonatal Critical Care, "A.Béclère" Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France; Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Barbara Loi
- Division of Pediatrics and Neonatal Critical Care, "A.Béclère" Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France
| | - Feriel Fortas
- Division of Pediatrics and Neonatal Critical Care, "A.Béclère" Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France; Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France
| | - Roberta Centorrino
- Division of Pediatrics and Neonatal Critical Care, "A.Béclère" Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France; Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, "A.Béclère" Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France; Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France.
| |
Collapse
|
6
|
Molecular and biophysical mechanisms behind the enhancement of lung surfactant function during controlled therapeutic hypothermia. Sci Rep 2021; 11:728. [PMID: 33436647 PMCID: PMC7804441 DOI: 10.1038/s41598-020-79025-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Therapeutic hypothermia (TH) enhances pulmonary surfactant performance in vivo by molecular mechanisms still unknown. Here, the interfacial structure and the composition of lung surfactant films have been analysed in vitro under TH as well as the molecular basis of its improved performance both under physiological and inhibitory conditions. The biophysical activity of a purified porcine surfactant was tested under slow and breathing-like dynamics by constrained drop surfactometry (CDS) and in the captive bubble surfactometer (CBS) at both 33 and 37 °C. Additionally, the temperature-dependent surfactant activity was also analysed upon inhibition by plasma and subsequent restoration by further surfactant supplementation. Interfacial performance was correlated with lateral structure and lipid composition of films made of native surfactant. Lipid/protein mixtures designed as models to mimic different surfactant contexts were also studied. The capability of surfactant to drastically reduce surface tension was enhanced at 33 °C. Larger DPPC-enriched domains and lower percentages of less active lipids were detected in surfactant films exposed to TH-like conditions. Surfactant resistance to plasma inhibition was boosted and restoration therapies were more effective at 33 °C. This may explain the improved respiratory outcomes observed in cooled patients with acute respiratory distress syndrome and opens new opportunities in the treatment of acute lung injury.
Collapse
|
7
|
Autilio C, Echaide M, Dell'Orto V, Perez-Gil J, De Luca D. Effect of Whole Body Hypothermia on Surfactant Function When Amniotic Fluid Is Meconium Stained. Ther Hypothermia Temp Manag 2020; 10:186-189. [DOI: 10.1089/ther.2017.0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute Hospital 12 de Octubre, Complutense University, Madrid, Spain
| | - Mercedes Echaide
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute Hospital 12 de Octubre, Complutense University, Madrid, Spain
| | - Valentina Dell'Orto
- Division of Pediatrics and Neonatal Critical Care, Medical Centre “A.Béclère,” GHU Paris Sud-APHP and South Paris University, Paris, France
| | - Jesus Perez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute Hospital 12 de Octubre, Complutense University, Madrid, Spain
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Medical Centre “A.Béclère,” GHU Paris Sud-APHP and South Paris University, Paris, France
| |
Collapse
|
8
|
Surfactant replacement therapy: from biological basis to current clinical practice. Pediatr Res 2020; 88:176-183. [PMID: 31926483 PMCID: PMC7223236 DOI: 10.1038/s41390-020-0750-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023]
Abstract
This review summarizes the current knowledge on the physiological action of endogenous and exogenous pulmonary surfactant, the role of different types of animal-derived and synthetic surfactants for RDS therapy, different modes of administration, potential risks and strategies of ventilation, and highlights the most promising aims for future development. Scientists have clarified the physicochemical properties and functions of the different components of surfactant, and part of this successful research is derived from the characterization of genetic diseases affecting surfactant composition or function. Knowledge from functional tests of surfactant action, its immunochemistry, kinetics and homeostasis are important also for improving therapy with animal-derived surfactant preparations and for the development of modified surfactants. In the past decade newly designed artificial surfactants and additives have gained much attention and have proven different advantages, but their particular role still has to be defined. For clinical practice, alternative administration techniques as well as postsurfactant ventilation modes, taking into account alterations in lung mechanics after surfactant placement, may be important in optimizing the potential of this most important drug in neonatology.
Collapse
|
9
|
Therapeutic hypothermia in children: Which indications remain in 2018? Arch Pediatr 2019; 26:308-311. [PMID: 31278022 DOI: 10.1016/j.arcped.2019.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 04/04/2019] [Accepted: 05/30/2019] [Indexed: 11/24/2022]
Abstract
Experimental studies on therapeutic hypothermia in acute brain injury reported positive outcomes and identified two potential benefits, namely, reduction in seizure incidence and in intracranial pressure. Translating this evidence to humans is challenging, especially for conditions in pediatric patients, such as cardiac arrest, traumatic brain injury, and status epilepticus, among others. This narrative review aimed to discuss the current indications and benefits of therapeutic hypothermia in acute brain injury in the pediatric population (i.e., beyond the neonatal period) by analyzing the neurologic outcome and mortality data obtained from previous studies.
Collapse
|
10
|
Szakmar E, Jermendy A, El-Dib M. Respiratory management during therapeutic hypothermia for hypoxic-ischemic encephalopathy. J Perinatol 2019; 39:763-773. [PMID: 30858610 DOI: 10.1038/s41372-019-0349-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
Abstract
Therapeutic hypothermia (TH) has become the standard of care treatment to improve morbidity and mortality in infants with hypoxic-ischemic encephalopathy (HIE). Although TH has clearly proven to be beneficial, recent studies suggest optimization of respiratory management as an approach to prevent further damage and improve neurodevelopmental outcome. The ventilatory management of asphyxiated neonates presents a challenge because both the hypoxic insult and TH have an impact on respiratory functions. Although the danger of recurrence of hypocapnia is well recognized, a brief period of severe hyperoxia also can be detrimental to the previously compromised brain and have been shown to increase the risk of adverse neurodevelopmental outcomes. Therefore, judicious ventilatory management with rigorous monitoring is of particular importance in patients with HIE. In the present review, we provide an overview of the currently available evidence on pulmonary function, respiratory morbidities, and ventilation strategies in HIE and we highlight possible future research directions.
Collapse
Affiliation(s)
- Eniko Szakmar
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Agnes Jermendy
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Calkovska A, Mokra D, Calkovsky V, Matasova K, Zibolen M. Clinical considerations when treating neonatal aspiration syndromes. Expert Rev Respir Med 2019; 13:193-203. [DOI: 10.1080/17476348.2019.1562340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Andrea Calkovska
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Daniela Mokra
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Vladimir Calkovsky
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Jessenius Faculty of Medicine, Comenius University and University Hospital Martin, Martin, Slovakia
| | - Katarina Matasova
- Clinic of Neonatology, Jessenius Faculty of Medicine, Comenius University and University Hospital Martin, Martin, Slovakia
| | - Mirko Zibolen
- Clinic of Neonatology, Jessenius Faculty of Medicine, Comenius University and University Hospital Martin, Martin, Slovakia
| |
Collapse
|
12
|
Okulu E, Erdeve O, Pekcici BB, Kendirli T, Eyileten Z, Atasay B, Arsan S. A Successful Whole Body Therapeutic Hypothermia for Hypoxic Ischemic Encephalopathy During an ECMO Run in a Newborn. Front Pediatr 2019; 7:95. [PMID: 30968010 PMCID: PMC6439343 DOI: 10.3389/fped.2019.00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/04/2019] [Indexed: 11/30/2022] Open
Abstract
Data regarding the safety of using therapeutic hypothermia (TH) with extracorporeal membrane oxygenation (ECMO) in neonates with both hypoxic ischemic encephalopathy (HIE), and respiratory failure are lacking. TH is not associated with an increased incidence of hemostatic complications, but hypothermia may impair coagulation. Herein, we report a case of a newborn who had meconium aspiration syndrome and HIE and underwent both TH and ECMO. He did not have any bleeding or circuit complications, and mortality as short-term outcome along with well-neurodevelopmental outcome.
Collapse
Affiliation(s)
- Emel Okulu
- Division of Neonatology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Omer Erdeve
- Division of Neonatology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Bahar Bingoler Pekcici
- Division of Developmental Behavioral Pediatrics, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Tanil Kendirli
- Division of Pediatric Intensive Care Unit, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Zeynep Eyileten
- Department of Pediatric Cardiovascular Surgery, Ankara University School of Medicine, Ankara, Turkey
| | - Begum Atasay
- Division of Neonatology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Saadet Arsan
- Division of Neonatology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
13
|
De Luca D, Tingay DG, van Kaam A, Brunow de Carvalho W, Valverde E, Roehr CC, Mosca F, Matassa PG, Danhaive O, Carnielli VP, Piastra M. Reply to Giesinger and McNamara: The Impact of Therapeutic Hypothermia on Pulmonary Hemodynamics of Meconium Aspiration Syndrome. Am J Respir Crit Care Med 2018; 198:287-288. [DOI: 10.1164/rccm.201803-0411le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Daniele De Luca
- University of Paris-SaclayParis, France
- Catholic University of the Sacred HeartRome, Italy
| | | | | | | | | | | | - Fabio Mosca
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Piero G. Matassa
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Olivier Danhaive
- University of California, San FranciscoSan Francisco, Californiaand
| | | | | |
Collapse
|
14
|
Giesinger RE, McNamara PJ. The Impact of Therapeutic Hypothermia on Pulmonary Hemodynamics of Meconium Aspiration Syndrome. Am J Respir Crit Care Med 2018; 198:286-287. [PMID: 29590531 DOI: 10.1164/rccm.201802-0207le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Regan E Giesinger
- 1 Hospital for Sick Children Toronto, Ontario, Canada and.,2 University of Toronto Toronto, Ontario, Canada
| | - Patrick J McNamara
- 1 Hospital for Sick Children Toronto, Ontario, Canada and.,2 University of Toronto Toronto, Ontario, Canada
| |
Collapse
|
15
|
Rambaud J, Lidouren F, Sage M, Kohlhauer M, Nadeau M, Fortin-Pellerin É, Micheau P, Zilberstein L, Mongardon N, Ricard JD, Terada M, Bruneval P, Berdeaux A, Ghaleh B, Walti H, Tissier R. Hypothermic total liquid ventilation after experimental aspiration-associated acute respiratory distress syndrome. Ann Intensive Care 2018; 8:57. [PMID: 29721820 PMCID: PMC5931951 DOI: 10.1186/s13613-018-0404-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Background Ultrafast cooling by total liquid ventilation (TLV) provides potent cardio- and neuroprotection after experimental cardiac arrest. However, this was evaluated in animals with no initial lung injury, whereas out-of-hospital cardiac arrest is frequently associated with early-onset pneumonia, which may lead to acute respiratory distress syndrome (ARDS). Here, our objective was to determine whether hypothermic TLV could be safe or even beneficial in an aspiration-associated ARDS animal model. Methods ARDS was induced in anesthetized rabbits through a two-hits model including the intra-tracheal administration of a pH = 1 solution mimicking gastric content and subsequent gaseous non-protective ventilation during 90 min (tidal volume [Vt] = 10 ml/kg with positive end-expiration pressure [PEEP] = 0 cmH2O). After this initial period, animals either received lung protective gas ventilation (LPV; Vt = 8 ml/kg and PEEP = 5 cmH2O) under normothermic conditions, or hypothermic TLV (TLV; Vt = 8 ml/kg and end-expiratory volume = 15 ml/kg). Both strategies were applied for 120 min with a continuous monitoring of respiratory and cardiovascular parameters. Animals were then euthanized for pulmonary histological analyses. Results Eight rabbits were included in each group. Before randomization, all animals elicited ARDS with arterial oxygen partial pressure over inhaled oxygen fraction ratios (PaO2/FiO2) below 100 mmHg, as well as decreased lung compliance. After randomization, body temperature rapidly decreased in TLV versus LPV group (32.6 ± 0.6 vs. 38.2 ± 0.4 °C after 15 min). Static lung compliance and gas exchanges were not significantly different in the TLV versus LPV group (PaO2/FiO2 = 62 ± 4 vs. 52 ± 8 mmHg at the end of the procedure, respectively). Mean arterial pressure and arterial bicarbonates levels were significantly higher in TLV versus LPV. Histological analysis also showed significantly lower inflammation in TLV versus LPV group (median histological score = 3 vs. 4.5/5, respectively; p = 0.03). Conclusion Hypothermic TLV can be safely induced in rabbits during aspiration-associated ARDS. It modified neither gas exchanges nor respiratory mechanics but reduced lung inflammation and hemodynamic failure in comparison with LPV. Since hypothermic TLV was previously shown to provide neuro- and cardio protective effects after cardiac arrest, these findings suggest a possible use of TLV in the settings of cardiac arrest-associated ARDS.
Collapse
Affiliation(s)
- Jérôme Rambaud
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France.,Paediatric and Neonatal Intensive Care Unit, Armand-Trousseau Hospital, UPMC, APHP, Paris, France
| | - Fanny Lidouren
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Michaël Sage
- Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Matthias Kohlhauer
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | | | | | | | - Luca Zilberstein
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Nicolas Mongardon
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France.,Service d'Anesthésie et des Réanimations Chirurgicales, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Jean-Damien Ricard
- UMR 1137, Inserm, Université Paris Diderot, Hôpital Louis Mourier, Réanimation Médico-chirurgicale, APHP, Colombes, France
| | - Megumi Terada
- UMR 970, Inserm, Paris Cardiovascular Research Center, Hôpital Européen Georges Pompidou, Paris, France
| | - Patrick Bruneval
- UMR 970, Inserm, Paris Cardiovascular Research Center, Hôpital Européen Georges Pompidou, Paris, France
| | - Alain Berdeaux
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Bijan Ghaleh
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Hervé Walti
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Renaud Tissier
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| |
Collapse
|
16
|
Autilio C, Echaide M, De Luca D, Pérez-Gil J. Controlled hypothermia may improve surfactant function in asphyxiated neonates with or without meconium aspiration syndrome. PLoS One 2018; 13:e0192295. [PMID: 29420583 PMCID: PMC5805292 DOI: 10.1371/journal.pone.0192295] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/22/2018] [Indexed: 01/14/2023] Open
Abstract
Background Whole-body hypothermia (WBH) is used to improve neurological outcomes in perinatal asphyxia. Recent studies suggested a beneficial effect of hypothermia for some types of acute respiratory failure. However, no data are available about the biophysical function of human surfactant during WBH. We investigated whether WBH improves surfactant biophysical properties in asphyxiated neonates with or without meconium aspiration syndrome (MAS). Methods Non-bronchoscopic bronchoalveolar lavage (BAL) has been collected from 10 asphyxiated neonates (2 with MAS, 8 with no lung disease (NLD)) at different time-points (pre-WBH, 24h, 48h, 72h of WBH and post-WBH). Surfactant was extracted and tested by captive bubble surfactometry (CBS) in triplicate, at 37°C and 33.5°C, through initial adsorption and dynamic compression-expansion cycling. Phosphatidylcholine and cholesterol were assayed using enzymatic methods. Clinical data were recorded in real-time. Results Minimum surface tension under dynamic testing was significantly improved as assessed at 33.5°C compared with its behavior at 37°C in NLD neonates: the difference was evident after at least 72h of WBH and remained significant at 6h after rewarming (72h: p = 0.009; rewarming: p = 0.040). Similar results were obtained in MAS patients whose surfactant activity improved already at 48h of hypothermia. Total cholesterol showed a trend to increase at the first 24-48h of hypothermia in NLD patients. Conversely, hypothermia seemed to reduce the excess of exogenous cholesterol in MAS surfactant. Conclusions Surfactant biophysical properties may improve after 48-72h of WBH in asphyxiated neonates and the improvement is maintained shortly after rewarming. Due to study limitations, further studies are warranted to better clarify the effects of hypothermia on surfactant activity.
Collapse
Affiliation(s)
- Chiara Autilio
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre, Complutense University, Madrid, Spain
- Laboratory of Clinical Molecular Biology, Department of Laboratory Medicine, “A. Gemelli” University Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Mercedes Echaide
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre, Complutense University, Madrid, Spain
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, “A. Béclère” Medical Center, South Paris University Hospitals, APHP, Paris, France
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre, Complutense University, Madrid, Spain
- * E-mail:
| |
Collapse
|